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l. Introduction

Trace type formula is a statement
“Spectral Trace = Matrix Trace”

where spectral trace Tr A of an operator A is the sum of
eigenvalues, and the matrix trace is the sum (integral) of
diagonal elements of its matrix (kernel).

If A=ePH where 3> 0and H is a Schrédinger operator
(Laplace operator on some manifold M) with purely discrete
spectrum, the matrix trace is a Feynman (Wiener) path
integral of e=# (“Euclidean action”) over the space of maps
R/BZ — M (Feynman-Kac formula).

Can compute the matrix trace only when 5 — 0.

For a Dirac operator @ of a Levi-Civita connection on a spin

Riemannian manifold M the difference Tr (e_w*‘ﬂ — e‘ﬁ‘w*)

— an integer — is the analytic index of @.
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obtained from an infinite-dimensional analogue of the
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1. Supersymmetric localization

Supersymmetry, a global symmetry between bosons and
fermions, provides invaluable insights to the non-perturbative
aspects of general strongly coupled quantum field theories, and
is deeply related to various areas of mathematics.

The Hilbert space of a supersymmetric quantum theory
H =T @A

is Zo-graded by the fermion number operator F.
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The quantity
I=Stre?H = Tr(—l)F(f'BH
called Witten index by physicists, carries precise
non-perturbative information about the ground states of a
supersymmetric quantum Hamiltonian H.
Example: Dirac operator § = v*(x)V,, on a spin manifold,
=i - («%% 0 >
0 70
where @, is chiral Dirac operator.
The simplest case: N = 1/2 supersymmetry.

Classical supersymmetric system with the Lagrangian £,
Hamiltonian H and a single real supercharge Q, satisfying

{Q,Q} = 2iH.
Quantum supersymmetric system with the real supercharge Q,
Q*=H,

where quantum Hamiltonian H acts in the Hilbert space 7.
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e The Witten index is given by the path integral
I= Tr(—l)Fe_ﬂﬁ = /e_SE[x’d’]@x@w,

where 5

is the Euclidean action, and Zx 2 is a path integration
‘measure’ for the bosonic and fermionic degrees of freedom.
e The integration goes over periodic boundary conditions and

0Sg =0 and §(222v¢) =0.

Here 0 is (Wick rotated) classical supersymmetry
transformation generated by a supercharge Q,

ozt = {Q’wﬂ} = Qﬁ“a 6¢M = {Q’@/)“} = —at.
e Let V[z,1] be an invariant deformation, a functional of
classical fields satisfying

5%V =0.
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The key fact: for all real A we have

/ e EDr P = / e BTNV 9o g

In case S = dV the path integral in the limit A — oo localizes
on the zero locus of Sg. The latter is the set of constant
loops, arising from the standard kinetic term in the action.

For the case of Dirac operator we have Q = @, H = Q? and

1 (B
Sg =0V, where V = —2/ Gt dt.
0

The Witten index (L(M) is a free loop space of M)
I =Stre B8 :/ e SEDr I
TL(M)
localizes on constant loops (Witten 1982, Atiyah 1985);

explicit computation (L. Alvarez-Gaumé, 1983) gives AS
formula for the index of Dirac operator.
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Il. New localization principle

e How to compute the full partition function — the trace
of an evolution operator — and not only the supertrace?

e It is possible when the Witten index vanishes!

e Namely suppose that the following conditions are satisfied.

1. Sg[z, ] has fermion zero modes 1, ..., X, (i.e., Sg does not
depend on Y;), so I = 0 due to the rules of Berezin integration

/dezl7 /dsz.

2. In the Hilbert space /7 = #3 ® % the Majorana fermions
X1,- -, Xn satisfy

X1 X = 275 (=1)F,

where ¢,, = i"("=1/2 5o since ‘ (-D)F . (- =1 ‘ we have

Stryy--- Xne_ﬁﬁ =272 Try e~PH /Xl e Dr .

Here the integration goes over periodic boundary conditions
for bosons and fermions.
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e However, the path integral nontrivially depends on 3 and since
§(x1 -+ Xne °F) # 0, standard localization does not apply.

e Still, one can formulate a new localization principle by
‘saturating fermion zero modes’.
(A) dx,, does not contain fermion degree freedom x,

/5Xuqu =0, p=1,...,n.
(B) “deformation” V is invariant
5V =0.

(€)
/‘/d)m:/(SVdXM:O7 p=1...,n.

¢ Note that condition (A) is rather natural, condition (B) is
standard, while condition (C), the absence of fermion zero
modes in V' and §V, is a completely new requirement. It is
rather constraining and forces V' to explicitly depend on the
first time derivatives of fermion degrees of freedom.
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The new localization principle is the following statement.
Let S be Euclidean action of the supersymmetric
theory with fermion zero modes Y1, ..., x, satisfying
conditions 1-2 and (A). Then for all A we have

/ Yo+ Xne—SE Dy — / Yo XneSEY G

where V is a deformation satisfying conditions (B)—(C).
If bosonic and fermionic degrees of freedom decouple

H=H@ M and H=Hp®Ip+Ip® Hp,
then

Str 1+ e = 22 Ty P Ty
If Hr =0, we have

Strxi--- )Zne_ﬁﬂ = Trp, ez

Thus we obtain a pure bosonic trace formula by localizing the
supersymmetric path integral in the limit A — oo to the zero
locus of V.
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I1l. Examples

e Poisson summation formula (Jacobi): free supersymmetric
particle on U(1)

Z ean,B/Q \/ﬂ Z 727r2n2/6

n=-—00 n=-—00

e Eskin trace formula: supersymmetric sigma-model with a flat
left-invariant connection on a compact semi-simple Lie group
G (N.4. Sckun “YpaBHeHne TeNIONPOBOAHOCTM HA rpynnax
Jin", C6. namatn H.I. YeboTapesa, N3a. KI'Y, Kazanb, 1964)

R R AT

ﬂGIrrep G

V0| 625’)’) Z H (o, h +7) o~ 25 (k)
C(2rB)2 smh (a, b+ )

vel'aeR ¢

(g = e, h € tis regular, p is Weyl vector, T" is co-character
lattice, T = t/T").



e Frenkel trace formula: supersymmetric gauged sigma-model on
G x G for compact G ~ G x G/G (where (g1, 92) — 9195 )

1 1
Tr Ly Ry'e 3986 = 37 xalg)xalgy e 370
mElrrep G

Vol(T)ez8(:p) L
= (QWB)T(/Qs)(hl)s(_hT) Z e(w)e = Bllhi—whr4||?

(w,y)eW x2miQVY

Here r = dim T where T is the maximal torus, g;, = el with
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and s(h) is a denominator of the Weyl character formula

s(h) = H QSinhmém.
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1 1
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Vol(T)ez8(:p) L
= (QWB)T(/Qs)(hl)s(_hT) Z e(w)e = Bllhi—whr4||?

(w,y)eW x2miQVY

Here r = dim T where T is the maximal torus, g;, = el with
regular hy, € t, Q" is the corout lattice, W is the Weyl group
and s(h) is a denominator of the Weyl character formula

s(h) = H QSinhmém.
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e Selberg trace formula: K-gauged supersymmetric sigma-model
on I'\G; G — real, semisimple, non-compact, K — maximal
compact subgroup. Classic case: G = SL(2,R), K = SO(2),
H = G/K is Lobachevsky plane, and T" is co-compact
Fuchsian group.
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IV. Details

(a) Poisson summation formula
e Free supersymmetric particle of mass m =1 on S! = R/277Z
with the following Lagrangian and real supercharge

L= S tivl), Q=i
and the Hamiltonian
{Q Q} = *p

e The Witten index I is zero due to the presence of the fermion

zero mode 5
1
= — d
ﬁ/o v(t)dt

e Quantum supercharge and the Hamiltonian operator are

R 1., 1
Q =vYP and H:§Q2:5P2.
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The partition function is

Z(B)=Tre PH =32 g>o.
ne”Z

Using path integral,

Z(B) = Str Xe*’BH = / xe Dz .
TL(SY)

New localization principle: the path integral
/ Xe_SE_)‘W.@JJ@w,
TL(SY)
where

1 /B . 1 B
V:—/ i dt, 6V:/ (&% + u)dt,
2 Jo 2 Jo

does not depend on Al

In the limit A — oo the path integral localizes on the classical
trajectories & = 0, and one can compute Z([3) exactly.
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(b) Eskin summation formula on compact G

e 0+ 1 supersymmetric sigma model — supersymmetric particle
on compact simple Lie group G with the Lagrangian

1, . 1 _
£:§<$7m>+§<¢7vx¢>a d]EHTz(t)Gv

where V™ is flat left-invariant connection on G (with torsion).

e In Cartan moving frame formalism J = ¢~ !¢ € g and
Y = Ly-11) € Ilg, where g is the Lie algebra of G and

1 7 :
£ =50 T)+ 5 (w,9).



e Real supercharge

Q= (0 J) + 5w [, )

and classical Hamiltonian

1 1

H=— = —g™,1,.



e Real supercharge

7
Q= (,J) + (v, [0, 9))
and classical Hamiltonian
1 1
H=_ = g%l
e Quantization /7 = L*(G) ®@ #,
ijaaqﬁbt: gab’ [Zaa ia] - _7: gbica

Q = 0l + g fueth 0V



Real supercharge

Q= (b,7) + 16,10, ¥)
and classical Hamiltonian
H = 1Q.Q) = 3o™lu
Quantization 7 = L*(G) ®@ 5,
P 0t= g% lasla) = —ifeyles
Q = 0l + g fueth 0V
Hamiltonian operator H = Q2 is given by

R
12
where A is the Laplace operator on L?(G) and the second
term (R = n/4 is scalar curvature) is the ‘notorious’ DeWitt
term.

N 1 ~
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e Fermion zero modes

1 [P p
[127 [lt’
X ﬁ/ow

n(n—1)/2

so (factor ¢,, =i is included)

Strx!... )Z"e*ﬁﬁ — e PR e3P,
and R 1
Strx!... x"e BT = Vet (eh),

where K3 is the heat kernel, # = 7T}, and h € t.
e Path integral representation

Strf(1 o )Agne_m;{'”(h”ﬁ> = / Xl .. X"e_sf}fi DDy,
OTLG

where

B .
Sh = ;/ (Jh, T+ (o N)dt, T =T+ 1

0 FAdgih
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e The supersymmetric deformation is

1 B L
R

1

5V = 2 [0, 3 + (01 + ad )i
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e Supersymmetry is given by
0g=gv, op=—J" =gy, 6J"=(8+adp).

e The supersymmetric deformation is

1 B L

1

5V = 2 [0, 3 + (01 + ad )i
2/0(< LMY+ (@, (9 + ad ) i) d.

e According to the new localization principle

/ xt... X"efsg@g@w = / i, X"efsgf/\ah‘/@g@w
NTLG NTLG

and as A — oo the integral localizes to the classical solutions,
the zero locus J" = 0.

e When h € tis regular, on QG solutions are isolated geodesics
and we obtain Eskin summation formula.
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(c) Frenkel trace formula

e Gauged supersymmetric sigma-model on G x G

Laxa)/a
= (Jia,J1.4) + (J2.4, Jo.4) + i{th1, Dap1) + i(a, Datha),

where A is a connection in the principal G-bundle over R/5Z,
Jk,A = gk_lgk —Afork = 1,2 and DA = 8t + adA.

e Gauge symmetry
gk = grg(t), A g(t) " Ag(t) + g(6) 7 g(2).

o Non-chiral twist Ly, R, ' becomes a left twist LE,PL;E), and as

in Eskin formula, we replace in the Lagrangian

~ 1 _
Jea = Jea = Jeat 5o g, k=1,2,

where hq = hy, ho = h,.
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e The corresponding Euclidean action Sg for this Lagrangian is
supersymmetric, where

S0k = gk, Ok = —Jpa —Ugthy and SA = 0.

e There are 2r = r + r fermion zero modes X+, ..., X} coming
from the kernel of V4 = d + ad 4 for each v, and we put

Xk(A) = c,,2r/2x,1C e X k=12,

o The Gauss law J; 4 + J2,4 = 0 reduces L?(G x G) and L*(G)
and
18(p.p)
1 —18A €2
o e 4] - L5
A Ae SE
x / X1 (A)xa(A)e 29A [ 29:2n.
[Pf’ (i(Hogg/?(vA) - Holgf(vA))ﬂ k=12




e By gauge fixing A to the constant gauge A = h/j3, the
integration over A reduces to the integration over the
holonomy t = ¢ € T:

18(p.p)
1 —18A €2
h h/B)e 5
X/T\a(t)y? /Xl( /ﬁ)féf)z/m 1T 29x2vx | dt.
k=1,2

where




e By gauge fixing A to the constant gauge A = h/j3, the
integration over A reduces to the integration over the
holonomy t = ¢ € T:
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where

) = dert = T (2~ 2).

a€R4

e Invariant deformation Sy, — S + Ad(Vi + V2) with

B -
Vk = —/ <Jk,1/1k>dt where Jk = Jk70, k= 1,2.
0
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computation reduces to computing elementary regularized
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e The remaining finite-dimensional Berezin integral over II(g/t)
is elementary, and remaining integrals over G/T are computed
using Harish-Chandra formula
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Path integral localizes at the solutions of jk =0, and its
computation reduces to computing elementary regularized
determinants.

The remaining finite-dimensional Berezin integral over II(g/t)
is elementary, and remaining integrals over G/T are computed
using Harish-Chandra formula

dim(G/T) /2
(X9~ 1Ng) gy — (27) (wA,X)
e g = e(w)e ,
L w0y 2 )
where X, )\ € t and

m(h) = H —i{a, h).
acER

As a result, we obtain Frenkel trace formula.

The path integral derivation of Selberg trace formula is similar
but more involved.
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