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I. Introduction

• Trace type formula is a statement

“Spectral Trace = Matrix Trace”

where spectral trace TrA of an operator A is the sum of
eigenvalues, and the matrix trace is the sum (integral) of
diagonal elements of its matrix (kernel).

• If A = e−βĤ , where β > 0 and Ĥ is a Schrödinger operator
(Laplace operator on some manifold M) with purely discrete
spectrum, the matrix trace is a Feynman (Wiener) path
integral of e−SE (“Euclidean action”) over the space of maps
R/βZ→M (Feynman-Kac formula).

• Can compute the matrix trace only when β → 0.
• For a Dirac operator /∂ of a Levi-Civita connection on a spin
Riemannian manifold M the difference Tr

(
e−β/∂

∗/∂ − e−β/∂ /∂
∗)

— an integer — is the analytic index of /∂.



(Based on the joint work with Changha Choi, arXiv:2112.07942,
arXiv:2306.13636 & arXiv:2502.10210 )

I. Introduction

• Trace type formula is a statement

“Spectral Trace = Matrix Trace”

where spectral trace TrA of an operator A is the sum of
eigenvalues, and the matrix trace is the sum (integral) of
diagonal elements of its matrix (kernel).
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• Atiyah-Singer theorem expresses matrix trace — a topological
index of /∂ — in topological terms (integral of Â genus of M).

• Atiyah, following Witten, explained that index formula can be
obtained from an infinite-dimensional analogue of the
Duistermaat-Heckman formula.

• Witten, inspired by Atiyah, explained that infinite-dimensional
DH formula is a special case of a supersymmetric localization.

1. Supersymmetric localization

• Supersymmetry, a global symmetry between bosons and
fermions, provides invaluable insights to the non-perturbative
aspects of general strongly coupled quantum field theories, and
is deeply related to various areas of mathematics.

• The Hilbert space of a supersymmetric quantum theory

H = H + ⊕H −

is Z2-graded by the fermion number operator F .
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• The quantity

I = Str e−βĤ = Tr(−1)F e−βĤ

called Witten index by physicists, carries precise
non-perturbative information about the ground states of a
supersymmetric quantum Hamiltonian Ĥ.

• Example: Dirac operator /∂ = γµ(x)∇µ on a spin manifold,

Ĥ = /∂
2

=

(
/∂+/∂

∗
+ 0

0 /∂
∗
+/∂+

)
,

where /∂+ is chiral Dirac operator.
• The simplest case: N = 1/2 supersymmetry.
• Classical supersymmetric system with the Lagrangian L,
Hamiltonian H and a single real supercharge Q, satisfying

{Q,Q} = 2iH.

• Quantum supersymmetric system with the real supercharge Q̂,

Q̂2 = Ĥ,

where quantum Hamiltonian Ĥ acts in the Hilbert space H .
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• The Witten index is given by the path integral

I = Tr(−1)F e−βĤ =

∫∫∫
e−SE [x,ψ]DxDψ,

where

SE [x, ψ] =

∫ β

0
LE(x, ẋ;ψ, ψ̇)dt

is the Euclidean action, and DxDψ is a path integration
‘measure’ for the bosonic and fermionic degrees of freedom.

• The integration goes over periodic boundary conditions and

δSE = 0 and δ(DxDψ) = 0.

Here δ is (Wick rotated) classical supersymmetry
transformation generated by a supercharge Q,

δxµ = {Q, xµ} = ψµ, δψµ = {Q,ψµ} = −ẋµ.
• Let V [x, ψ] be an invariant deformation, a functional of
classical fields satisfying

δ2V = 0.
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• The key fact: for all real λ we have∫∫∫
e−SEDxDψ =

∫∫∫
e−SE−λδV DxDψ

• In case SE = δV the path integral in the limit λ→∞ localizes
on the zero locus of SE . The latter is the set of constant
loops, arising from the standard kinetic term in the action.

• For the case of Dirac operator we have Q̂ = /∂, Ĥ = Q̂2 and

SE = δV, where V = −1

2

∫ β

0
gµνψ

µẋνdt.

• The Witten index (L(M) is a free loop space of M)

I = Str e−βĤ =

∫∫∫
ΠTL(M)

e−SEDxDψ

localizes on constant loops (Witten 1982, Atiyah 1985);
explicit computation (L. Alvarez-Gaumé, 1983) gives AS
formula for the index of Dirac operator.
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II. New localization principle

• How to compute the full partition function — the trace
of an evolution operator — and not only the supertrace?

• It is possible when the Witten index vanishes!
• Namely suppose that the following conditions are satisfied.

1. SE [x, ψ] has fermion zero modes χ1, . . . , χn (i.e., SE does not
depend on χi), so I = 0 due to the rules of Berezin integration∫

χdχ = 1,

∫
dχ = 0.

2. In the Hilbert space H = HB ⊗HF the Majorana fermions
χ̂1, . . . , χ̂n satisfy

cnχ̂1 · · · χ̂n = 2−
n
2 (−1)F ,

where cn = in(n−1)/2, so since (−1)F · (−1)F = 1 we have

Str χ̂1 · · · χ̂ne−βĤ = 2−
n
2 TrH e−βĤ =

∫∫∫
χ1 · · ·χne−SEDxDψ.

Here the integration goes over periodic boundary conditions
for bosons and fermions.



II. New localization principle

• How to compute the full partition function — the trace
of an evolution operator — and not only the supertrace?

• It is possible when the Witten index vanishes!

• Namely suppose that the following conditions are satisfied.

1. SE [x, ψ] has fermion zero modes χ1, . . . , χn (i.e., SE does not
depend on χi), so I = 0 due to the rules of Berezin integration∫

χdχ = 1,

∫
dχ = 0.

2. In the Hilbert space H = HB ⊗HF the Majorana fermions
χ̂1, . . . , χ̂n satisfy

cnχ̂1 · · · χ̂n = 2−
n
2 (−1)F ,

where cn = in(n−1)/2, so since (−1)F · (−1)F = 1 we have

Str χ̂1 · · · χ̂ne−βĤ = 2−
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• However, the path integral nontrivially depends on β and since
δ(χ1 · · ·χne−SE ) 6= 0, standard localization does not apply.

• Still, one can formulate a new localization principle by
‘saturating fermion zero modes’.

(A) δχµ does not contain fermion degree freedom χµ∫
δχµdχµ = 0, µ = 1, . . . , n.

(B) “deformation” V is invariant

δ2V = 0.

(C) ∫
V dχµ =

∫
δV dχµ = 0, µ = 1, . . . , n.

• Note that condition (A) is rather natural, condition (B) is
standard, while condition (C), the absence of fermion zero
modes in V and δV , is a completely new requirement. It is
rather constraining and forces V to explicitly depend on the
first time derivatives of fermion degrees of freedom.
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• The new localization principle is the following statement.

• Let SE be Euclidean action of the supersymmetric
theory with fermion zero modes χ1, . . . , χn satisfying
conditions 1-2 and (A). Then for all λ we have∫∫∫

χ1 · · ·χne−SEDxDψ =

∫∫∫
χ1 · · ·χne−SE−λδV DxDψ

where V is a deformation satisfying conditions (B)–(C).
• If bosonic and fermionic degrees of freedom decouple

H = HB ⊗HF and Ĥ = ĤB ⊗ IF + IB ⊗ ĤF ,

then

Str χ̂1 · · · χ̂ne−βĤ = 2−n/2 TrHF
e−βĤF · TrHB

e−βĤ .

• If ĤF = 0, we have

Str χ̂1 · · · χ̂ne−βĤ = TrHB
e−βĤB

Thus we obtain a pure bosonic trace formula by localizing the
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• If ĤF = 0, we have

Str χ̂1 · · · χ̂ne−βĤ = TrHB
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III. Examples

• Poisson summation formula (Jacobi): free supersymmetric
particle on U(1)

∞∑
n=−∞

e−n
2β/2 =

√
2π

β

∞∑
n=−∞

e−2π2n2/β

• Eskin trace formula: supersymmetric sigma-model with a flat
left-invariant connection on a compact semi-simple Lie group
G (Л.Д. Эскин “Уравнение теплопроводности на группах
Ли”, Сб. памяти Н.Г. Чеботарева, Изд. КГУ, Казань, 1964)

Kβ(eh) = Tr
[
Lge

−β
2

∆G

]
=

∑
π∈IrrepG

dπ χπ(h)e−
1
2
βC2(π)

=
Vol(G)e

1
2
β〈ρ,ρ〉

(2πβ)n/2

∑
γ∈Γ

∏
α∈R+

1
2〈α, h+ γ〉

sinh 1
2〈α, h+ γ〉

e
− 1

2β
〈h+γ,h+γ〉

(g = eh, h ∈ t is regular, ρ is Weyl vector, Γ is co-character
lattice, T = t/Γ).
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• Frenkel trace formula: supersymmetric gauged sigma-model on
G×G for compact G ' G×G/G (where (g1, g2) 7→ g1g

−1
2 )

Tr
[
LglR

−1
gr e
− 1

2
β∆G

]
=

∑
π∈IrrepG

χπ(gl)χπ(g−1
r )e−

1
2
βC2(π)

=
Vol(T)e

1
2
β〈ρ,ρ〉

(2πβ)r/2s(hl)s(−hr)
∑

(w,γ)∈W×2πiQ∨

ε(w)e−
1
2
β‖hl−whr+γ‖2

Here r = dimT where T is the maximal torus, gl,r = ehl,r with
regular hl,r ∈ t, Q∨ is the corout lattice, W is the Weyl group
and s(h) is a denominator of the Weyl character formula

s(h) =
∏
α∈R+

2 sinh
〈α, h〉

2
.

• Selberg trace formula: K-gauged supersymmetric sigma-model
on Γ\G; G — real, semisimple, non-compact, K — maximal
compact subgroup. Classic case: G = SL(2,R), K = SO(2),
H = G/K is Lobachevsky plane, and Γ is co-compact
Fuchsian group.
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IV. Details

(a) Poisson summation formula
• Free supersymmetric particle of mass m = 1 on S1 = R/2πZ
with the following Lagrangian and real supercharge

L =
1

2
(ẋ2 + iψψ̇), Q = iẋψ,

and the Hamiltonian

H =
1

2i
{Q,Q} =

1

2
p2.

• The Witten index I is zero due to the presence of the fermion
zero mode

χ =
1

β

∫ β

0
ψ(t)dt.

• Quantum supercharge and the Hamiltonian operator are

Q̂ = ψP and Ĥ =
1

2
Q̂2 =

1

2
P 2.
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• The partition function is

Z(β) = Tr e−βĤ =
∑
n∈Z

e−βn
2/2, β > 0.

• Using path integral,

Z(β) = Strχe−βĤ =

∫∫∫
ΠTL(S1)

χe−SEDxDψ.

• New localization principle: the path integral∫∫∫
ΠTL(S1)

χe−SE−λδV DxDψ,

where

V = −1

2

∫ β

0
ẍψ̇ dt, δV =

1

2

∫ β

0
(ẍ2 + ψ̇ψ̈)dt,

does not depend on λ!
• In the limit λ→∞ the path integral localizes on the classical
trajectories ẍ = 0, and one can compute Z(β) exactly.
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(b) Eskin summation formula on compact G
• 0 + 1 supersymmetric sigma model — supersymmetric particle
on compact simple Lie group G with the Lagrangian

L =
1

2
〈ẋ, ẋ〉+

i

2
〈ψ,∇−ẋψ〉, ψ ∈ ΠTx(t)G,

where ∇− is flat left-invariant connection on G (with torsion).

• In Cartan moving frame formalism J = g−1ġ ∈ g and
ψ = Lg−1ψ ∈ Πg, where g is the Lie algebra of G and

L =
1

2
〈J, J〉+

i

2
〈ψ, ψ̇〉.
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• Real supercharge

Q = 〈ψ, J〉+
i

6
〈ψ, [ψ,ψ]〉

and classical Hamiltonian

H =
1

2i
{Q,Q} =

1

2
gablalb.

• Quantization H = L2(G)⊗HF ,

ψ̂a, ψ̂bt= gab, [l̂a, l̂a] = −if cab l̂c,

Q̂ = ψ̂a l̂a +
i

6
fabcψ̂

aψ̂bψ̂c.

• Hamiltonian operator Ĥ = Q̂2 is given by

Ĥ =
1

2
∆ +

R

12
Î

where ∆ is the Laplace operator on L2(G) and the second
term (R = n/4 is scalar curvature) is the ‘notorious’ DeWitt
term.
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• Fermion zero modes

χa =
1

β

∫ β

0
ψa dt,

so (factor cn = in(n−1)/2 is included)

Str χ̂1 . . . χ̂ne−βĤ = e−
1
12
βR Tr e−

1
2
β∆.

and
Str χ̂1 . . . χ̂ne−βĤ+i〈h,r̂〉 = VGe

− 1
12
βRKβ(eh),

where Kβ is the heat kernel, r̂ = r̂aTa and h ∈ t.

• Path integral representation

Str χ̂1 . . . χ̂ne−βĤ+i〈h,r̂〉 =

∫∫∫
ΠTLG

χ1 . . . χne−S
h
E DgDψ,

where

ShE =
1

2

∫ β

0
(〈Jh, Jh〉+ 〈ψ, ψ̇〉)dt, Jh = J +

1

β
Adg−1h.
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1
12
βR Tr e−

1
2
β∆.

and
Str χ̂1 . . . χ̂ne−βĤ+i〈h,r̂〉 = VGe
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• Supersymmetry is given by

δg = gψ, δψ = −Jh − ψψ, δJh = (∂t + adJh)ψ.

• The supersymmetric deformation is

V = −1

2

∫ β

0
〈J̇h, ψ̇〉dt,

δV =
1

2

∫ β

0
(〈J̇h, J̇h〉+ 〈ψ̇, (∂t + adJh)ψ̇〉)dt.

• According to the new localization principle∫
ΠTLG

χ1 . . . χne−S
h
EDgDψ =

∫
ΠTLG

χ1 . . . χne−S
h
E−λδhV DgDψ

and as λ→∞ the integral localizes to the classical solutions,
the zero locus J̇h = 0.

• When h ∈ t is regular, on ΩG solutions are isolated geodesics
and we obtain Eskin summation formula.
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(c) Frenkel trace formula
• Gauged supersymmetric sigma-model on G×G

L(G×G)/G

= 〈J1,A, J1,A〉+ 〈J2,A, J2,A〉+ i〈ψ1, DAψ1〉+ i〈ψ2, DAψ2〉,

where A is a connection in the principal G-bundle over R/βZ,
Jk,A = g−1

k ġk −A for k = 1, 2 and DA = ∂t + adA.

• Gauge symmetry

gk 7→ gkg(t), A 7→ g(t)−1Ag(t) + g(t)−1ġ(t).

• Non-chiral twist LglR
−1
gr becomes a left twist L(1)

gl L
(2)
gr , and as

in Eskin formula, we replace in the Lagrangian

Jk,A → J̃k,A = Jk,A +
1

β
g−1
k hkgk, k = 1, 2,

where h1 = hl, h2 = hr.
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• The corresponding Euclidean action SE for this Lagrangian is
supersymmetric, where

δgk = gkψk, δψk = −J̃k,A − ψkψk and δA = 0.

• There are 2r = r + r fermion zero modes χ1
k, . . . , χ

r
k coming

from the kernel of ∇A = d+ adA for each ψk, and we put

χk(A) = cr2
r/2χ1

k . . . χ
r
k, k = 1, 2.

• The Gauss law J1,A + J2,A = 0 reduces L2(G×G) and L2(G)
and

TrL2(G)

[
LglR

−1
gr e
− 1

2
β∆G

]
=
e

1
2
β〈ρ,ρ〉

vol(G)

×
∫∫∫

χ1(A)χ2(A)e−SE[
Pf ′
(
i(Hol−1/2

S1
β

(∇A)− Hol1/2
S1
β

(∇A))

)]2 DA
∏
k=1,2

DgkDψk.
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• By gauge fixing A to the constant gauge A = h/β, the
integration over A reduces to the integration over the
holonomy t = eh ∈ T:
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• Invariant deformation S′E → S′E + λδ(V1 + V2) with

Vk = −
∫ β

0
〈 ˙̃Jk, ψ̇k〉dt where J̃k = J̃k,0, k = 1, 2.
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• Path integral localizes at the solutions of ˙̃Jk = 0, and its
computation reduces to computing elementary regularized
determinants.

• The remaining finite-dimensional Berezin integral over Π(g/t)
is elementary, and remaining integrals over G/T are computed
using Harish-Chandra formula∫

G/T
e〈X,g

−1λg〉dg =
(2π)dim(G/T)/2

π(X)π(λ)

∑
w∈W

ε(w)e〈wλ,X〉,

where X,λ ∈ t and

π(h) =
∏
α∈R+

−i〈α, h〉.

• As a result, we obtain Frenkel trace formula.
• The path integral derivation of Selberg trace formula is similar
but more involved.
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