Low degree Hurwitz stacks in the Grothendieck ring

Aaron Landesman

joint with Ravi Vakil and Melanie Matchett Wood

ICMS conference on Arithmetic, Algebra, and Algorithms

Question

How many degree d number fields are there?

Question

How many degree d covers of Spec \mathbb{Z} are there?

Question

How many degree d covers does \mathbb{P}^1 have?

Definition

Define the **Hurwitz space** $\mathscr{H}_{d,g}$ as the moduli space of (C, f) where C is a smooth proper geometrically connected genus g curve and $f : C \to \mathbb{P}^1$ is a finite degree d map with Galois closure having Galois group S_d . The **simply branched Hurwitz space** $\mathscr{H}_{d,g}^s$ parameterizes simply branched such covers, i.e., covers with squarefree discriminant.

Definition

The **Grothendieck ring of varieties** $K_0(Var_k)$ is the abelian group generated by isomorphism classes of finite type schemes over k with the following relations: for every such scheme X and closed subscheme $Z \subset X$

$$[X] = [Z] + [X - Z].$$

We will work in a modified version of the Grothendieck ring where:

- (1) We invert universally bijective morphisms.
- (2) We invert $[\mathbb{A}^1]$ and $[\mathbb{A}^n] 1$ for all $n \ge 1$.
- (3) We complete along the dimension filtration, i.e., a sequence of classes approaches 0 if its dimension approaches $-\infty$.

Let $\operatorname{Conf}^n(X)$ denote the configuration space of *n* points on *X*. There is a covering $\mathscr{H}^s_{d,g} \to \operatorname{Conf}^{2g+2d-2}(\mathbb{P}^1)$. Naively, one might wonder if these have the nearly same class in the Grothendieck ring.

Question

For $d \geq 2$, and char $(\mathbb{F}_q) \nmid d!$, does

$$\lim_{g \to \infty} \frac{\left[\mathscr{H}^{s}_{d,g}\right]}{\left[\mathbb{A}^{1}\right]^{\dim \mathscr{H}^{s}_{d,g}}} \stackrel{?}{=} \frac{\left[\operatorname{Conf}^{2g+2d-2}(\mathbb{P}^{1})\right]}{\left[\mathbb{A}^{1}\right]^{\dim \mathscr{H}^{s}_{d,g}}} = 1 - [\mathbb{A}^{1}]^{-2}?$$

Theorem (L-Vakil-Wood)

The answer is "yes" for $d \leq 5$.

Finite field point count-	Number Rings	Cohomology	Chow Ring	Grothendieck
ing				Ring
How many covers of $\mathbb{P}^1_{\mathbb{F}_q}$	How many cov-	What is the coho-	What is the rational	What is
are there?	ers of Spec $\mathbb Z$ are	mology of $\mathscr{H}_{d,g}?$	Chow ring of $\mathscr{H}_{d,g}$?	the class of
	there?	-	-	$\mathscr{H}_{d,g}$?
For $d = 3$, sta-	Stabilizes when	The cohomology	Patel-Vakil stabilization	Stabilizes in
bilizes in g, due to	counted by	of $\mathscr{H}^{s}_{d,\sigma}$ stabilizes	of rational chow ring $d =$	g for $d \leq 5$
Datskovsky-Wright (over	discriminant:	(though it is not	3, Deopurkar-Patel stabi-	L-Vakil-
arbitrary function fields),	d = 3 Davenport	known what it	lization of rational Picard	Wood
$d \leq$ 5 due to Bhargava-	and Heilbronn,	stabilizes to) as	groups $d \leq 5$, Canning-	
Shankar-Wang, $d = 3$	d = 4, 5 due to	$g ightarrow \infty$ when	Larson stabilization of ra-	
also investigated by Zhao	Bhargava	d = 3, Ellenberg-	tional Chow ring $d \leq 5$.	
and Gunther		Venkatesh-		
		Westerland		

Table: Interpretations of counting covers of \mathbb{P}^1

The main result for the full Hurwitz space

We also have the following variant for the full Hurwitz space, in place of the simply branched Hurwitz space.

Question

For $d \geq 2$, and char(\mathbb{F}_q) $\nmid d!$, does

$$\lim_{g\to\infty}\frac{[\mathscr{H}_{d,g}]}{[\mathbb{A}^1]^{\dim\mathscr{H}_{d,g}}} = \frac{1}{1-[\mathbb{A}^1]^{-1}}\left(\prod_{x\in\mathbb{P}^1}(1-[\mathbb{A}^1]^{-1})\left(\sum_{\lambda\vdash d}[\mathbb{A}^1]^{d-|\lambda|}\right)\right)?$$

Above, $|\lambda|$ is the number of parts of the partition λ (and can also be thought of geometrically as the degree of ramification of a corresponding scheme).

Theorem (L-Vakil-Wood)

The answer is "yes" for $d \leq 5$.