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Liquid crystal elastomer (LCE)
Cross-linked networks of polymeric chains containing liquid crystal mesogens

Envisioned by P.G. de Gennes (1975)
Synthesised by H. Finkelmann, H.J. Kock & G. Rehage (1981)

Theoretical foundation by M. Warner & E.M. Terentjev (2003, 2007)
MD simulations by L.A.M., H. Wang, J. Guilleminot & A. Goriely (2021)
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LCE natural response to heat, light, magnetic and electric fields
Can be made sustainable (biodegradable, recyclable, reprocessable)

The Gough-Joule effect
A tendency of stretched elastomers to
contract when heated.

Observed in rubber by J. Gough (1802)
Studied by J.P. Joule in the 1850s

LCE monodomains
Nematic director well aligned.

Reliably synthesised by
J. Küpfer & H. Finkelmann (1991)
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LCE shear striping
Large-strain deformation under uniaxial stress

J. Küpfer & H. Finkelmann (1991, 1994)
I. Kundler & H. Finkelmann (1995) FEBio simulations by R. Poudel (2023)
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LCE model function based on rubber elasticity

W (lce)(F,Q) = W (el)(F,Q) +W (lc)(Q)

W (el)(F,Q) is the elastic strain-energy density;

F is the deformation gradient from the reference configuration, detF = 1;
Q = Q(n) describes orientational order in nematic liquid crystals;
n is the nematic director in the current configuration;
n0 is the nematic director in the reference configuration;

W (lc)(Q) = 1
3Atr

(
Q2
)
− 4

9Btr
(
Q3
)

+ 2
9Ctr

(
Q4
)

+ · · · is the Landau-de Gennes
expansion of the nematic free energy;

A = A(T ), B, C are material constants.

Early “theory on nematic networks” by M. Warner, K.P. Gelling & T.A. Vilgis (1988)
First models by P. Bladon, E.M. Terentjev & M. Warner (1993, 1994)
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Deformation decomposition

F = GAG−1
0 , G2

0 = c0 (I + 2Q0) , G2 = c (I + 2Q)
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Order parameter tensor

Q = diag

(
−Q− b

2
,−Q+ b

2
, Q

)

Uniaxial order parameter

Q =

〈
3

2
cos2 β − 1

2

〉
Q = 1 for perfect nematic;
Q = 0 for isotropic phase;

Biaxial order parameter

b =
3

2

〈
sin2 β cos(2α)

〉
b 6= 0 for biaxial systems;
b = 0 for uniaxial systems.
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Requirements based on isotropic elasticity and liquid crystal theories

(C1) Objectivity. The constitutive equation is unaffected by a superimposed rigid-body
transformation (which involves a change of position after deformation), i.e.,

W (lce)(F,Q(n)) = W (lce)(RF,Q(Rn))

As n is defined with respect to the deformed configuration, it transforms when this
configuration is rotated, whereas n0 does not. Material objectivity is guaranteed by
defining strain-energy functions in terms of the scalar invariants.

(C2) Isotropy. The constitutive equation is unaffected by a rigid-body transformation prior to
deformation, i.e.,

W (lce)(F,Q(n)) = W (lce)(FR,Q(n))

As n is defined with respect to the deformed configuration, it does not change when the
reference configuration is rotated, whereas n0 does. For isotropic materials, the
strain-energy function is a symmetric function of the principal stretch ratios.
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Stretch ratios have a clear kinematic interpretation
Ogden-type models

W (el)(λ1, λ2, λ3,Q) = W (1)(λ1, λ2, λ3) +W (2)(α1, α2, α3),

W (1)(λ1, λ2, λ3) =

m∑
j=1

c
(1)
j

2
(
p
(1)
j

)2 (λ2p(1)
j

1 + λ
2p

(1)
j

2 + λ
2p

(1)
j

3 − 3

)

W (2)(α1, α2, α3) =

n∑
j=1

c
(2)
j

2
(
p
(2)
j

)2 (α2p
(2)
j

1 + α
2p

(2)
j

2 + α
2p

(2)
j

3 − 3

)

{λ21, λ22, λ23} are the eigenvalues of FTF, λ1λ2λ3 = 1;

{α2
1, α

2
2, α

2
3} are the eigenvalues of ATA, where A = G−1FG0, α1α2α3 = 1;

Linear shear modulus is µ = µ(1) + µ(2), with µ(1) =
∑m

j=1 c
(1)
j , µ(2) =

∑n
j=1 c

(2)
j .
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LCE shear striping
Energy minimisation

Shear striping A third equilibrium state is found when

ε0 = ± λ(a− 1) sin(2θ0)

2
√

(η + 1) (η + a)

θ0 = ± arccos

√
a1/6

√
(η + 1) (η + a)

λ2(a− 1)
− η + 1

a− 1

for a1/12
(
η + 1

η + a

)1/4

< λ < a1/12
(
η + a

η + 1

)1/4

where η = µ(1)/µ(2).

L.A.M. & A. Goriely (2020)
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Universal deformations
Sustained by whole families of material models under external loads only

Theorem. For ideal unconstrained uniaxial nematic LCEs described by

W (nc)(F,n) = W (A),

where W (A) is the strain-energy density of the isotropic polymer network and A = G−1FG0,
with G0 constant in Cartesian coordinates, a deformation with gradient F(X) which is
piecewise of differentiability class C2, such that detF(X) > 0, can be maintained for all W (nc)

by the application of surface tractions only (without body forces) if and only if both F and G
are piecewise constant in Cartesian coordinates. For geometric compaticility, in two adjacent
subdomains, the deformation gradients F+ and F−, respectively, must be rank-one connected,
i.e.,

rank (F+ − F−) = 1

L.A.M. & A. Goriely (2023)
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APPLICATION 1
Haptic interfaces: Refreshable Braille displays

A. Gablier & E.M. Terentjev (2023)
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Bulging and punting of actuated LCE

bulge
dimple

punt

L.A.M., A. Gablier, E.M. Terentjev & A. Goriely (2023)
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APPLICATION 2
Energy harvesting via LCE actuation

Charge pump electrical circuit Operating cycle

T. Hiscock, M. Warner & P. Palffy-Muhoray (2011)
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Variable capacitor with LCE dielectric
Parallel compliant electrodes (other designs: multi-layer structure, concentric tubes, ...)

Capacitance: C(Q,λ) = q/V = εε0Ω/d2 = εε0Ω/
(
λ2d20

)
Ω = Ad volume; A area of each plate; d distance between plates;

q magnitude of charge stored when voltage across capacitor is V ;

ε permittivity of dielectric material;
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LCE dielectric
Optimal work

Strain energy density

W(Q,λ1, λ) =
µ(1)

2

(
λ21 + λ−2

1 λ−2 + λ2
)

+
µ(2)

2
a1/3a

−1/3
0

(
λ21a

−1a0 + λ−2
1 λ−2 + λ2

)
− CV 2

2Ad

Net electrical energy generated by the cycle

W = Wout −Win = (V2 − V1) (q1 − q2) = −CnV
2
1

(
Ci

CB
− 1

)(
Cn

CB
− 1

)
Maximum generated output per cycle

Wm = CnV
2
1

(ξ − 1)2

4ξ
,

where ξ = Cn/Ci > 1.
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LCE pre-stretching instabilities
Wrinkling

INPUT WRINKLING VOLTAGE

(when pre-stretching parallel or
perpendicular to the director)

OUTPUT WRINKLING VOLTAGE

(when pre-stretching perpendicular to
the director in the director plane)
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Energy efficiency
LCE nematic-isotropic transition requires Hheat ≈ 3 · 106 J/m3 or Hlight ≈ 107 J/m3

HEAT LIGHT

L.A.M. (2023)
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APPLICATION 3
Light-induced actuation of phototropic LCE

A. Goriely, D. Moulton & L.A.M. (2021)
Tests: L. Liu, M. del Pozo, F. Mohseninejad, M.G. Debije, D.J. Broer & A.P.H.J. Schenning (2020)
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Conclusion

Developments in LCEs draw on understading from both elasticity and LC theories;

In LCEs, mechanical strains give rise to changes in liquid crystalline order and, conversely,
changes in orientational order generate mechanical stresses and strains;

LCEs are top candidates for several important applications of mechanical actuation,
including in biomedical engineering, power generation and flexible electronics.
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THANK YOU

CONTACT

MihaiLA@cardiff.ac.uk

@LAngelaMihai
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