Sobolev space theory for the elliptic and parabolic equations

 with the fractional Laplacian on $C^{1,1}$ open setsKyeong-Hun Kim

Korea University, South Korea

Harmonic Analysis, Stochastic PDEs and PDEs in honor of the 80th Birthday of Nicolai Krylov

June 2022, Edinburgh
Joint work with Jae-Hwan Choi and Junhee Ryu

I will introduce a version of Krylov's weighted Sobolev space theory introduced in the article

- Krylov, 1999 : Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space
with $\Delta^{\alpha / 2}$, in place of Δ, on $C^{1,1}$ open sets.

Krylov's result: Let

$$
\rho(x)=\operatorname{dist}\left(x, \mathbb{R}_{+}^{d}\right), \quad L_{p, \theta}=L_{p}\left(\mathbb{R}_{+}^{d}, \rho^{\theta-d} d x\right), \quad \mathbb{L}_{p, \theta}(T)=L_{p}\left([0, T] ; L_{p, \theta}\right) .
$$

Krylov, for instance, proved sharp $L_{p, \theta}$ and $\mathbb{L}_{p, \theta}(T)$-regularity of

$$
\rho^{-1} u, \quad D u, \quad \rho D^{2} u, \cdots, \rho^{n} D^{n+1} u, \cdots
$$

for the elliptic and parabolic equations respectively.
In particular, for the parabolic equation

$$
u_{t}=\Delta u+f, \quad x \in \mathbb{R}_{+}^{d}, t>0 ; \quad u(0, \cdot)=0
$$

Krylov proved

$$
\left\|\rho^{-1} u\right\|_{\mathbb{L}_{p, \theta}(T)}+\|D u\|_{\mathbb{L}_{p, \theta}(T)}+\left\|\rho D^{2} u\right\|_{\mathbb{L}_{p, \theta}(T)} \leq C\|\rho f\|_{\mathbb{L}_{p, \theta}(T)}
$$

provided that

$$
d-1<\theta<d-1+p
$$

Krylov's result: Let

$$
\rho(x)=\operatorname{dist}\left(x, \mathbb{R}_{+}^{d}\right), \quad L_{p, \theta}=L_{p}\left(\mathbb{R}_{+}^{d}, \rho^{\theta-d} d x\right), \quad \mathbb{L}_{p, \theta}(T)=L_{p}\left([0, T] ; L_{p, \theta}\right) .
$$

Krylov, for instance, proved sharp $L_{p, \theta}$ and $\mathbb{L}_{p, \theta}(T)$-regularity of

$$
\rho^{-1} u, \quad D u, \quad \rho D^{2} u, \cdots, \rho^{n} D^{n+1} u, \cdots
$$

for the elliptic and parabolic equations respectively.
In particular, for the parabolic equation

$$
u_{t}=\Delta u+f, \quad x \in \mathbb{R}_{+}^{d}, t>0 ; \quad u(0, \cdot)=0
$$

Krylov proved

$$
\left\|\rho^{-1} u\right\|_{\mathbb{L}_{p, \theta}(T)}+\|D u\|_{\mathbb{L}_{p, \theta}(T)}+\left\|\rho D^{2} u\right\|_{\mathbb{L}_{p, \theta}(T)} \leq C\|\rho f\|_{\mathbb{L}_{p, \theta}(T)}
$$

provided that

$$
d-1<\theta<d-1+p
$$

Our results ?
(i) Elliptic equation : For $\lambda \geq 0, \alpha \in(0,2)$,

$$
\begin{cases}\Delta^{\alpha / 2} u-\lambda u=f, & x \in D \\ u=0, & x \in D^{c}\end{cases}
$$

(ii) (Deterministic) Parabolic equation:

$$
\begin{cases}\partial_{t} u=\Delta^{\alpha / 2} u+f, & (t, x) \in(0, T) \times D \\ u(0, x)=u_{0}(x), & x \in D \\ u(t, x)=0, & (t, x) \in[0, T] \times D^{c}\end{cases}
$$

(iii) Parabolic SPDE

Remark. Problems are considered on open sets, not only on domains.

Here, for $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, the fractional Laplacian $\Delta^{\alpha / 2}:=-(-\Delta)^{\alpha / 2}$ is defined by

$$
\Delta^{\alpha / 2} f(x)=c(d, \alpha) \int_{\mathbb{R}^{d}} \frac{f(x+y)-f(x)-\nabla f(x) \cdot y 1_{|y| \leq 1}}{|y|^{-d-\alpha}} d y
$$

Equivalently,

$$
\begin{aligned}
\Delta^{\alpha / 2} f & =-\mathcal{F}^{-1}\left(|\xi|^{\alpha} \mathcal{F}(f)\right) \\
& =\lim _{t \rightarrow 0} \frac{\mathbb{E} f\left(x+X_{t}\right)-f(x)}{t}
\end{aligned}
$$

Here X_{t} is a rotationally symmetric α-stable process, that is $\mathbb{E} e^{i X_{t} \cdot \xi}=e^{-t|\xi|^{\alpha}}$.

1. Bogdan et al. (2009). Define

$$
u(x)= \begin{cases}\left(1-|x|^{2}\right)^{\alpha / 2-1} & : x \in B_{1}(0) \\ 0 & :|x|>1\end{cases}
$$

Then u satisfies

$$
\begin{cases}\Delta^{\alpha / 2} u=0, & x \in B_{1}(0), \\ u=0, & |x|>1\end{cases}
$$

Remark. 1. Note $\lim _{|x| \uparrow 1} u(x)=\infty$.
2. Some control on the behavior of solution near ∂B or on \mathbb{R}^{d} is needed for the uniqueness of the problem.
2. For some $c>0$,

$$
u(x):=c\left(1-|x|^{2}\right)^{\alpha / 2} \text { in } B_{1},
$$

satisfies

$$
\begin{cases}\Delta^{\alpha / 2} u(x)=1, & x \in D, \\ u(x)=0, & x \in D^{C} .\end{cases}
$$

Remark. u is in $C^{\alpha / 2}$, but not in C^{γ} for any $\gamma>\alpha / 2$.
3. Ros-Ston and Serra (2014):

If D is bounded, $f \in L_{\infty}(D)$, and $u \in H_{2}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$ satisfies

$$
\begin{cases}\Delta^{\alpha / 2} u=f, & x \in D \\ u=0, & x \in D^{c}\end{cases}
$$

then

$$
\|u\|_{C^{\alpha / 2}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{L_{\infty}(D)}
$$

Remark. 1. If $\alpha=2$, then we only have $u \in C^{2-\varepsilon}$ for any $\varepsilon>0$.
2. Higher order interior $\mathrm{H}^{\prime \prime}$ older estimate is also proved

$$
|u|_{\beta+\alpha ; D}^{(-\alpha / 2)} \leq C|u|_{C^{\alpha / 2}\left(\mathbb{R}^{d}\right)}+C|f|_{\beta ; D}^{(\alpha / 2)}, \quad \beta>0 .
$$

Definition: We say $u(t, x)$ is a weak solution to the problem

$$
\begin{cases}\partial_{t} u=\Delta^{\alpha / 2} u+f, & (t, x) \in(0, T) \times D \\ u(0, x)=u_{0}(x), & x \in D \\ u(t, x)=0, & (t, x) \in[0, T] \times D^{c}\end{cases}
$$

if (a) $u=0$ a.e. in $[0, T] \times D^{c}$,
(b) $(u(t, \cdot), \phi)_{\mathbb{R}^{d}}$ and $\left(u(t, \cdot), \Delta^{\alpha / 2} \phi\right)_{\mathbb{R}^{d}}$ exist for any $t \leq T$ and $\phi \in C_{c}^{\infty}(D)$,
(c) for any $\phi \in C_{c}^{\infty}(D)$ the equality

$$
(u(t, \cdot), \phi)_{\mathbb{R}^{d}}=\left(u_{0}, \phi\right)_{D}+\int_{0}^{t}\left(u(s, \cdot), \Delta^{\alpha / 2} \phi\right)_{\mathbb{R}^{d}} d s+\int_{0}^{t}(f(s, \cdot), \phi)_{D} d s
$$

holds for all $t \leq T$.

Definition: We say $u(t, x)$ is a weak solution to the problem

$$
\begin{cases}\partial_{t} u=\Delta^{\alpha / 2} u+f, & (t, x) \in(0, T) \times D \\ u(0, x)=u_{0}(x), & x \in D \\ u(t, x)=0, & (t, x) \in[0, T] \times D^{c}\end{cases}
$$

if (a) $u=0$ a.e. in $[0, T] \times D^{c}$,
(b) $(u(t, \cdot), \phi)_{\mathbb{R}^{d}}$ and $\left(u(t, \cdot), \Delta^{\alpha / 2} \phi\right)_{\mathbb{R}^{d}}$ exist for any $t \leq T$ and $\phi \in C_{c}^{\infty}(D)$,
(c) for any $\phi \in C_{c}^{\infty}(D)$ the equality

$$
(u(t, \cdot), \phi)_{\mathbb{R}^{d}}=\left(u_{0}, \phi\right)_{D}+\int_{0}^{t}\left(u(s, \cdot), \Delta^{\alpha / 2} \phi\right)_{\mathbb{R}^{d}} d s+\int_{0}^{t}(f(s, \cdot), \phi)_{D} d s
$$

holds for all $t \leq T$.
Remark. If $\phi \in C_{c}^{\infty}(D)$, then

$$
\left\|\Delta^{\alpha / 2} \phi\right\|_{H_{p, \theta+\alpha p / 2}^{\gamma}(D)} \leq C\|\phi\|_{H_{p, \theta-\alpha p / 2}^{\gamma+\alpha}(D)}
$$

provided that $d-1-\alpha p / 2<\theta<d-1+p+\alpha p / 2$. Consequently, $\left(u, \Delta^{\alpha / 2} \phi\right)_{D}<\infty$ if $u \in L_{p}\left(D, \rho^{\theta-d-\alpha p / 2} d x\right)$.

Let X_{t} be a rotationally symmetric α-stable process, and

$$
\tau_{D}=\tau_{D}^{\times}:=\inf \left\{t \geq 0: x+X_{t} \notin D\right\}, \quad \text { first exit time }
$$

We add an element, called a cemetery point, $\partial \notin \mathbb{R}^{d}$ to \mathbb{R}^{d}, and define the killed process of X upon D by

$$
X_{t}^{D}=X_{t}^{D, x}:= \begin{cases}x+X_{t} & t<\tau_{D} \\ \partial & t \geq \tau_{D}\end{cases}
$$

The process is forced to be killed or ignored once it leaves D. Let $p^{D}(t, x, y)$ be the transition density of X^{D}, i.e., for any Borel set $B \subset \mathbb{R}^{d}$,

$$
\mathbb{P}_{x}\left(X_{t}^{D} \in B\right)=\int_{B} p^{D}(t, x, y) d y
$$

For functions f on \mathbb{R}^{d}, we extend it by $f(\partial):=0$. Then,

$$
\mathbb{E}_{x} f\left(X_{t}^{D}\right)=\mathbb{E}_{x} f\left(X_{t} ; t<\tau_{D}\right)=\int_{D} p^{D}(t, x, y) f(y) d y
$$

Denote

$$
L_{p, \theta}(D)=L_{p}\left(D, \rho^{\theta-d} d x\right), \quad \mathbb{L}_{p, \theta}(D, T)=L_{p}\left([0, T] ; L_{p, \theta}(D)\right)
$$

Existence and Uniqueness

Let $p>1, \theta \in(d-1, d-1+p), f \in \mathbb{L}_{p, \theta+\alpha p / 2}(D, T), u_{0} \in L_{p, \theta-\alpha p / 2+\alpha}(D)$.
(i) The function

$$
u(t, x):=\int_{D} p^{D}(t, x, y) u_{0}(y) d y+\int_{0}^{t} \int_{D} p^{D}(t-s, x, y) f(s, y) d y d s
$$

belongs to $\mathbb{L}_{p, \theta-\alpha p / 2}(D, T) \cap\left\{u=0\right.$ on $\left.[0, T] \times D^{c}\right\}$.
(ii) It is the unique weak solution in this function space.
(iii) We have

$$
\left\|\rho^{-\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)} \leq C\left(\left\|\rho^{\alpha / 2} f\right\|_{\mathbb{L}_{p, \theta}(D, T)}+\left\|\rho^{-\alpha / 2+\alpha / p} u_{0}\right\|_{L_{p, \theta}(D)}\right)
$$

where C is independent of u and T.
Remark. 1. $u(t, x)=\mathbb{E}_{x} u_{0}\left(X_{t}^{D}\right)+\int_{0}^{t} \mathbb{E}_{x} f\left(s, X_{t-s}^{D}\right) d s$.
2. $d-1<\theta<d-1+p$ is sharp

For $n=0,1,2, \cdot$, let

$$
H_{p, \theta}^{n}(D):=\left\{u: u, \rho D u, \cdots, \rho^{n} D^{n} u \in L_{p, \theta}(D)\right\} .
$$

Actually, the space $H_{p, \theta}^{\gamma}(D)$ can be defined for any $\gamma \in \mathbb{R}$. By $B_{p, \theta}^{\gamma}(D)$ we denote the corresponding weighted Besov space.

Regularity of arbitrary order derivative

Let ψ be a smooth function such that $\psi \sim \rho$. For any $\gamma \in \mathbb{R}$ and $d-1<\theta<d-1+p$,

$$
\left\|\psi^{-\alpha / 2} u\right\|_{\mathbb{H}_{p, \theta}^{\gamma+\alpha}(D, T)} \leq C\left(\left\|\psi^{\alpha / 2} f\right\|_{\mathbb{H}_{p, \theta}^{\gamma}(D, T)}+\left\|\psi^{-\alpha / 2+\alpha / p} u_{0}\right\|_{B_{p, \theta}^{\gamma+\alpha-\alpha / p}(D)}\right)
$$

where $\mathbb{H}_{p, \theta}^{\nu}(D, T)=L_{p}\left([0, T] ; H_{p, \theta}^{\nu}(D)\right)$.
In particular, if $\gamma=0$,

$$
\begin{aligned}
& \left\|\rho^{-\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)}+\left\|\rho^{\alpha / 2} \Delta^{\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)} \\
& \leq C\left(\left\|\rho^{\alpha / 2} f\right\|_{\mathbb{L}_{p, \theta}(D, T)}+\left\|\rho^{-\alpha / 2+\alpha / p} u_{0}\right\|_{B_{p, \theta}^{\alpha-\alpha / p}(D)}\right)
\end{aligned}
$$

where $\mathbb{L}_{p, \theta}(D, T):=L_{p}\left([0, T] ; L_{p, \theta}(D)\right)$.

Let $u_{t}=\Delta u+f, \quad t>0, x \in D ; \quad u(0, x)=0$.

1. Localization argument: If $\zeta \in C_{c}^{\infty}(D)$, then $u \zeta$ can be viewed as a function on \mathbb{R}^{d}, and

$$
\begin{aligned}
(u \zeta)_{t} & =\zeta \Delta u+\zeta f \\
& =\Delta(u \zeta)+f \zeta+[\zeta \Delta u-\Delta(u \zeta)]
\end{aligned}
$$

$$
=\Delta(u \zeta)+f \zeta-[\nabla \zeta \cdot \nabla u+u \Delta \zeta] \quad: \text { cancellation of highest derivative }
$$

Using results on \mathbb{R}^{d}, we can control $\Delta(u \zeta)$ in terms of norm of lower order term, that is, $[\nabla \zeta \cdot \nabla u+u \Delta \zeta]$.

- Krylov used this argumet to prove, for instance,

$$
\left\|\rho D^{2} u\right\|_{\mathbb{L}_{p, \theta}(T)} \leq C\|D u\|_{\mathbb{L}_{p, \theta}(T)}+C\left\|\rho^{-1} u\right\|_{\mathbb{L}_{p, \theta}(T)}+C\|\rho f\|_{\mathbb{L}_{p, \theta}(T)}
$$

- With fractional Laplacian, one has to detal with

$$
\zeta \Delta^{\alpha / 2} u-\Delta^{\alpha / 2}(u \zeta)
$$

2. Integration by parts: by chain rule $\partial_{t}|u|^{p}=p|u|^{p-2} u u_{t}$

$$
0 \leq|u(T, x)|^{p}=p \int_{0}^{T}|u|^{p-2} u(\Delta u+f) d s
$$

Appropriate integration by parts yields

$$
\left\|\rho^{-1} u\right\|_{\mathbb{L}_{p, \theta}(T)} \leq C\|\rho f\|_{\mathbb{I}_{p, \theta}(T)}
$$

- Difficult to apply for $\Delta^{\alpha / 2}$.

Step 1. (Localization argument) If $u \in \mathbb{L}_{p, \theta-\alpha p / 2}(D, T) \cap\left\{u=0: x \in D^{c}\right\}$ is a solution, then for any $\gamma \in \mathbb{R}$,

$$
\begin{aligned}
\left\|\psi^{-\alpha / 2} u\right\|_{\mathbb{H}_{p, \theta}^{\gamma, \theta}(D, T)} & \leq C\left\|\psi^{-\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)} \\
& +C\left\|\psi^{\alpha / 2} f\right\|_{\mathbb{H}_{p, \theta}^{\gamma}(D, T)}+C\left\|\psi^{-\alpha / 2+\alpha / p} u_{0}\right\|_{B_{p, \theta}^{\gamma+\alpha-\alpha / 2}(D)}
\end{aligned}
$$

Step 2. For $u:=\mathbb{E}_{x} u_{0}\left(X_{t}^{D}\right)+\int_{0}^{t} \mathbb{E}_{x} f\left(s, X_{t-s}^{D}\right) d s$, we have

$$
\left\|\rho^{-\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)} \leq C\left(\left\|\rho^{\alpha / 2} f\right\|_{\mathbb{L}_{p, \theta}(D, T)}+\left\|\rho^{-\alpha / 2+\alpha / p} u_{0}\right\|_{L_{p, \theta}(D)}\right)
$$

Step 1. (Localization argument) If $u \in \mathbb{L}_{p, \theta-\alpha p / 2}(D, T) \cap\left\{u=0: x \in D^{c}\right\}$ is a solution, then for any $\gamma \in \mathbb{R}$,

$$
\begin{aligned}
\left\|\psi^{-\alpha / 2} u\right\|_{\mathbb{H}_{p, \theta}^{\gamma, \theta}(D, T)} & \leq C\left\|\psi^{-\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)} \\
& +C\left\|\psi^{\alpha / 2} f\right\|_{\mathbb{H}_{p, \theta}^{\gamma}(D, T)}+C\left\|\psi^{-\alpha / 2+\alpha / p} u_{0}\right\|_{B_{p, \theta}^{\gamma+\alpha-\alpha / 2}(D)}
\end{aligned}
$$

Step 2. For $u:=\mathbb{E}_{x} u_{0}\left(X_{t}^{D}\right)+\int_{0}^{t} \mathbb{E}_{x} f\left(s, X_{t-s}^{D}\right) d s$, we have

$$
\left\|\rho^{-\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)} \leq C\left(\left\|\rho^{\alpha / 2} f\right\|_{\mathbb{L}_{p, \theta}(D, T)}+\left\|\rho^{-\alpha / 2+\alpha / p} u_{0}\right\|_{L_{p, \theta}(D)}\right)
$$

Remark: Uniquenss ? : For $v \in C_{c}^{\infty}((0, T) \times D)$, we have (X. Zhang, 2012)

$$
v(t, x)=\int_{0}^{t} \mathbb{E}_{x} f\left(s, X_{t-s}^{D}\right) d s, \quad f:=\partial_{t} v-\Delta^{\alpha / 2} v
$$

Denote $d_{x}=\operatorname{dist}(x, \partial D)$ if $x \in D$, and $d_{x}=0$ otherwise. Denote

$$
R_{t, x}=\frac{d_{x}^{\alpha / 2}}{\sqrt{t}+d_{x}^{\alpha / 2}}
$$

If D is $C^{1,1}$, then (Bogdan et al, 2014)

$$
p^{D}(t, x, y) \leq C R_{t, x} R_{t, y} p(t, x-y)
$$

where $p(t, x-y)$ is the transition density of X_{t}. By Hölder inequality,

$$
\begin{aligned}
\left|\int_{D} p^{D}(t, x-y) u_{0}(y) d y\right| \leq & N\left(\int_{D} p(t, x-y) d_{y}^{-\alpha \beta_{1} p^{\prime} / 2} R_{t, y}^{\left(1-\beta_{2}\right) p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \times\left(\int_{D} p(t, x-y) d_{y}^{\alpha \beta_{1} p / 2} R_{t, x}^{p} R_{t, y}^{\beta_{2} p}\left|u_{0}(y)\right|^{p} d y\right)^{1 / p}
\end{aligned}
$$

for any $\beta_{1}, \beta_{2} \in \mathbb{R}$. We used $1=d_{y}^{-1} d_{y}$ and $1=R_{t, y}^{-1} R_{t, y}$. Then, we make good choice of β_{1}, β_{2}, multiply by $d_{x}^{\theta-d-\alpha p / 2}$ to both sides, then integrate over $D \times[0, T]$.

In this ways, following computations by Nazarov and Kozlov, we prove

$$
\left\|\rho^{-\alpha / 2}(x) \int_{D} p^{D}(t, x-y) u_{0}(y) d y\right\|_{\mathbb{L}_{p, \theta}(D, T)} \leq C\left\|\rho^{-\alpha / 2+\alpha / p} u_{0}\right\|_{L_{p, \theta}(D)} .
$$

Similarly, we can prove

$$
\left\|\rho^{-\alpha / 2}(x) \int_{0}^{t} \int_{D} p^{D}(t-s, x, y) f(s, y) d y d s\right\|_{\mathbb{L}_{p, \theta}(D, T)} \leq C\left\|\rho^{\alpha / 2} f\right\|_{\mathbb{L}_{p, \theta}(D, T)} .
$$

Following the proof of Krylov's embedding theorem, we can prove the following: Let $\gamma \geq 0,1 / p<\mu<\nu \leq 1$, and

$$
\gamma+\alpha-\nu \alpha-\frac{d}{p} \geq n+\delta, \quad n \in \mathbb{N}_{+}, \delta \in(0,1)
$$

Then, for any $k \leq n$,

$$
\begin{aligned}
& \sum_{k=0}^{n}\left|\psi^{k+\frac{\theta}{p}+\alpha\left(\mu-\frac{1}{2}\right)} D_{x}^{k}\left(u-u_{0}\right)\right|_{C^{\mu-1 / p}([0, T] ; C(D))} \\
&+\sup _{t, s \in[0, T]} \frac{\left[\psi^{n+\delta+\frac{\theta}{p}+\alpha\left(\mu-\frac{1}{2}\right)} D_{x}^{n}(u(t, \cdot)-u(s, \cdot))\right]_{C^{\delta}(D)}}{|t-s|^{\mu-1 / p}} \\
& \leq \quad C\|\psi f\|_{\mathbb{H}_{p, \theta}^{\gamma}(D, T)}+C\left\|\psi^{-\alpha / 2+\alpha / p} u_{0}\right\|_{B_{p, \theta}^{\gamma+\alpha-\alpha / p}(D)}
\end{aligned}
$$

For instance, let $u_{0}=0$, and assume

$$
\left\|\psi^{\alpha / 2} f\right\|_{L_{\infty}([0, T] \times D)}<\infty
$$

Taking $\gamma=0, \mu, \nu \uparrow 1$ and $p \uparrow \infty$,

$$
\sup _{x \in D}\left|\psi^{\alpha / 2-\delta}(x) u(\cdot, x)\right|_{C^{1-\varepsilon}([0, T])}<\infty
$$

for any small $\delta, \varepsilon>0$. This gives maximal regularity with respect to time. Next, taking p sufficiently large and μ, ν sufficiently close to $1 / p$,

$$
\sup _{x \in D}\left|\psi^{-\alpha / 2+\delta^{\prime}}(x) u(\cdot, x)\right|_{C^{\varepsilon^{\prime}}([0, T])}+\sup _{t \in[0, T]}\left|\psi^{\alpha / 2-\delta^{\prime}} u(t, \cdot)\right|_{C^{\alpha-\varepsilon^{\prime}}(D)}<\infty
$$

for any small $\delta^{\prime}, \varepsilon^{\prime}>0$.

We have the similar results for the elliptic equation

$$
\begin{cases}\Delta^{\alpha / 2} u(x)-\lambda u(x)=f(x), & x \in D \tag{1}\\ u(x)=0, & x \in D^{c}\end{cases}
$$

In particular, we have

Existence and Uniqueness

Let $p>1, \theta \in(d-1, d-1+p)$ and $f \in L_{p, \theta+\alpha p / 2}(D)$.
(i) Let $\lambda>0$ or D be bounded. Then, the function

$$
u(x)=u^{(\lambda)}(x):=\int_{D}\left(\int_{0}^{\infty} e^{-\lambda t} p^{D}(t, x, y) d t\right) f(y) d y
$$

is the unique weak solution in $L_{p, \theta-\alpha p / 2}(D) \cap\left\{u=0\right.$ on $\left.D^{c}\right\}$.
(ii) Let $\lambda=0$ and $D=\mathbb{R}_{+}^{d}$. Then $u^{(1 / n)}$ converges weakly, and the limit is the unique weak solution.
(iii) For the solution u, we have

$$
\lambda\left\|\rho^{\alpha / 2} u\right\|_{L_{p, \theta}(D)}+\left\|\rho^{-\alpha / 2} u\right\|_{L_{p, \theta}(D)}+\left\|\rho^{\alpha / 2} \Delta^{\alpha / 2} u\right\|_{L_{p, \theta}(D)} \leq C\left\|\rho^{\alpha / 2} f\right\|_{L_{p, \theta}(D)} .
$$

Remark. The above estimate as well as higher order regularity are proved as in the parabolic case.

Put $D=B_{1}(0)$ and $G^{D}(x, y)=\int_{0}^{\infty} p^{D}(t, x, y) d t$. Let $f \in C_{c}^{\infty}\left(B_{r}(0)\right)$ be non-negative, $r<1$. Then (by Chen et al, 2010),

$$
|y|<r, \frac{1+r}{2}<|x|<1 \quad \Rightarrow G^{D}(x, y) \approx \rho^{\alpha / 2}(x) .
$$

Thus, if $|x|>\frac{1+r}{2}$, then

$$
u(x):=\int_{D} G^{D}(x, y) f(y) d y \approx \rho^{\alpha / 2}(x) \int_{D} f(y) d y \approx(1-|x|)^{\alpha / 2} .
$$

Thus

$$
\left\|\rho^{-\alpha / 2} u\right\|_{L_{p, \theta}} \geq C \int_{(1+r) / 2}^{1}(1-s)^{\theta-d} s^{d-1} d s
$$

and the right-hand side is finite only if $\theta-d>-1$.
The necessity of $\theta<d-1+p$ can be checked using a duality argument.

SPDE :

$$
\begin{cases}d u=\left(\Delta^{\alpha / 2} u+f\right) d t+\sum_{k} g^{k} d w_{t}^{k}, & (t, x) \in(0, T) \times D, \\ u(0, x)=u_{0}(x), & x \in D, \\ u(t, x)=0, & (t, x) \in[0, T] \times D^{c}\end{cases}
$$

Due to PDE result, without loss of generality, we can assume $f=0$ and $u_{0}=0$. As in Deterministic cases, (arbitrary) higher order derivatives can be controlled by zero-th order derivative.
If $d-1<\theta<d-1+p$ we can prove

$$
\mathbb{E}\left\|\rho^{-\alpha / 2} u\right\|_{\mathbb{L}_{p, \theta}(D, T)}^{p} \leq C \mathbb{E}\left\||g|_{2}\right\|_{\mathbb{L}_{p, \theta}(D, T)}^{p} .
$$

Idea: Apply B-D-G inequality to kill randomness for $\mathbb{E}|u(t, x)|^{p}$, then use direct computation arguments used for deterministic PDE.

감사합니다
 Thanks for listening

