Sobolev space theory for the elliptic and parabolic equations with the fractional Laplacian on $C^{1,1}$ open sets

Kyeong-Hun Kim

Korea University, South Korea

Harmonic Analysis, Stochastic PDEs and PDEs in honor of the 80th Birthday of Nicolai Krylov June 2022, Edinburgh

Joint work with Jae-Hwan Choi and Junhee Ryu

I will introduce a version of Krylov's weighted Sobolev space theory introduced in the article

- Krylov, 1999 : Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space

with $\Delta^{\alpha/2}$, in place of Δ , on $C^{1,1}$ open sets.

< ∃ >

Krylov's result: Let

$$\rho(x) = \operatorname{dist}(x, \mathbb{R}^d_+), \quad L_{\rho, \theta} = L_{\rho}(\mathbb{R}^d_+, \rho^{\theta - d} dx), \quad \mathbb{L}_{\rho, \theta}(T) = L_{\rho}([0, T]; L_{\rho, \theta}).$$

Krylov, for instance, proved sharp $L_{p,\theta}$ and $\mathbb{L}_{p,\theta}(\mathcal{T})$ -regularity of

$$\rho^{-1}u, \quad Du, \quad \rho D^2u, \cdots, \rho^n D^{n+1}u, \cdots$$

for the elliptic and parabolic equations respectively. In particular, for the parabolic equation

$$u_t = \Delta u + f$$
, $x \in \mathbb{R}^d_+$, $t > 0$; $u(0, \cdot) = 0$,

Krylov proved

$$\|\rho^{-1}u\|_{\mathbb{L}_{p,\theta}(\mathcal{T})}+\|Du\|_{\mathbb{L}_{p,\theta}(\mathcal{T})}+\|\rho D^{2}u\|_{\mathbb{L}_{p,\theta}(\mathcal{T})}\leq C\|\rho f\|_{\mathbb{L}_{p,\theta}(\mathcal{T})},$$

provided that

$$d-1 < \theta < d-1+p.$$

Krylov's result: Let

$$\rho(x) = \operatorname{dist}(x, \mathbb{R}^d_+), \quad L_{\rho, \theta} = L_{\rho}(\mathbb{R}^d_+, \rho^{\theta - d} dx), \quad \mathbb{L}_{\rho, \theta}(T) = L_{\rho}([0, T]; L_{\rho, \theta}).$$

Krylov, for instance, proved sharp $L_{p,\theta}$ and $\mathbb{L}_{p,\theta}(\mathcal{T})$ -regularity of

$$\rho^{-1}u, \quad Du, \quad \rho D^2u, \cdots, \rho^n D^{n+1}u, \cdots$$

for the elliptic and parabolic equations respectively. In particular, for the parabolic equation

$$u_t = \Delta u + f$$
, $x \in \mathbb{R}^d_+$, $t > 0$; $u(0, \cdot) = 0$,

Krylov proved

$$\|\rho^{-1}u\|_{\mathbb{L}_{p,\theta}(\mathcal{T})}+\|Du\|_{\mathbb{L}_{p,\theta}(\mathcal{T})}+\|\rho D^{2}u\|_{\mathbb{L}_{p,\theta}(\mathcal{T})}\leq C\|\rho f\|_{\mathbb{L}_{p,\theta}(\mathcal{T})},$$

provided that

$$d-1 < \theta < d-1+p.$$

Our results ?

(i) Elliptic equation : For $\lambda \ge 0$, $\alpha \in (0, 2)$,

$$\begin{cases} \Delta^{\alpha/2} u - \lambda u = f, & x \in D, \\ u = 0, & x \in D^c \end{cases}$$

(ii) (Deterministic) Parabolic equation :

$$\begin{cases} \partial_t u = \Delta^{\alpha/2} u + f, & (t, x) \in (0, T) \times D, \\ u(0, x) = u_0(x), & x \in D, \\ u(t, x) = 0, & (t, x) \in [0, T] \times D^c \end{cases}$$

(iii) Parabolic SPDE

Remark. Problems are considered on open sets, not only on domains.

Here, for $f \in C^\infty_c(\mathbb{R}^d)$, the fractional Laplacian $\Delta^{\alpha/2} := -(-\Delta)^{\alpha/2}$ is defined by

$$\Delta^{\alpha/2}f(x) = c(d,\alpha)\int_{\mathbb{R}^d} \frac{f(x+y) - f(x) - \nabla f(x) \cdot y\mathbf{1}_{|y| \leq 1}}{|y|^{-d-\alpha}} dy.$$

Equivalently,

$$\Delta^{\alpha/2} f = -\mathcal{F}^{-1}(|\xi|^{\alpha}\mathcal{F}(f))$$

=
$$\lim_{t \to 0} \frac{\mathbb{E}f(x+X_t) - f(x)}{t}.$$

Here X_t is a rotationally symmetric α -stable process, that is $\mathbb{E}e^{iX_t \cdot \xi} = e^{-t|\xi|^{\alpha}}$.

< 注 → 注

1. Bogdan et al. (2009). Define

$$u(x) = \begin{cases} (1 - |x|^2)^{\alpha/2 - 1} & : x \in B_1(0) \\ 0 & : |x| > 1 \end{cases}$$

Then *u* satisfies

$$\left\{egin{array}{ll} \Delta^{lpha/2}u=0, & x\in B_1(0),\ u=0, & |x|>1 \end{array}
ight.$$

Remark. 1. Note $\lim_{|x|\uparrow 1} u(x) = \infty$.

2. Some control on the behavior of solution near ∂B or on \mathbb{R}^d is needed for the uniqueness of the problem.

.⊒...>

2. For some
$$c>$$
 0, $u(x):=c(1-|x|^2)^{lpha/2}$ in $B_1,$ satisfies

$$\begin{cases} \Delta^{\alpha/2} u(x) = 1, & x \in D, \\ u(x) = 0, & x \in D^c. \end{cases}$$

Remark. u is in $C^{\alpha/2}$, but not in C^{γ} for any $\gamma > \alpha/2$.

ミト ▲ ヨト ヨ の へ ()

3. Ros-Ston and Serra (2014):

If D is bounded, $f \in L_{\infty}(D)$, and $u \in H_2^{\alpha/2}(\mathbb{R}^d)$ satisfies

$$\begin{cases} \Delta^{\alpha/2} u = f, & x \in D, \\ u = 0, & x \in D^c, \end{cases}$$

then

$$\|u\|_{C^{\alpha/2}(\mathbb{R}^d)} \leq C \|f\|_{L_{\infty}(D)}.$$

Remark. 1. If $\alpha = 2$, then we only have $u \in C^{2-\varepsilon}$ for any $\varepsilon > 0$.

2. Higher order interior H"older estimate is also proved

$$|u|_{\beta+\alpha;D}^{(-\alpha/2)} \leq C|u|_{C^{\alpha/2}(\mathbb{R}^d)} + C|f|_{\beta;D}^{(\alpha/2)}, \quad \beta > 0.$$

Definition : We say u(t, x) is a weak solution to the problem

$$\left\{ egin{array}{ll} \partial_t u = \Delta^{lpha/2} u + f, & (t,x) \in (0,T) imes D, \ u(0,x) = u_0(x), & x \in D, \ u(t,x) = 0, & (t,x) \in [0,T] imes D^c, \end{array}
ight.$$

if (a) u = 0 a.e. in $[0, T] \times D^c$, (b) $(u(t, \cdot), \phi)_{\mathbb{R}^d}$ and $(u(t, \cdot), \Delta^{\alpha/2}\phi)_{\mathbb{R}^d}$ exist for any $t \leq T$ and $\phi \in C_c^{\infty}(D)$, (c) for any $\phi \in C_c^{\infty}(D)$ the equality

$$(u(t,\cdot),\phi)_{\mathbb{R}^d}=(u_0,\phi)_D+\int_0^t(u(s,\cdot),\Delta^{\alpha/2}\phi)_{\mathbb{R}^d}ds+\int_0^t(f(s,\cdot),\phi)_Dds$$

holds for all $t \leq T$.

< 三→

Definition : We say u(t, x) is a weak solution to the problem

$$\left\{ egin{array}{ll} \partial_t u = \Delta^{lpha/2} u + f, & (t,x) \in (0,T) imes D, \ u(0,x) = u_0(x), & x \in D, \ u(t,x) = 0, & (t,x) \in [0,T] imes D^c, \end{array}
ight.$$

if (a) u = 0 a.e. in $[0, T] \times D^c$, (b) $(u(t, \cdot), \phi)_{\mathbb{R}^d}$ and $(u(t, \cdot), \Delta^{\alpha/2}\phi)_{\mathbb{R}^d}$ exist for any $t \leq T$ and $\phi \in C_c^{\infty}(D)$, (c) for any $\phi \in C_c^{\infty}(D)$ the equality

$$(u(t,\cdot),\phi)_{\mathbb{R}^d}=(u_0,\phi)_D+\int_0^t(u(s,\cdot),\Delta^{\alpha/2}\phi)_{\mathbb{R}^d}ds+\int_0^t(f(s,\cdot),\phi)_Dds$$

holds for all $t \leq T$.

Remark. If $\phi \in C_c^{\infty}(D)$, then

$$\|\Delta^{\alpha/2}\phi\|_{H^{\gamma}_{p,\theta+\alpha p/2}(D)} \leq C \|\phi\|_{H^{\gamma+\alpha}_{p,\theta-\alpha p/2}(D)}$$

provided that $d - 1 - \alpha p/2 < \theta < d - 1 + p + \alpha p/2$. Consequently, $(u, \Delta^{\alpha/2} \phi)_D < \infty$ if $u \in L_p(D, \rho^{\theta - d - \alpha p/2} dx)$.

Killed process related to the heat equation

Let X_t be a rotationally symmetric α -stable process, and

$$\tau_D = \tau_D^x := \inf\{t \ge 0 : x + X_t \notin D\}, \quad \text{first exit time.}$$

We add an element, called a cemetery point, $\partial \notin \mathbb{R}^d$ to \mathbb{R}^d , and define the killed process of X upon D by

$$X_t^D = X_t^{D,x} := egin{cases} x + X_t & t < au_D, \\ \partial & t \ge au_D. \end{cases}$$

The process is forced to be killed or ignored once it leaves D. Let $p^D(t, x, y)$ be the transition density of X^D , i.e., for any Borel set $B \subset \mathbb{R}^d$,

$$\mathbb{P}_{x}(X_{t}^{D}\in B)=\int_{B}\rho^{D}(t,x,y)dy.$$

For functions f on \mathbb{R}^d , we extend it by $f(\partial) := 0$. Then,

$$\mathbb{E}_{x}f(X_{t}^{D})=\mathbb{E}_{x}f(X_{t};t< au_{D})=\int_{D}p^{D}(t,x,y)f(y)dy.$$

Denote

$$L_{\rho,\theta}(D) = L_{\rho}(D, \rho^{\theta-d}dx), \quad \mathbb{L}_{\rho,\theta}(D,T) = L_{\rho}([0,T]; L_{\rho,\theta}(D)).$$

Existence and Uniqueness

Let $p > 1, \theta \in (d - 1, d - 1 + p), f \in \mathbb{L}_{p,\theta+\alpha p/2}(D, T), u_0 \in L_{p,\theta-\alpha p/2+\alpha}(D).$ (i) The function

$$u(t,x) := \int_{D} p^{D}(t,x,y)u_{0}(y)dy + \int_{0}^{t} \int_{D} p^{D}(t-s,x,y)f(s,y)dyds$$

belongs to $\mathbb{L}_{\rho,\theta-\alpha\rho/2}(D,T) \cap \{u = 0 \text{ on } [0,T] \times D^c\}$. (ii) It is the unique weak solution in this function space. (iii) We have

$$\|\rho^{-\alpha/2}u\|_{\mathbb{L}_{p,\theta}(D,T)} \leq C(\|\rho^{\alpha/2}f\|_{\mathbb{L}_{p,\theta}(D,T)} + \|\rho^{-\alpha/2+\alpha/p}u_0\|_{L_{p,\theta}(D)})$$

where C is independent of u and T.

Remark. 1.
$$u(t,x) = \mathbb{E}_{x}u_{0}(X_{t}^{D}) + \int_{0}^{t} \mathbb{E}_{x}f(s, X_{t-s}^{D})ds.$$

2. $d-1 < \theta < d-1 + p$ is sharp

For $n = 0, 1, 2, \cdot$, let

$$H^n_{p,\theta}(D) := \{u : u, \rho D u, \cdots, \rho^n D^n u \in L_{p,\theta}(D)\}.$$

Actually, the space $H^{\gamma}_{p,\theta}(D)$ can be defined for any $\gamma \in \mathbb{R}$. By $B^{\gamma}_{p,\theta}(D)$ we denote the corresponding weighted Besov space.

Regularity of arbitrary order derivative

Let ψ be a smooth function such that $\psi \sim \rho$. For any $\gamma \in \mathbb{R}$ and $d-1 < \theta < d-1 + p$,

$$\|\psi^{-\alpha/2}u\|_{\mathbb{H}^{\gamma+\alpha}_{p,\theta}(D,T)} \leq C\left(\|\psi^{\alpha/2}f\|_{\mathbb{H}^{\gamma}_{p,\theta}(D,T)} + \|\psi^{-\alpha/2+\alpha/p}u_0\|_{\mathcal{B}^{\gamma+\alpha-\alpha/p}_{p,\theta}(D)}\right),$$

where $\mathbb{H}_{p,\theta}^{\nu}(D,T) = L_p([0,T]; H_{p,\theta}^{\nu}(D)).$

In particular, if $\gamma = 0$,

$$\begin{split} \|\rho^{-\alpha/2}u\|_{\mathbb{L}_{p,\theta}(D,T)} &+ \|\rho^{\alpha/2}\Delta^{\alpha/2}u\|_{\mathbb{L}_{p,\theta}(D,T)} \\ &\leq C\left(\|\rho^{\alpha/2}f\|_{\mathbb{L}_{p,\theta}(D,T)} + \|\rho^{-\alpha/2+\alpha/p}u_0\|_{B^{\alpha-\alpha/p}_{p,\theta}(D)}\right), \end{split}$$

where $\mathbb{L}_{p,\theta}(D,T) := L_p([0,T]; L_{p,\theta}(D)).$

医下颌 医下口

Let $u_t = \Delta u + f$, $t > 0, x \in D$; u(0, x) = 0.

1. Localization argument: If $\zeta \in C_c^{\infty}(D)$, then $u\zeta$ can be viewed as a function on \mathbb{R}^d , and

$$\begin{aligned} (u\zeta)_t &= \zeta \Delta u + \zeta f \\ &= \Delta(u\zeta) + f\zeta + [\zeta \Delta u - \Delta(u\zeta)] \\ &= \Delta(u\zeta) + f\zeta - [\nabla \zeta \cdot \nabla u + u\Delta \zeta] \quad : \text{cancellation of highest derivative} \end{aligned}$$

Using results on \mathbb{R}^d , we can control $\Delta(u\zeta)$ in terms of norm of lower order term, that is, $[\nabla \zeta \cdot \nabla u + u\Delta \zeta]$.

• Krylov used this argumet to prove, for instance,

$$\|\rho D^2 u\|_{\mathbb{L}_{p,\theta}(T)} \leq C \|D u\|_{\mathbb{L}_{p,\theta}(T)} + C \|\rho^{-1} u\|_{\mathbb{L}_{p,\theta}(T)} + C \|\rho f\|_{\mathbb{L}_{p,\theta}(T)}.$$

• With fractional Laplacian, one has to detal with

$$\zeta \Delta^{\alpha/2} u - \Delta^{\alpha/2} (u\zeta).$$

2. Integration by parts : by chain rule $\partial_t |u|^p = p |u|^{p-2} u u_t$

$$0\leq |u(T,x)|^{p}=p\int_{0}^{T}|u|^{p-2}u(\Delta u+f)ds.$$

Appropriate integration by parts yields

$$\|\rho^{-1}u\|_{\mathbb{L}_{p,\theta}(T)} \leq C \|\rho f\|_{\mathbb{L}_{p,\theta}(T)}.$$

• Difficult to apply for $\Delta^{\alpha/2}$.

< 三→ 三三

Key steps

Step 1. (Localization argument) If $u \in \mathbb{L}_{p,\theta-\alpha p/2}(D,T) \cap \{u = 0 : x \in D^c\}$ is a solution, then for any $\gamma \in \mathbb{R}$,

$$\begin{aligned} \|\psi^{-\alpha/2}u\|_{\mathbb{H}^{\gamma+\alpha}_{\rho,\theta}(D,T)} &\leq C \|\psi^{-\alpha/2}u\|_{\mathbb{L}_{\rho,\theta}(D,T)} \\ &+ C \|\psi^{\alpha/2}f\|_{\mathbb{H}^{\gamma}_{\rho,\theta}(D,T)} + C \|\psi^{-\alpha/2+\alpha/p}u_0\|_{B^{\gamma+\alpha-\alpha/2}_{\rho,\theta}(D)} \end{aligned}$$

Step 2. For
$$u := \mathbb{E}_{\mathbf{x}} u_0(X_t^D) + \int_0^t \mathbb{E}_{\mathbf{x}} f(s, X_{t-s}^D) ds$$
, we have
$$\|\rho^{-\alpha/2} u\|_{\mathbb{L}_{p,\theta}(D,T)} \le C \left(\|\rho^{\alpha/2} f\|_{\mathbb{L}_{p,\theta}(D,T)} + \|\rho^{-\alpha/2+\alpha/p} u_0\|_{L_{p,\theta}(D)} \right).$$

< ∃ →

э

Key steps

Step 1. (Localization argument) If $u \in \mathbb{L}_{p,\theta-\alpha p/2}(D,T) \cap \{u = 0 : x \in D^c\}$ is a solution, then for any $\gamma \in \mathbb{R}$,

$$\begin{aligned} \|\psi^{-\alpha/2}u\|_{\mathbb{H}^{\gamma+\alpha}_{p,\theta}(D,T)} &\leq C \|\psi^{-\alpha/2}u\|_{\mathbb{L}_{p,\theta}(D,T)} \\ &+ C \|\psi^{\alpha/2}f\|_{\mathbb{H}^{\gamma}_{p,\theta}(D,T)} + C \|\psi^{-\alpha/2+\alpha/p}u_0\|_{B^{\gamma+\alpha-\alpha/2}_{p,\theta}(D,T)} \end{aligned}$$

Step 2. For
$$u := \mathbb{E}_x u_0(X_t^D) + \int_0^t \mathbb{E}_x f(s, X_{t-s}^D) ds$$
, we have
$$\|\rho^{-\alpha/2} u\|_{\mathbb{L}_{p,\theta}(D,T)} \le C\left(\|\rho^{\alpha/2} f\|_{\mathbb{L}_{p,\theta}(D,T)} + \|\rho^{-\alpha/2+\alpha/p} u_0\|_{L_{p,\theta}(D)}\right).$$

Remark : Uniquenss ? : For $v \in C_c^{\infty}((0, T) \times D)$, we have (X. Zhang, 2012)

$$v(t,x) = \int_0^t \mathbb{E}_x f(s, X_{t-s}^D) ds, \quad f := \partial_t v - \Delta^{\alpha/2} v.$$

< ∃ →

Denote $d_x = \text{dist}(x, \partial D)$ if $x \in D$, and $d_x = 0$ otherwise. Denote

$$R_{t,x} = rac{d_x^{lpha/2}}{\sqrt{t} + d_x^{lpha/2}}.$$

If D is $C^{1,1}$, then (Bogdan et al, 2014)

$$p^{D}(t,x,y) \leq CR_{t,x}R_{t,y}p(t,x-y),$$

where p(t, x - y) is the transition density of X_t . By Hölder inequality,

$$\begin{aligned} \left| \int_{D} p^{D}(t, x - y) u_{0}(y) dy \right| &\leq N \left(\int_{D} p(t, x - y) d_{y}^{-\alpha\beta_{1}p'/2} R_{t,y}^{(1 - \beta_{2})p'} dy \right)^{1/p'} \\ & \times \left(\int_{D} p(t, x - y) d_{y}^{\alpha\beta_{1}p/2} R_{t,x}^{p} R_{t,y}^{\beta_{2}p} |u_{0}(y)|^{p} dy \right)^{1/p} \end{aligned}$$

for any $\beta_1, \beta_2 \in \mathbb{R}$. We used $1 = d_y^{-1} d_y$ and $1 = R_{t,y}^{-1} R_{t,y}$. Then, we make good choice of β_1, β_2 , multiply by $d_x^{\theta^{-d-\alpha p/2}}$ to both sides, then integrate over $D \times [0, T]$.

In this ways, following computations by Nazarov and Kozlov, we prove

$$\left\|\rho^{-\alpha/2}(x)\int_D p^D(t,x-y)u_0(y)dy\right\|_{\mathbb{L}_{p,\theta}(D,T)} \leq C\|\rho^{-\alpha/2+\alpha/p}u_0\|_{L_{p,\theta}(D)}.$$

Similarly, we can prove

$$\left\|\rho^{-\alpha/2}(x)\int_0^t\int_D p^D(t-s,x,y)f(s,y)dyds\right\|_{\mathbb{L}_{p,\theta}(D,T)} \leq C\|\rho^{\alpha/2}f\|_{\mathbb{L}_{p,\theta}(D,T)}.$$

≣ ▶

Following the proof of Krylov's embedding theorem, we can prove the following: Let $\gamma \geq$ 0, $1/p < \mu < \nu \leq$ 1, and

$$\gamma + \alpha - \nu \alpha - rac{d}{p} \ge n + \delta, \quad n \in \mathbb{N}_+, \ \delta \in (0, 1).$$

Then, for any $k \leq n$,

$$\begin{split} &\sum_{k=0}^{n} |\psi^{k+\frac{\theta}{p}+\alpha\left(\mu-\frac{1}{2}\right)} D_{x}^{k}(u-u_{0})|_{C^{\mu-1/p}([0,T];C(D))} \\ &+ \sup_{t,s\in[0,T]} \frac{[\psi^{n+\delta+\frac{\theta}{p}+\alpha\left(\mu-\frac{1}{2}\right)} D_{x}^{n}(u(t,\cdot)-u(s,\cdot))]_{C^{\delta}(D)}}{|t-s|^{\mu-1/p}} \\ &\leq & C \|\psi f\|_{\mathbb{H}^{\gamma}_{p,\theta}(D,T)} + C \|\psi^{-\alpha/2+\alpha/p} u_{0}\|_{B^{\gamma+\alpha-\alpha/p}_{p,\theta}(D)}. \end{split}$$

► < Ξ ►</p>

э

For instance, let $u_0 = 0$, and assume

 $\|\psi^{\alpha/2}f\|_{L_{\infty}([0,T]\times D)}<\infty.$

Taking $\gamma = 0$, $\mu, \nu \uparrow 1$ and $p \uparrow \infty$,

$$\sup_{x\in D} |\psi^{\alpha/2-\delta}(x)u(\cdot,x)|_{C^{1-\varepsilon}([0,T])} < \infty$$

for any small $\delta, \varepsilon > 0$. This gives maximal regularity with respect to time. Next, taking *p* sufficiently large and μ , ν sufficiently close to 1/p,

$$\sup_{x\in D} |\psi^{-\alpha/2+\delta'}(x)u(\cdot,x)|_{C^{\varepsilon'}([0,T])} + \sup_{t\in [0,T]} |\psi^{\alpha/2-\delta'}u(t,\cdot)|_{C^{\alpha-\varepsilon'}(D)} < \infty$$

for any small $\delta', \varepsilon' > 0$.

We have the similar results for the elliptic equation

$$\begin{cases} \Delta^{\alpha/2} u(x) - \lambda u(x) = f(x), & x \in D, \\ u(x) = 0, & x \in D^c, \end{cases}$$
(1)

In particular, we have

Existence and Uniqueness

Let $p > 1, \theta \in (d - 1, d - 1 + p)$ and $f \in L_{p,\theta+\alpha p/2}(D)$. (*i*) Let $\lambda > 0$ or D be bounded. Then, the function

$$u(x) = u^{(\lambda)}(x) := \int_D \left(\int_0^\infty e^{-\lambda t} \rho^D(t, x, y) dt \right) f(y) dy$$

is the unique weak solution in $L_{p,\theta-\alpha p/2}(D) \cap \{u = 0 \text{ on } D^c\}$.

(ii) Let $\lambda = 0$ and $D = \mathbb{R}^d_+$. Then $u^{(1/n)}$ converges weakly, and the limit is the unique weak solution.

(*iii*) For the solution u, we have

$$\lambda \| \rho^{\alpha/2} u \|_{L_{p,\theta}(D)} + \| \rho^{-\alpha/2} u \|_{L_{p,\theta}(D)} + \| \rho^{\alpha/2} \Delta^{\alpha/2} u \|_{L_{p,\theta}(D)} \le C \| \rho^{\alpha/2} f \|_{L_{p,\theta}(D)}$$

Remark. The above estimate as well as higher order regularity are proved as in the parabolic case.

Put $D = B_1(0)$ and $G^D(x, y) = \int_0^\infty p^D(t, x, y) dt$. Let $f \in C_c^\infty(B_r(0))$ be non-negative, r < 1. Then (by Chen et al, 2010),

$$|y| < r, \frac{1+r}{2} < |x| < 1 \quad \Rightarrow G^{\mathcal{D}}(x,y) \approx \rho^{\alpha/2}(x).$$

Thus, if $|x| > \frac{1+r}{2}$, then

$$u(x) := \int_D G^D(x,y)f(y)dy \approx \rho^{\alpha/2}(x)\int_D f(y)dy \approx (1-|x|)^{\alpha/2}.$$

Thus

$$\|
ho^{-lpha/2}u\|_{L_{p, heta}}\geq C\int_{(1+r)/2}^{1}(1-s)^{ heta-d}s^{d-1}ds,$$

and the right-hand side is finite only if $\theta - d > -1$.

The necessity of $\theta < d - 1 + p$ can be checked using a duality argument.

ヨト ・ヨトー

SPDE :

$$\begin{cases} du = (\Delta^{\alpha/2}u + f)dt + \sum_{k} g^{k}dw_{t}^{k}, & (t, x) \in (0, T) \times D, \\ u(0, x) = u_{0}(x), & x \in D, \\ u(t, x) = 0, & (t, x) \in [0, T] \times D^{c} \end{cases}$$

Due to PDE result, without loss of generality, we can assume f = 0 and $u_0 = 0$. As in Deterministic cases, (arbitrary) higher order derivatives can be controlled by zero-th order derivative.

If $d - 1 < \theta < d - 1 + p$ we can prove

$$\mathbb{E} \| \rho^{-\alpha/2} u \|_{\mathbb{L}_{p,\theta}(D,T)}^{p} \leq C \mathbb{E} \| |g|_{l_2} \|_{\mathbb{L}_{p,\theta}(D,T)}^{p}.$$

Idea: Apply B-D-G inequality to kill randomness for $\mathbb{E}|u(t,x)|^{\rho}$, then use direct computation arguments used for deterministic PDE.

감사합니다 Thanks for listening

프 > 프