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| will introduce a version of Krylov's weighted Sobolev space theory introduced
in the article

- Krylov, 1999 : Weighted Sobolev spaces and Laplace’s equation and the
heat equations in a half space

with A%/2 in place of A, on C*! open sets.
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Krylov's result: Let
p(x) = dist(x, Ri)v Lpo = LP(Rivpe_ddX)v Lp,o(T) = Lp([0, T]; Lp.0).
Krylov, for instance, proved sharp L, ¢ and L, ¢(T)-regularity of
pilu’ DU, PDZU»"' 7ann+1u7"'

for the elliptic and parabolic equations respectively.
In particular, for the parabolic equation

u=Au+f, XeRd+7t>O; U(O’.):O’
Krylov proved
lp™ ulle, o) + 1 Dulln, o1y + 1D ulle, o1y < Clipflle, o(r)s

provided that
d-—1<60<d—1+p.
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Our results ?
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PDEs with fractional Laplacian on C1! open set D

(i) Elliptic equation : For A > 0, a € (0, 2),
A2y — u=Ff, xeD,
u=0, x € D¢
(ii) (Deterministic) Parabolic equation :
Ou=A2u+f,  (t,x)€(0,T)x D,
u(0, x) = wo(x), x € D,
u(t,x) =0, (t,x) €0, T] x D¢
(iii) Parabolic SPDE

Remark. Problems are considered on open sets, not only on domains.
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Here, for f € C2°(RY), the fractional Laplacian A%/2 := —(—A)*/? is defined

by

f )—f Vif(x)-yl

Aa/zf(x ) = c(d a)/ (x+vy) (x) — - (x)-y Iy‘gldy.
lyl=9=
Equivalently,
APE = —F (I F()
lim Ef(x+ X¢) — f(x)‘
t—0 t

Here X; is a rotationally symmetric a-stable process, that is EeXt'¢ = = e tlEl%,

Kyeong-Hun Kim PDEs with the fractional Laplacian on open sets



Some examples and related results

1. Bogdan et al. (2009). Define
u(x) = (1—|x[»)*?"t  :x e Bi(0)
0 dxl>1

Then u satisfies
A2y =0, x € Bi(0),
u=0, x| >1

Remark. 1. Note limjy41 u(x) = oo.

2. Some control on the behavior of solution near B or on R? is needed for the
uniqueness of the problem.
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2. For some ¢ > 0,
u(x) = c(1 — [x[*)*? in By,

satisfies

A*?u(x)=1, xeD,
u(x) =0, x € D°.

Remark. u is in C*/2, but not in C” for any v > a/2.
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3. Ros-Ston and Serra (2014):
If D is bounded, f € Loo(D), and u € Hy/?(R?) satisfies

A?y=Ff  xeD,
u=0, x € D¢,

then

lullcarz@ay < CllfllLoc(o)-
Remark. 1. If o = 2, then we only have u € C*>¢ for any € > 0.
2. Higher order interior H" older estimate is also proved

—a/2 a/2
ul 28 < Clulcaspgey + CIFISEHD, B> 0.
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Weak solutions

Definition : We say u(t, x) is a weak solution to the problem

du=A2u+f,  (t,x)€(0,T)x D,

U(OaX) = UO(X)a x €D,

u(t,x) =0, (t,x) € [0, T] x D¢,
a)u=0a.e. in [0, T] x D°,

if (
b) (u(t,-), ¢)re and (u(t,-), A%?¢)ga exist for any t < T and ¢ € C(D),
(c) for any ¢ € C°(D) the equality

(u(t,), &) = (10, B0 + / (u(s, ), A2G)uds + / (F(s,), )pds

holds for all t < T.
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Weak solutions

Definition : We say u(t, x) is a weak solution to the problem

du=A2u+f,  (t,x)€(0,T)x D,

U(OaX) = UO(X)a x €D,

u(t,x) =0, (t,x) € [0, T] x D¢,
a)u=0a.e. in [0, T] x D°,

if (
b) (u(t,-), ¢)re and (u(t,-), A%?¢)ga exist for any t < T and ¢ € C(D),
(c) for any ¢ € C°(D) the equality

(ult, ), &)ze = (0, 6) + / (u(s, ), A°26)gads + / (F(s,), )ods
holds for all t < T.
Remark. If ¢ € CZ°(D), then
18°6ly, 0y S Clollse

,0+a /Z(D)

provided that d — 1 — ap/2 < 6 < d — 1+ p+ ap/2. Consequently,
(u, A°2¢)p < o0 if u € Ly(D, pP~972P/2dx).
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Killed process related to the heat equation

Let X; be a rotationally symmetric a-stable process, and
o =71p:=inf{t > 0:x+ X, ¢ D}, first exit time.

We add an element, called a cemetery point, & ¢ R to R?, and define the
killed process of X upon D by

XtD _ XtD’X — X+ Xt t < D,
0 t> 1p.

The process is forced to be killed or ignored once it leaves D.
Let p°(t, x,y) be the transition density of X°, i.e., for any Borel set B C R?,

BAXP € B) = [ p7(t.x 1)y,
B
For functions f on RY, we extend it by f(9) := 0. Then,

Elf(XP) = B (Xei t < 1) = / POt x,y)F(y)dy.
D
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Denote

Loo(D) = Lp(DapeiddX)a Lpe(D, T) = Ly([0, T]; Lp,6(D)).

Existence and Uniqueness

Let p>1,0€(d—1,d—1+p),f €L, o1ap2(D, T), o € Ly o_ap/2+a(D).
(i) The function

ultx) = [ P25y )y + [ t [ #°e = s.x.)r(s, )y

belongs to L, g—ap/2(D, T) N {u=0o0n [0, T] x D}.
(i) It is the unique weak solution in this function space.
(iii) We have

—a —a/24+a/p

2 /2
o= Ulle, 00,1 < C(llp 4 fllL, o0, 1) + llp wolle, (D))

where C is independent of u and T.

Remark. 1. u(t,x) = Exuo(X) + [; Exf(s, X2)ds.
2.d—-1<6<d-—1+pissharp
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Forn=20,1,2 - let
Hpo(D) :={u:u,pDu,--- ,p"D"u € L,9(D)}.

Actually, the space H, ,(D) can be defined for any v € R. By B] ,(D) we
denote the corresponding weighted Besov space.

Regularity of arbitrary order derivative

Let v) be a smooth function such that ¢ ~ p. For any v € R and
d-—1<60<d—-1+p,

—a/2 a/2 —a/24a/
167 ulgge0.7y < € (197l 10,1+ 197/l sy )

where H; 4(D, T) = Lp([0, T]; Hy 4(D)).

In particular, if v =0,
—a/2 a2 Aaf2
o= 2ulle, oo.7) + 10°2 A% 2ulle, 4 (0.7)
/2 —a/24+a
<cC <Hp / f||]Lp,9(D’T) +lp /2 /pu0‘|3;;“/”(D)) )

where L, (D, T) := Ly([0, T]; Lp,6(D)).
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Some difficulties not appearing with A.

Let uy =Au+f, t>0,xeD; u(0,x)=0.

1. Localization argument: If ¢ € CZ°(D), then u¢ can be viewed as a function
on R9, and

(uQ)e = C(Au+(f

A(uC) + ¢+ [CAu — A(uC)]
A(uC) + f( — [V(¢-Vu+ ulAl] : cancellation of highest derivative

Using results on RY, we can control A(u¢) in terms of norm of lower order
term, that is, [V( - Vu 4+ uA(].

e Krylov used this argumet to prove, for instance,
oD% ulli, o1y < ClIDUllw, o1y + Cllo ™ ulle, o) + CllofliL, o)
e With fractional Laplacian, one has to detal with

CA*?y — A (uC).
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2. Integration by parts : by chain rule d;|ul? = p|ulP2uu;
T
0<|u(T,x)P = p/ |ulP?u(Au + f)ds.
0

Appropriate integration by parts yields

—1
o™ ullL, o(ry < CllpfllL, (1)

o Difficult to apply for A®/2.
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Step 1. (Localization argument) If u € L, g_qp/2(D, T)N{u=0:x€ D} is a
solution, then for any v € R,

—a/2 —a/2
[l o/ UHH-H;):“(D,T) < Clly o/ UHLP,e(DvT)

I g 0m + O Pl gy
Step 2. For u := E,u(XP) + fot E.f(s, X2 .)ds, we have

—a/24+a/p

—a/2 a/2
o™ ule, yo,m) < € (116" *Flle, o0, + llo ol o0)) -
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Step 1. (Localization argument) If u € L, g_qp/2(D, T)N{u=0:x€ D} is a
solution, then for any v € R,

—a/2 —a/2
[~/ oo < ClIY U, 40,7

a/2 —a/24a/p
+ Cly f”H;s(D,T) + Cllv UOHB;ZO—Q/Z(D)

Step 2. For u := E,u(XP) + fot E.f(s, X2 .)ds, we have

—a/24+a/p

—a/2 a/2
o™ ule, yo,m) < € (116" *Flle, o0, + llo ol o0)) -

Remark : Uniquenss ? : For v € CZ°((0, T) x D), we have (X. Zhang, 2012)

t
v(t,x)z/ E f(s,X2.)ds, f:=0dwv—A*?v.
0
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Idea of Step 2: cf. Nazarov and Kozlov

Denote dx = dist(x,dD) if x € D, and dx = 0 otherwise. Denote

a/2
Rt,x = dxia/z
Vit + dy

If Dis C'!, then (Bogdan et al, 2014)
pD(t7 X7.y) S CRt,XRt»yp(tvx _Y)r

where p(t,x — y) is the transition density of X;. By Hélder inequality,

/ ’ l/p/
/ PPt x — }/)Uo(}’)d)" <N ( / p(t, x — y)dy *P¥ 12R{PP dy)
D D

1/p
< ([ pteox = e R R () Pay )
D
for any 1,32 € R. We used 1 = d, 'dy and 1 = R;R:,,. Then, we make good

choice of (1, 82, multiply by d?~97°P/2 to both sides, then integrate over
D x [0, T].
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Idea of Step 2: continued

In this ways, following computations by Nazarov and Kozlov, we prove

—a/24+a
< Cllp™ """ Puo|lL, 4(0)-
Ly.o(D,T)

Hp““/Q(X)/DpD(LX — y)uo(y)dy

Similarly, we can prove

< Cllp*"*flL, o(0.7)-
Ly 6(D,T)

t
Hp_a/z(X)/ /PD(t—&x,y)f(s,y)dyds
0 D

Kyeong-Hun Kim PDEs with the fractional Laplacian on open sets



Sobolve-Holder embedding

Following the proof of Krylov's embedding theorem, we can prove the following:
Letv>0,1/p<pu<v<1, and

7+a—ua—%2n+5, n€ Ny, 6 €(0,1).

Then, for any k < n,

b k+8ta(p—1) ~k
ZW’ ARG 2)Dx(U— UO)\cw—l/p([O,T];c(D))
k=0

[ 5= Do, ) — u(s, Mooy
|t — s|u-t/p

+ sup
t,s€[0,T]

< ClFller o + C /2 Pl prca oy
P, 0,0
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For instance, let up = 0, and assume
1%/ Lo 0,71 D) < 0.
Taking v =0, u,v 11 and p 1 oo,

sep %270 () u(-, X) 1o, 1) < 00

for any small 6, > 0. This gives maximal regularity with respect to time. Next,
taking p sufficiently large and p, v sufficiently close to 1/p,

a/2-8'

—a/2+8’
sup [t /2 (X)”('ax)|cs’([o,'r]) + sup [¢ u(t, ')|C°¢*5/(D) <o
xeD te0,T]

for any small §’,¢’ > 0.
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We have the similar results for the elliptic equation

AY2u(x) — Au(x) = f(x), x €D,
u(x) =0, x € D,

In particular, we have

Existence and Uniqueness

Let p>1,0e(d—1,d—1+4+p)and € L,giap2(D).
() Let A > 0 or D be bounded. Then, the function

) =00 = [ ([T e ex)at ) )y

is the unique weak solution in L, g_np/2(D) N {u=00n D}.

(i) Let A =0and D =RY. Then u®™ converges weakly, and the limit is the
unique weak solution.

(iii) For the solution u, we have

—a/2

/2 a/2 Aaf2 /2
Ao ullt, o0 + 10~ ulle, o) + 1972 A 2 ull, o) < Cllo™*F 1, o0

Remark. The above estimate as well as higher order regularity are proved as in
the parabolic case.
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Example: sharpness of 6 € (d —1,d — 1+ p)

Put D = Bi(0) and G”(x,y) = [~ p°(t,x,y)dt. Let f € C°(B,(0)) be
non-negative, r < 1. Then (by Chen et al, 2010),

1+r
2

ly| <r, <|xl<1 = GPx,y)~ p*?(x).

Thus, if [x| > 5, then

u(x) = /G x,y)f(y)dy = p*/ /f y)dy = (1—|x|)*/2.

Thus .

o~ *2ull,, > C (1—5)""9s" 1ds,
(1+1)/2

and the right-hand side is finite only if 6 — d > —1.

The necessity of § < d — 1+ p can be checked using a duality argument.
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SPDE :

du = (A°Pu+f)dt + 3, gdwf,  (t,x) € (0, T) x D,
U(O7X) = UO(X)7 x €D,
u(t,x) =0, (t,x) € [0, T] x D¢

Due to PDE result, without loss of generality, we can assume f = 0 and

up = 0. As in Deterministic cases, (arbitrary) higher order derivatives can be
controlled by zero-th order derivative.

Ifd—1<6<d—1+ p we can prove

—a/2
Ellp™/2ul? o7 < CE

D,T) = H|g|/2H£p)9(D,T)~

Idea: Apply B-D-G inequality to kill randomness for E|u(t, x)
computation arguments used for deterministic PDE.

P then use direct
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Thanks for listening
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