
Fractal Laplacian and Krein Strings

Desmond Li
Supervised by Dr. Thomas Jordan and Dr. Asma Hassannezhad

March 2022



Research Background

My research is on the study of Kigami’s fractal Laplacian and
problems I am interested in are

Eigenfunction analysis

Spectral asymptotics

Inverse spectral problem
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Why do we even study fractal Laplacians?

The classical spectral theory of Laplacian focuses mainly on
smooth structures e.g. smooth surface, smooth manifolds.

In first sight, the notion of putting a differential operator onto
fractals is absurd.

Spectral theory problems on a smooth domain but with a
fractal boundary, e.g. a filled Julia set have a smooth interior
but fractal Julia set boundary.

A theory of Laplacian on fractals will shed light on these
problems which is hard or impossible to solve otherwise.
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Energy form

We will focus on the simplest case, the unit interval. We will begin
by introducing the energy form.

Let u, v : [0, 1] → C be continuous functions, we define the bilinear
form E(u, v) by the following limit

lim
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We say that a given continuous function w : [0, 1] → C is of finite
energy if E(w,w) < ∞ and the collection of all finite energy
functions is called the domain of energy, denoted by domE .
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Kigami’s Laplacian

Definition
Let µ be a strictly positive and regular Borel probability measure
on [0, 1] and let u ∈ domE , we say u ∈ dom∆µ if there exists some
function f ∈ L2([0, 1], µ) such that for every function v ∈ domE
satisfying v(0) = v(1) = 0, we have that

E(u, v) = −
∫
[0,1]

fvdµ.

We then say that f is the Laplacian of u, i.e.

∆µu = f.

Observe that this resembles the integration by parts in usual
calculus, which is the case when µ is the Lebesgue measure.
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Krein strings

First studied by Krein (1951).

Motivated from studying vibrations of strings with
non-uniform mass.

Closely relates to the classical Sturm-Liouville theory.

Defined only on intervals, there have been generalisations to
other domains like star-graphs (Eckhardt 2013). But
ultimately they are still finite unions of 1-dimensional lines.
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Krein strings

When studying vibrations, we always make use of the wave
equation. For “good” mass distributions, we can simplify the
problem into the following differential equation

d2

dx2
w(x) = −λρ(x)w(x).

Where w is the position of string relative to equilibrium position, λ
is the frequency and ρ(x) is the density function.

For general mass distributions, the density function ρ might not
exist!
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Krein strings

To fix this, we first consider only the case when the density
function does exist. Then we can transform the equation

d2

dx2
w(x) = −λρ(x)w(x)

into

d

dM(x)

d

dx
w(x) = −λw(x).

Where M is the cumulative mass distribution function of the string
with density function ρ. In general, we can think of M simply to
be the mass measure and d

dM
d
dx to be an operator, reducing the

problem to an eigenvalue problem.
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Quasi-derivative

To define the Krein operator properly, we must first make sense of
the operator d

dM for general cumulative mass distribution M . We
do this by using the notion of quasi-derivative.

Let µ be a strictly positive and regular Borel probability measure
on the unit interval and g : [0, 1] → C a continuous function. g is
said to be of class ACL2([0, 1], µ) if there is some function
h ∈ L2([0, 1], µ) such that

g(x) = g(c) +

∫
[c,x]

hdµ

for every c, x ∈ [0, 1]. The function h is then said to be the
quasi-derivative of g, i.e.

dg

dM
=

dg

dµ
= h.
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Krein operator

Definition
Let µ be a strictly positive and regular Borel probability measure
on the unit interval and w ∈ C1. We say w ∈ domκ if
w′ ∈ ACL2([0, 1], µ) and

κw :=
d

dM
w′.

The quasi-derivative of w′ with respect to the measure µ.

Despite Kigami’s Laplacian and Krein’s operator are constructed
quite differently, it turns out that the two operators are in fact
identical.
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Kigami’s Laplacian and Krein’s operator

Theorem
Let µ be a strictly positive and regular Borel probability measure.
We have that the Kigami’s Laplacian and Krein’s operator are
equivalent, in the sense that their domain sets are equal

dom∆µ = domκ

and for every function w ∈ dom∆µ, we have that

∆µw = κw.
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Proof outline

1. ker∆µ = kerκ = {ax+ b|a, b ∈ C}.

2. C1([0, 1]) ⊆ domE .

3. domE ⊆ BV([0, 1]).

4. ACL2([0, 1], µ) ⊆ BV([0, 1]).

5. Using integration by parts on a Riemann-Stieljes integral
and Radon-Nikodym theorem we have the inclusion
domκ ⊆ dom∆µ.

6. dom∆µ ⊆ domκ.
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Proof overview of domκ ⊆ dom∆µ

Proof.
Let u ∈ domκ, from definition we have that u ∈ C1 and by 2 we
have that u ∈ domE . We will also let v ∈ domE satisfying
v(0) = v(1) = 0. We have that the energy can be expressed into a
Riemann-Stieljes integral as v is of bounded variation by 3.

E(u, v) =

∫
[0,1]

u′dv.

Applying integration by parts, we obtain

= −
∫
[0,1]

vdu′.

Noting that the boundary terms vanishes. From 4, we have that w′

is of bounded variation. Therefore, we can rewrite the integral as

= −
∫
[0,1]

vdµu′
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Proof overview of domκ ⊆ dom∆µ

Proof.
Where µu′ is the (signed) Lebesgue-Stieljes measure of u′, which
satisfies

µu′(A) =

∫
A
κudµ

for any Borel subset A of [0, 1]. Thus, by Radon-Nikodym
theorem, we have that

E(u, v) = −
∫
[0,1]

(κu)vdµ.

As v is arbitrary, we must have that u ∈ dom∆µ and

∆µu = κu.
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Quick summary

Kigami’s Laplacian

Motivated by problems in-
volving Laplacians on smooth
domain but fractal boundary.

Implicitly constructed via the
weak formulation.

Most results are only applica-
ble to self-similar probability
measures on post-critically fi-
nite sets.

Krein’s Operator

Motivated from studying
strings of non-uniform mass
and Sturm-Liouville opera-
tors.

Explicitly defined using
quasi-derivative.

Results are applicable to any
Borel measure but only on in-
tervals or sets composed of fi-
nite union of lines.
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Thank You For Your Attention!

Q&A

16 / 16


