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In this talk we are interested in :

Stochastic heat diffusion near the boundaries

of infinite wedges in R2

under Dirichlet boundary control of the heat density(temperature).

* The second half of this talk is based on the co-work with K.H. Kim, Jinsol Seo, P.A.
Cioica-Licht, and F. Lindner.
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<<Related stories>>

<The landscape>

� We discuss •
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� Understanding

• Better PDE modeling, more reliable solution, better understanding of diffusion
and the domain.

• The quantitative information including energy near the boundary really matters.
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<PDE modeling. with d = 1 >

� (1 dim) Heat diffusion (averaging) on a half line

A very long thin insulated rod

• The initial temperature φ(x). At most points, φ is unbalanced.

• Q. How does the temperature, the density u(t, x) of heat, change along time?
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• Nature quickly resolves the unbalances through the heat flux, say, by Fourier’s
law.

• (Heat-type averaging) The heat equation : with k > 0

ut(t, x) = kuxx (t, x), (0,T )× (0,∞) ; u(t, 0) = 0, t ≥ 0.
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� With disturbance

• f (t, y)dy : the changing rate of the occurring heat near y at time t.

• (Diffusion vs. disturbance) The model equation

ut(t, x) = kuxx (t, x) + f (t, x).

or, for any t2 > t1 ≥ 0

u(t2, x)− u(t1, x) = k

∫ t2

t1

uxx (s, x)ds +

∫ t2

t1

f (s, x)ds

; du(t, x) = kuxx (t, x)dt + f (t, x)dt.
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� Toward a better model. Stochastic consideration to f dt

• Naturally, f dt may have very little randomness caused by the sum of micro
uncertainties:

u(ω, t+dt, x)−u(ω, t, x) = kuxx (ω, t, x)dt+f (t, x)dt+g(t, x)(Ft+dt(ω)− Ft(ω)),

; du(t, x) = kuxx (t, x)dt + f (t, x)dt + g(t, x)dFt .

where Ft(ω) is a stochastic process and g(t, x)(Ft+dt − Ft) models the
uncertainty to f dt.

• For instance, we may design F in a way that

− Ft+dt − Ft ∼ N (0, dt).

− The increments {Ft+dt − Ft} are independent.

• Then any Brownian motion W· will do the job.

• Any Brownian motion in any interval [t1, t2] is of unbounded variation a.s..
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� Initial boundary value problem(IBVP) of stochastic heat equation on half line

du(ω, t, x) = kuxx (ω, t, x)dt + f (t, x)dt + g(t, x)dWt(ω),

ω ∈ Ω, 0 < t < T , 0 < x ,

u(0, x) = φ(x), 0 ≤ x ,

u(t, 0) = 0, 0 ≤ t ≤ T .

* The equation part can be illegally expressed by

ut = kuxx + f + Ẇtg .
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<Dirichlet condition with d = 1>

� (N.V. Krylov) Close look; the temperature behavior near the boundary point

• (Heuristic) The IBVP leads us to

0 ≈ u(t2, ε)− u(t1, ε) = k

∫ t2

t1

uxx (s, ε)ds +

∫ t2

t1

f (s, ε)ds +

∫ t2

t1

g(s, ε)dWs

for any t1 < t2.

• If g(·, ε) ≈ 0, when f is very nice, the second derivative uxx (·, ε) does not suffer
much although it still suffers little bit by the Dirichlet condition.

• If g(·, ε) ≈ 1,

− Even if f is really good, uxx (·, ε) on any interval [t1, t2] can not be bounded
as W· is of unbounded variation on any interval (a.s.).

− For almost sure events, the second derivatives near the boundary can be
endangered during time in [0,T ].
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− (Simulation with T = 1) The (random event-wise) solutions are much
worse than the following pictures

<Two random events of u with zero initial condition>

and the second derivative and even the first one near boundary suffers a lot.

− Need weight? In view of summability (integration) we note
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• If g vanishes at the boundary, then we have a better situation.

For an extreme example, the (random) function u(t, x) = xWt . satisfies SPE
(stochastic parabolic equation)

ut = uxx + xẆt

with uxx ≡ 0. * A reference stochastic heat equation on half line.

<Two events of u = xWt >
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• Looking at xut = xuxx + xf + xgẆt , we have

0 ≈ ε(u(t2, ε)−u(t1, ε)) = k

∫ t2

t1

εuxx (s, ε)ds+

∫ t2

t1

εf (s, ε)ds+

∫ t2

t1

εg(s, ε)dWs .

• Considering xuxx instead of uxx is appropriate.

• We also consider ux , the information of energy, and 1
x
u together with xuxx in one

package.

• For higher dimensional domains D, we use ρ(x) = dist(x , ∂D) instead of x .
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<Our quantitative information>

� (N.V. Krylov) Caring the derivatives near the boundary

We adapt the following weighted norms for the solution u :

‖u‖H2
p,θ

(T ) =

(
2∑

k=0

E
∫ T

0

∫
R+

|xk−1Dku(x)|pxθ−1 dx dt

)1/p

.

• xθ−1 (1 is the dimension for now) delicately adjusts the norm in accordance with
the smootheness of the boundary.

• It turns out that −1 < θ − 1 < −1 + p with our half-line domain.

• −1 < θ − 1 is crucial. For our favored function u = xWt we have

E
∫ T

0

∫ ε

0
|x−1u|pxθ−1dxdt <∞ ⇐⇒ −1 < θ − 1

as all the moments of a Gaussian distribution is finite.

• For higher dimensional domain D, we use ρ(x) and d instead of x and 1. The
range of θ − d is then (−1,−1 + p). If the boundary is bad, it may shrink?
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� The way we choose to look matters.
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� Domains with dimension ≥ 2; question of the range of θ
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� Some mathematical notes

• (N.V. Krylov, 1994) By Burkholder-Davis-Gundy inequality and a help of
harmonic analysis ∼ parabolic sharp function estimate, Marcinkiewicz
interpolation theorem, Littlewood-Paley type of estimate, we find that p ≥ 2 is
required for Lp-regularity theory of stochastic parabolic equation.

• (N.V. Krylov, 1999) Working with half space, to measure ‖u‖H2
p,θ

(T ), using

equation itself is much more effective than using solution representation. The
main ingredients are

− Itô formula to |u|p , hence the structure of the equation.

− Hardy’s inequality

− (beautiful) a package of zooming in/out of a function near the boundary
with care

− C1 boundary domains with KH Kim
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• (KH Kim) The result for Lipschitz domains using perturbation method and
Hardy’s inequality. The range of θ we can be sure is significantly shrunken:

θ ∈ (d − 2 + p − ε, d − 2 + p + ε)

as we can compare it with
(d − 1, d − 1 + p).
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� We discussed.

• Can we pose a theory between smooth boundary domain theory and Lipschitz
domain theory?

• Say, take wedges in R2.

• Angle κ0 will surely matter.

• Using the equation itself will then be shortcoming.

• What do we need more?
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� Works of V.A. Solonnikov, V.A. Kozlov, A.L. Nazarov for deterministic parabolic
equations, using solution representation using Green’s function, came along in the
search.
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<The tool we have overlooked before>

� Solution representation with the simplest domain having boundary, D = R+

• Green’s function for (1) L = ∂t −∆x , (2) half line, and (3) Dirichlet condition.
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• For any fixed t ∈ R, x ∈ R+ and for all s ∈ R, y ∈ R+

(−∂s −∆y )G(t, s, x , y) = δt,x .

and

u(t, x) :=

∫ t

−∞

∫
R+

G(t, s, x , y)f (s, y)dyds

solves (∂t −∆x )u = f .

• u(t, 0) = 0 as G(t, s, 0, y) = 0 for any s and y ∈ R+.

• With Laplace operator ∆, G(t, s, x , y) is a function of t − s, x , y and we can
write

G(t − s, x , y)

instead of G(t, s, x , y).
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� In general, given

(1) Parabolic operator L := ∂t − Lx ,

(2) Domain D,

(3) Dirichlet condition,

we have Green’s function G(t, s, x , y) satisfying

• For fixed (t, x), the function v = G(t, ·, x , ·) gives

L∗v = δt,x ,

where L∗ = −∂s − Ly .

• (Looks green) For fixed (s, y),

LG(·, s, ·, y) = δs,y ,

•
G(t, s, x , y) = 0, s ≥ t.

•
u(t, x) :=

∫ t

−∞

∫
D
G(t, s, x , y)f (s, y)dyds

solves
Lu = f ; u(t, x) = 0 for x ∈ ∂D.

� The estimation of G is a main topic of potential analysis.
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� We are drawn to find a special estimate of G for (1) the operator L := ∂t −∆x , (2)
a wedge domain in R2, and (3) Dirichlet condition.

∗ Special in the sense that, through the estimate, we can obtain a nice regularity
result for stochastic heat equation near the vertex.
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<< Stochastic heat-type diffusion on wedges in R2 >>

� Evidences : The solution is prone to be radial near the vertex.

• (The equilibrium, when diffusion ends)

0 = ∆u in Dκ0 ; u = 0 on ∂Dκ0 .

− Using Zα = rαe iαη with α = π/κ0, we find a solution u = rα sin(αη).

− The distance to the ”point” matters more than the distance to the
boundary.

− κ0 vs. π also matters.



Related stories Stochastic heat-type diffusion on wedges

• (To the equilibrium)

ut = ∆u in (0,T )× Dκ0 ; u = 0 on (0,T )× ∂Dκ0 ; u(0, ·) = φ on Dκ0 .

− (A probabilistic view) For each (t, x), we let the time-space process

(t − s, x +
√

2Bs) flow, where B is a two-dimensional Brownian motion. It
will hit the parabolic boundary at (stopping) time τ .

Itô’s formula gives

u(t, x) = Eu(t−τ, x+
√

2Bτ ) = E
[
Iτ=t φ(x+

√
2Bt)

](
=

∫
D
G(t, x , y)φ(y)dy

)
.
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− Two situations. Again, angle matters.

This observation resembles the case of the equilibrium.
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• (A reference computation, SPE) The stochastic diffusion

u = Wt · rπ/κ0 sin
(
π
κ0
η
)

, where W· is a 1-dimensional BM, solves

ut = ∆u + Ẇtg in (0,T )× Dκ0 ; u = 0 on (0,T )× ∂Dκ0

for all ω with g = rπ/κ0 sin
(
π
κ0
η
)

. Then near the vertex point, introducing

ρ0(x) = |x |,

E
∫ T

0

∫
near (0,0)

|ρ0
−1u|pρ0

Θ−2dxdt

= E
∫ T

0

∫ κ0

0

∫ ε

0
|Wt |p

∣∣∣∣r−1rπ/κ0 sin

(
π

κ0
η

)∣∣∣∣p rΘ−2rdr dη dt

=

∫ ε

0
r (−1+π/κ0)p+Θ−1dr ·

∫ κ0

0

∣∣∣∣sin

(
π

κ0
η

)∣∣∣∣p dη · E∫ T

0
|Wt |pdt. (∗)

We note

(∗) <∞ ⇔ p

(
1−

π

κ0

)
< Θ.
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� (Our regularity relation) Let u, f , g be related by

ut = ∆u + f + Ẇtg in (0,T )× Dκ0 ; u = 0 on (0,T )× ∂Dκ0 ,

u(0, ·) = 0 in Dκ0

for all ω. Then we have a result mirror to the case of smooth domain.

Theorem (Cioica, Kim, Lee, Lindner, 2018)

For any

p

(
1−

π

κ0

)
< Θ < p

(
1 +

π

κ0

)
,

we have

E
∫ T

0

∫
Dκ0

|ρ0
−1u|pρ0

Θ−2dxdt

≤ N

(
E
∫ T

0

∫
Dκ0

|ρ0f |pρ0
Θ−2dxdt + E

∫ T

0

∫
Dκ0

|g |pρ0
Θ−2dxdt

)
.

• As κ0 gets bigger, we give up to ask u to be good.
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� Some notes on the result

• Solution representation

u(t, x) =

∫
Dκ0

G(t, x , y)φ(y)dy

+

∫ T

0

∫
Dκ0

G(t − s, x , y)f (s, y)dyds

+

∫ T

0

∫
Dκ0

G(t − s, x , y)g(s, y)dy
dW

ds
ds

; the initial condition part + the deterministic part +the stochastic part.

• The result for the infinite wedge domains in R2 heavily relies on the Green’s
function G(t, x , y) of heat diffusion with wedge domains.
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• (Guessing the shape of G , a probabilistic view) G(t, x , y)dy : the probability that

(i) x +
√

2Bs stays in D for s < t and

(ii) x +
√

2Bt is in the neighborhood of y with the infinitesimal area dy .

− If x is close to the boundary, then G(t, x , y) ≈ 0 as t >> 1.

− If x and y are far away from boundary, then G(t, x , y)dy ≈ Φ(t, x , y)dy ,
where Φ is the heat density.

− Also, we observe
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• (V.A Kozlov) It turns out that for any 0 < λ1, λ2 < π/κ0, there exist constants
σ, N such that

|G(t, x , y)| ≤ N
1

t
e−σ

|x−y|2
t

(
|x |

|x |+
√
t

)λ1
(

|y |
|y |+

√
t

)λ2

.

Back then, this became what we were looking for.

• (A view) (π/κ0)2 is the first eigenvalue of the eigenvalue/function problem of

∆LBu = λu on S1 ∩ Dκ0

with Dirichlet condition on the boundary points for the manifold S1 ∩ Dκ0 ; the
information of the lowest energy state that the domain can have.
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• For our regularity result, we desperately use the solution representation.

• Need a long sequence of elementary, subtle, russian-style arguments to get it
done.

• Especially, the stochastic part of the solution needs more care as we lose some
quantitative information at the very beginning as we apply Burkholder-Davis
-Gundy inequality.
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� We then look around and see what we have.

• Proceeding with the result, it is quite suffering to obtain a result for the second
order derivatives.

• Except only one point, the vertex, a wedge domain has smooth boundary, doesn’t
it?

• The estimate

|G(t, x , y)| ≤ N
1

t
e−σ

|x−y|2
t

(
|x |

|x |+
√
t

)λ1
(

|y |
|y |+

√
t

)λ2

is quite loose for the boundary points which are not the vertex.

• We need a refined estimate to build a more satisfactory (= less suffering)
regularity theory.
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� Next step

Incorporates the distance to the point and the distance to the boundary.

• ρ ≤ ρ0.

• θ − 2 ∈ (−1,−1 + p) for ρ = ρ(x) should come into play in the design of
weighted Sobolev spaces for solutions u and inputs f , g .
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� A refined Green’s function estimate. Wedge domains in R2.

Theorem (Kim, Lee, Seo, 2022)

For any 0 < λ1, λ2 < π/κ0, there exist constants σ, N(λ1, λ2) such that

G(t, x , y) ≤ N
1

t2/2
e−σ

|x−y|2
t

(
ρ0(x)

ρ0(x) +
√
t

)λ1−1 ( ρ0(y)

ρ0(y) +
√
t

)λ2−1

×
ρ(x)

ρ(x) +
√
t

ρ(y)

ρ(y) +
√
t
.

∗ In fact, higher dimensional version is also available.

• Using it, we manage to measure the weighted norm designed by

E
∫ T

0

∫
Dκ0

(
|ρ−1u|p + |ux |p + |ρuxx |p

)
ρΘ−θ
◦ ρθ−2 dx dt

with ranges

p

(
1−

π

κ0

)
< Θ < p

(
2− 1 +

π

κ0

)
and 2− 1 < θ < 2− 1 + p.

• Away from the vertex, ρΘ−θ
◦ is weak in play.
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•

E
∫ T

0

∫
Dκ0

(
|ρ−1u|p + |ux |p + |ρuxx |p

)
ρΘ−θ
◦ ρθ−2 dx dt.

Also, when away from the sides, as

ρΘ−θ
◦ ρθ−2 = ρΘ−2

0

(
ρ

ρ0

)θ−2

,

and the term (
ρ

ρ0

)θ−2

is not crucial and ρ, ρ0 are comparable.

• Two types of estimate are solidly in one package now. Good start for better
theories to be built.
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∗ In fact, the refined Green’s function estimate for general parabolic operators and
the conic domains in Rd (d ≥ 2)

and the deterministic version (hence p > 1) of the corresponding regularity theory
for polygonal domains in R2 are built and now available; [Kim, Lee, Seo, 2021].
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