Stochastic parabolic equation and Dirichlet boundary condition

Kijung Lee*

22 June 2022

Harmonic Analysis, Stochastics and PDEs in Honour of the 80th Birthday of Nicolai Krylov

* Ajou university, S. Korea

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

In this talk we are interested in :

Stochastic heat diffusion near the boundaries

of infinite wedges in \mathbb{R}^2

under Dirichlet boundary control of the heat density(temperature).

* The second half of this talk is based on the co-work with K.H. Kim, Jinsol Seo, P.A. Cioica-Licht, and F. Lindner.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

<<Related stories>>

<The landscape>

□ We discuss

□ Understanding

- Better PDE modeling, more reliable solution, better understanding of diffusion and the domain.
- The quantitative information including energy near the boundary really matters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

<PDE modeling. with d = 1 >

 \Box (1 dim) Heat diffusion (averaging) on a half line

A very long thin insulated rod

• The initial temperature $\phi(x)$. At most points, ϕ is unbalanced.

• Q. How does the temperature, the density u(t, x) of heat, change along time?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Nature quickly resolves the unbalances through the heat flux, say, by Fourier's law.
- (Heat-type averaging) The heat equation : with k > 0

$$u_t(t,x) = ku_{xx}(t,x), \quad (0,T) \times (0,\infty) \quad ; \quad u(t,0) = 0, \quad t \ge 0.$$

\Box With disturbance

- f(t, y)dy: the changing rate of the occurring heat near y at time t.
- (Diffusion vs. disturbance) The model equation

$$u_t(t,x) = ku_{xx}(t,x) + f(t,x).$$

or, for any $t_2 > t_1 \ge 0$

$$u(t_2, x) - u(t_1, x) = k \int_{t_1}^{t_2} u_{xx}(s, x) ds + \int_{t_1}^{t_2} f(s, x) ds$$

; $du(t, x) = k u_{xx}(t, x) dt + f(t, x) dt$.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

- \Box Toward a better model. Stochastic consideration to f dt
 - Naturally, f dt may have very little randomness caused by the sum of micro uncertainties:

$$u(\omega, t+dt, x) - u(\omega, t, x) = ku_{xx}(\omega, t, x)dt + f(t, x)dt + g(t, x)(F_{t+dt}(\omega) - F_t(\omega)),$$

;
$$du(t,x) = ku_{xx}(t,x)dt + f(t,x)dt + g(t,x)dF_t.$$

where $F_t(\omega)$ is a stochastic process and $g(t, x)(F_{t+dt} - F_t)$ models the uncertainty to f dt.

- For instance, we may design F in a way that
 - $F_{t+dt} F_t \sim \mathcal{N}(0, dt).$
 - The increments $\{F_{t+dt} F_t\}$ are independent.
- Then any Brownian motion W. will do the job.
- Any Brownian motion in any interval $[t_1, t_2]$ is of unbounded variation a.s..

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 \Box Initial boundary value problem(IBVP) of stochastic heat equation on half line

$$\begin{aligned} du(\omega, t, x) &= ku_{xx}(\omega, t, x)dt + f(t, x)dt + g(t, x)dW_t(\omega), \\ &\omega \in \Omega, \quad 0 < t < T, \quad 0 < x, \\ u(0, x) &= \phi(x), \quad 0 \le x, \\ u(t, 0) &= 0, \quad 0 \le t \le T. \end{aligned}$$

* The equation part can be illegally expressed by

$$u_t = k u_{xx} + f + \dot{W}_t g.$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

<Dirichlet condition with d = 1 >

(N.V. Krylov) Close look; the temperature behavior near the boundary point

• (Heuristic) The IBVP leads us to

$$0 \approx u(t_2,\varepsilon) - u(t_1,\varepsilon) = k \int_{t_1}^{t_2} u_{xx}(s,\varepsilon) ds + \int_{t_1}^{t_2} f(s,\varepsilon) ds + \int_{t_1}^{t_2} g(s,\varepsilon) dW_s$$

for any $t_1 < t_2$.

- If g(·, ε) ≈ 0, when f is very nice, the second derivative u_{xx}(·, ε) does not suffer much although it still suffers little bit by the Dirichlet condition.
- If $g(\cdot, \varepsilon) \approx 1$,
 - Even if *f* is really good, u_{xx}(·, ɛ) on any interval [t₁, t₂] can not be bounded as *W*. is of unbounded variation on any interval (a.s.).
 - For almost sure events, the second derivatives near the boundary can be endangered during time in [0, T].

- (Simulation with ${\cal T}=1)$ The (random event-wise) solutions are much worse than the following pictures

<Two random events of u with zero initial condition>

and the second derivative and even the first one near boundary suffers a lot.

- Need weight? In view of summability (integration) we note

$$(\chi^{\circ,5})' \sim \chi^{-\circ,5}$$

$$\chi(\chi^{\circ,5})'' \sim \chi^{-\circ,5}$$

$$\frac{1}{\chi} \chi^{\circ,5} \sim \chi^{-\circ,5}$$

$$\circ,\kappa$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• If g vanishes at the boundary, then we have a better situation.

For an extreme example, the (random) function $u(t,x) = xW_t$. satisfies SPE (stochastic parabolic equation)

$$u_t = u_{xx} + x \dot{W}_t$$

with $u_{xx} \equiv 0$. * A reference stochastic heat equation on half line.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

• Looking at $xu_t = xu_{xx} + xf + xg\dot{W}_t$, we have

$$0 \approx \varepsilon(u(t_2,\varepsilon)-u(t_1,\varepsilon)) = k \int_{t_1}^{t_2} \varepsilon u_{xx}(s,\varepsilon) ds + \int_{t_1}^{t_2} \varepsilon f(s,\varepsilon) ds + \int_{t_1}^{t_2} \varepsilon g(s,\varepsilon) dW_s.$$

- Considering *xu_{xx}* instead of *u_{xx}* is appropriate.
- We also consider u_x , the information of energy, and $\frac{1}{x}u$ together with xu_{xx} in one package.
- For higher dimensional domains D, we use $\rho(x) = \operatorname{dist}(x, \partial D)$ instead of x.

< Our quantitative information >

 \Box (N.V. Krylov) Caring the derivatives near the boundary

We adapt the following weighted norms for the solution u:

$$\|u\|_{\mathbb{H}^{2}_{p,\theta}(T)} = \left(\sum_{k=0}^{2} \mathbb{E} \int_{0}^{T} \int_{\mathbb{R}_{+}} |x^{k-1}D^{k}u(x)|^{p} x^{\theta-1} \, dx \, dt\right)^{1/p}$$

- $x^{\theta-1}$ (1 is the dimension for now) delicately adjusts the norm in accordance with the smootheness of the boundary.
- It turns out that $-1 < \theta 1 < -1 + p$ with our half-line domain.
- $-1 < \theta 1$ is crucial. For our favored function $u = xW_t$ we have $\mathbb{E} \int_0^T \int_0^\varepsilon |x^{-1}u|^p x^{\theta - 1} dx dt < \infty \iff -1 < \theta - 1$

as all the moments of a Gaussian distribution is finite.

• For higher dimensional domain D, we use $\rho(x)$ and d instead of x and 1. The range of $\theta - d$ is then (-1, -1 + p). If the boundary is bad, it may shrink?

 \Box The way we choose to look matters.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

 \Box Domains with dimension \geq 2; question of the range of θ

\Box Some mathematical notes

- (N.V. Krylov, 1994) By Burkholder-Davis-Gundy inequality and a help of harmonic analysis ~ parabolic sharp function estimate, Marcinkiewicz interpolation theorem, Littlewood-Paley type of estimate, we find that p ≥ 2 is required for L_p-regularity theory of stochastic parabolic equation.
- (N.V. Krylov, 1999) Working with half space, to measure $\|u\|_{\mathbb{H}^2_{p,\theta}(T)}$, using equation itself is much more effective than using solution representation. The main ingredients are
 - Itô formula to $|u|^p$, hence the structure of the equation.
 - Hardy's inequality
 - (beautiful) a package of zooming in/out of a function near the boundary with care
 - C¹ boundary domains with KH Kim

 (KH Kim) The result for Lipschitz domains using perturbation method and Hardy's inequality. The range of θ we can be sure is significantly shrunken:

$$\theta \in (d-2+p-\varepsilon, d-2+p+\varepsilon)$$

as we can compare it with

$$(d-1, d-1+p).$$

 \Box We discussed.

- Can we pose a theory between smooth boundary domain theory and Lipschitz domain theory?
- Say, take wedges in \mathbb{R}^2 .

- Angle κ_0 will surely matter.
- Using the equation itself will then be shortcoming.
- What do we need more?

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つく()

 \Box Works of V.A. Solonnikov, V.A. Kozlov, A.L. Nazarov for deterministic parabolic equations, using solution representation using Green's function, came along in the search.

<The tool we have overlooked before>

 \square Solution representation with the simplest domain having boundary, $D = \mathbb{R}_+$

• Green's function for (1) $\mathcal{L} = \partial_t - \Delta_x$, (2) half line, and (3) Dirichlet condition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• For any fixed $t \in \mathbb{R}$, $x \in \mathbb{R}_+$ and for all $s \in \mathbb{R}$, $y \in \mathbb{R}_+$

$$(-\partial_s - \Delta_y)G(t, s, x, y) = \delta_{t,x}.$$

and

$$u(t,x) := \int_{-\infty}^{t} \int_{\mathbb{R}_{+}} G(t,s,x,y) f(s,y) dy ds$$

solves $(\partial_t - \Delta_x) u = f$.

- u(t,0) = 0 as G(t,s,0,y) = 0 for any s and $y \in \mathbb{R}_+$.
- With Laplace operator Δ , G(t, s, x, y) is a function of t s, x, y and we can write

$$G(t-s,x,y)$$

instead of G(t, s, x, y).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

- □ In general, given
- (1) Parabolic operator $\mathcal{L} := \partial_t L_x$,
- (2) Domain D,
- (3) Dirichlet condition,

we have Green's function G(t, s, x, y) satisfying

• For fixed (t, x), the function $v = G(t, \cdot, x, \cdot)$ gives

$$\mathcal{L}^* \mathbf{v} = \delta_{t,x},$$

where $\mathcal{L}^* = -\partial_s - L_y$.

• (Looks green) For fixed (s, y),

$$\mathcal{L}G(\cdot, s, \cdot, y) = \delta_{s,y},$$

•

$$G(t,s,x,y)=0, s \ge t.$$

•

$$u(t,x) := \int_{-\infty}^{t} \int_{D} G(t,s,x,y) f(s,y) dy ds$$

solves

$$\mathcal{L}u = f; \quad u(t, x) = 0 \text{ for } x \in \partial D.$$

 \Box The estimation of G is a main topic of potential analysis.

 \Box We are drawn to find a special estimate of *G* for (1) the operator $\mathcal{L} := \partial_t - \Delta_x$, (2) a wedge domain in \mathbb{R}^2 , and (3) Dirichlet condition.

* Special in the sense that, through the estimate, we can obtain a nice regularity result for stochastic heat equation near the vertex.

$$|G(t, 2, 3)| \leq ?$$

The prob. that a process
starting at z be near z
at time t, before fitting ∂

<< Stochastic heat-type diffusion on wedges in $\mathbb{R}^2>>$

□ Evidences : The solution is prone to be radial near the vertex.

• (The equilibrium, when diffusion ends)

$$0 = \Delta u \quad \text{in } D_{\kappa_0} \quad ; \quad u = 0 \quad \text{on } \partial D_{\kappa_0}.$$

- Using $Z^{\alpha} = r^{\alpha} e^{i\alpha\eta}$ with $\alpha = \pi/\kappa_0$, we find a solution $u = r^{\alpha} \sin(\alpha\eta)$.
- The distance to the "point" matters more than the distance to the boundary.
- $-\kappa_0$ vs. π also matters.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

• (To the equilibrium)

$$u_t = \Delta u \text{ in } (0, T) \times D_{\kappa_0} \text{ ; } u = 0 \text{ on } (0, T) \times \partial D_{\kappa_0} \text{ ; } u(0, \cdot) = \phi \text{ on } D_{\kappa_0}.$$

- (A probabilistic view) For each (t,x), we let the time-space process $(t-s, x + \sqrt{2}B_s)$ flow, where B is a two-dimensional Brownian motion. It will hit the parabolic boundary at (stopping) time τ .

Itô's formula gives

$$u(t,x) = \mathbb{E}u(t-\tau, x+\sqrt{2}B_{\tau}) = \mathbb{E}\Big[I_{\tau=t}\phi(x+\sqrt{2}B_t)\Big]\Big(=\int_D G(t,x,y)\phi(y)dy\Big).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Two situations. Again, angle matters.

This observation resembles the case of the equilibrium.

• (A reference computation, SPE) The stochastic diffusion $u = W_t \cdot r^{\pi/\kappa_0} \sin\left(\frac{\pi}{\kappa_0}\eta\right)$, where W_{\cdot} is a 1-dimensional BM, solves

$$u_t = \Delta u + \dot{W}_t g$$
 in $(0, T) \times D_{\kappa_0}$; $u = 0$ on $(0, T) \times \partial D_{\kappa_0}$

for all ω with $g = r^{\pi/\kappa_0} \sin\left(\frac{\pi}{\kappa_0}\eta\right)$. Then near the vertex point, introducing $\rho_0(x) = |x|$,

$$\mathbb{E}\int_{0}^{T}\int_{\text{near }(0,0)}|\rho_{0}^{-1}u|^{p}\rho_{0}^{\Theta-2}dxdt$$

$$= \mathbb{E}\int_{0}^{T}\int_{0}^{\kappa_{0}}\int_{0}^{\varepsilon}|W_{t}|^{p}\left|r^{-1}r^{\pi/\kappa_{0}}\sin\left(\frac{\pi}{\kappa_{0}}\eta\right)\right|^{p}r^{\Theta-2}rdr\,d\eta\,dt$$

$$= \int_{0}^{\varepsilon}r^{(-1+\pi/\kappa_{0})p+\Theta-1}dr\cdot\int_{0}^{\kappa_{0}}\left|\sin\left(\frac{\pi}{\kappa_{0}}\eta\right)\right|^{p}d\eta\cdot\mathbb{E}\int_{0}^{T}|W_{t}|^{p}dt. \quad (*)$$

We note

$$(*) < \infty \quad \Leftrightarrow \quad p\left(1-\frac{\pi}{\kappa_0}\right) < \Theta.$$

・ロト・日本・ヨト・ヨー シック

 \Box (Our regularity relation) Let u, f, g be related by

$$\begin{aligned} u_t &= \Delta u + f + \dot{W}_t g \text{ in } (0, T) \times D_{\kappa_0} \quad ; \quad u = 0 \text{ on } (0, T) \times \partial D_{\kappa_0}, \\ u(0, \cdot) &= 0 \text{ in } D_{\kappa_0} \end{aligned}$$

for all ω . Then we have a result mirror to the case of smooth domain.

Theorem (Cioica, Kim, Lee, Lindner, 2018)

For any

$$p\left(1-rac{\pi}{\kappa_0}
ight) < \Theta < p\left(1+rac{\pi}{\kappa_0}
ight),$$

we have

$$\mathbb{E}\int_0^T \int_{D_{\kappa_0}} |\rho_0^{-1}u|^p \rho_0^{\Theta-2} dx dt$$

$$\leq N\left(\mathbb{E}\int_0^T \int_{D_{\kappa_0}} |\rho_0^{-1}|^p \rho_0^{\Theta-2} dx dt + \mathbb{E}\int_0^T \int_{D_{\kappa_0}} |g|^p \rho_0^{\Theta-2} dx dt\right).$$

• As κ_0 gets bigger, we give up to ask u to be good.

 \Box Some notes on the result

• Solution representation

$$u(t,x) = \int_{D_{\kappa_0}} G(t,x,y)\phi(y)dy$$

+ $\int_0^T \int_{D_{\kappa_0}} G(t-s,x,y)f(s,y)dyds$
+ $\int_0^T \int_{D_{\kappa_0}} G(t-s,x,y)g(s,y)dy\frac{dW}{ds}ds$

; the initial condition part + the deterministic part + the stochastic part.

The result for the infinite wedge domains in ℝ² heavily relies on the Green's function G(t, x, y) of heat diffusion with wedge domains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• (Guessing the shape of G, a probabilistic view) G(t, x, y)dy: the probability that

(i)
$$x + \sqrt{2}B_s$$
 stays in D for $s < t$ and

- (ii) $x + \sqrt{2}B_t$ is in the neighborhood of y with the infinitesimal area dy.
 - If x is close to the boundary, then $G(t, x, y) \approx 0$ as t >> 1.
 - If x and y are far away from boundary, then $G(t, x, y)dy \approx \Phi(t, x, y)dy$, where Φ is the heat density.
 - Also, we observe

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• (V.A Kozlov) It turns out that for any 0 $<\lambda_1,\,\lambda_2<\pi/\kappa_0,$ there exist constants $\sigma,\,N$ such that

$$|G(t,x,y)| \leq N \frac{1}{t} e^{-\sigma \frac{|x-y|^2}{t}} \left(\frac{|x|}{|x|+\sqrt{t}}\right)^{\lambda_1} \left(\frac{|y|}{|y|+\sqrt{t}}\right)^{\lambda_2}$$

Back then, this became what we were looking for.

• (A view) $(\pi/\kappa_0)^2$ is the first eigenvalue of the eigenvalue/function problem of

$$\Delta_{LB} u = \lambda u$$
 on $S^1 \cap D_{\kappa_0}$

with Dirichlet condition on the boundary points for the manifold $S^1 \cap D_{\kappa_0}$; the information of the lowest energy state that the domain can have.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- For our regularity result, we desperately use the solution representation.
- Need a long sequence of elementary, subtle, russian-style arguments to get it done.
- Especially, the stochastic part of the solution needs more care as we lose some quantitative information at the very beginning as we apply Burkholder-Davis -Gundy inequality.

 $\hfill\square$ We then look around and see what we have.

- Proceeding with the result, it is quite suffering to obtain a result for the second order derivatives.
- Except only one point, the vertex, a wedge domain has smooth boundary, doesn't it?
- The estimate

$$|G(t,x,y)| \leq N \frac{1}{t} e^{-\sigma \frac{|x-y|^2}{t}} \left(\frac{|x|}{|x|+\sqrt{t}}\right)^{\lambda_1} \left(\frac{|y|}{|y|+\sqrt{t}}\right)^{\lambda_2}$$

is quite loose for the boundary points which are not the vertex.

• We need a refined estimate to build a more satisfactory (= less suffering) regularity theory.

 \Box Next step

Incorporates the distance to the point and the distance to the boundary.

- $\rho \leq \rho_0$.
- θ − 2 ∈ (−1, −1 + p) for ρ = ρ(x) should come into play in the design of weighted Sobolev spaces for solutions u and inputs f, g.

 \Box A refined Green's function estimate. Wedge domains in \mathbb{R}^2 .

Theorem (Kim, Lee, Seo, 2022)

For any $0 < \lambda_1, \lambda_2 < \pi/\kappa_0$, there exist constants σ , $N(\lambda_1, \lambda_2)$ such that

$$G(t, x, y) \leq N \frac{1}{t^{2/2}} e^{-\sigma \frac{|x-y|^2}{t}} \left(\frac{\rho_0(x)}{\rho_0(x) + \sqrt{t}}\right)^{\lambda_1 - 1} \left(\frac{\rho_0(y)}{\rho_0(y) + \sqrt{t}}\right)^{\lambda_2 - 1} \\ \times \frac{\rho(x)}{\rho(x) + \sqrt{t}} \frac{\rho(y)}{\rho(y) + \sqrt{t}}.$$

- * In fact, higher dimensional version is also available.
- Using it, we manage to measure the weighted norm designed by

$$\mathbb{E}\int_0^T\int_{D_{\kappa_0}}\left(|\rho^{-1}u|^p+|u_x|^p+|\rho u_{xx}|^p\right)\rho_{\circ}^{\Theta-\theta}\rho^{\theta-2}\,dx\,dt$$

with ranges

$$p\left(1-\frac{\pi}{\kappa_0}\right) < \Theta < p\left(2-1+\frac{\pi}{\kappa_0}\right) \quad \text{and} \quad 2-1 < \theta < 2-1+p.$$

• Away from the vertex, $\rho_{\circ}^{\Theta-\theta}$ is weak in play.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

.

$$\mathbb{E}\int_0^T\int_{D_{\kappa_0}}\left(|\rho^{-1}u|^p+|u_x|^p+|\rho u_{xx}|^p\right)\rho_\circ^{\Theta-\theta}\rho^{\theta-2}\,dx\,dt.$$

Also, when away from the sides, as

$$\rho_{\circ}^{\Theta-\theta}\rho^{\theta-2} = \rho_{0}^{\Theta-2} \left(\frac{\rho}{\rho_{0}}\right)^{\theta-2},$$

and the term

$$\left(\frac{\rho}{\rho_0}\right)^{\theta-2}$$

is not crucial and ρ , ρ_0 are comparable.

• Two types of estimate are solidly in one package now. Good start for better theories to be built.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

* In fact, the refined Green's function estimate for general parabolic operators and the conic domains in \mathbb{R}^d $(d \ge 2)$

and the deterministic version (hence p > 1) of the corresponding regularity theory for polygonal domains in \mathbb{R}^2 are built and now available; [Kim, Lee, Seo, 2021].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

All the wistes for our Teachor