
Introduction to
FHE and the TFHE
scheme

Workshop on Foundations and  
Applications of Lattice-based Cryptography 

ICMS, Edinburgh

Ilaria Chillotti

1July 26, 2022

Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

2

Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

3

4

What is FHE?

FHE = Computations over encrypted messages
• Possibly any function (“Fully”)

• Bit, integer, real messages

• Secret key and public key encryption

x y+ = x + y

× =x y x × y

Where FHE Could Be Used IRL?

• Learns nothing about client data

• No data breaches

• Irrelevant server location

5

mSTDs, HIV

Health data

Genomics
Blood work

Lifestyle tracking

Crime prevention

Gov data
Police/Justice
case solving

Tax evasion

Fraud prevention

Financial data

AML regulation
Transaction

records

Investments

m mf()
f(m)

Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

6

A little bit of history 📚

1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

???What happened in the meantime?

2009 - Gentry: first fully homomorphic encrypton scheme

7

8

Partially homomorphic 🔏
An example: RSA

• Select two large primes: p ≠ q
• Compute: and n = p ⋅ q φ(n) = (p − 1)(q − 1)
• Chose: such that

•

• and coprimes

e
1 < e < φ(n)
e φ(n)

• Compute: d = e−1 mod φ(n)

Decryption: c ⟼ m = cd mod n

Multiplicative Homomorphic

c1 = me
1 mod n

c2 = me
2 mod n

c1 ⋅ c2 = (m1 ⋅ m2)e mod n

 Rivest, Shamir, Adleman - 1977

Security
factoring problem

Encryption: m ⟼ c = me mod n

Secret 🔑

Public 🔓

???What happened in the meantime?

A little bit of history 📚

1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

Partially Homomorphic: RSA, ElGamal, Paillier, Goldwasser-Micali, …
Somewhat Homomorphic: Boneh, Goh and Nissim (2005), …
Leveled Homomorphic: …

2009 - Gentry: first fully homomorphic encrypton scheme

9

10

A world full of noise 🌡
An example: DGHV

• messagem ∈ {0,1}
• large odd secretp ∈ ℤ
• way larger than q ∈ ℤ p
• way smaller than , called noisee ∈ ℤ p

2010 - Van Dijk, Gentry, Halevi, Vaikuntanathan

Security
Approximate GCD

problem

Encryption: m ⟼ c = pq+2e + m

Decryption: c ⟼ m = (c mod p) mod 2

11

A world full of noise 🌡
An example: DGHV

2010 - Van Dijk, Gentry, Halevi, Vaikuntanathan

c1 = pq1 + 2e1+m1 c2 = pq2 + 2e2+m2

Homomorphic addition  
(XOR) c1 + c2 = p ⋅ (q1 + q2) + 2 ⋅ (e1 + e2) + m1 + m2

Homomorphic multiplication
(AND) c1 ⋅ c2 = p ⋅ (pq1q2 + . . .) + 2 ⋅ (2e1e2 + . . .) + m1m2

Noise grows too much 🌡 decryption incorrect 🚨⇒

12

Noise 🌡

=x y x + y+

=x y x × y×

Noise grows too much 🌡 decryption incorrect 🚨⇒

13

Bootstrapping [Gen09]

x x x
Decryption

bootstrapping key
(public)

𝖻𝗄

14

𝖢𝗂𝗋𝖼𝗎𝗂𝗍

homomorphic

x y

To bootstrap or not to bootstrap?

• The largest the circuit, the largest the crypto
parameters, the slowest the evaluation

• Circuit depth must be known in advance
𝖻𝗈𝗈𝗍𝗌𝗍𝗋𝖺𝗉𝗉𝗂𝗇𝗀y y

𝖻𝗄

• No depth limitations
• Bootstrap when needed

Leveled approach

Your circuit is small and known

Bootstrapped approach

Your circuit is deep or unknown

15

A timeline of ~40 years

Gentry

2009

1978
privacy homomorphisms

TFHE

2016

CKKS

2016

partial HE

~30 years

BFV 2012DGHV

2010

“over the integers” branch

LTV

2012
NTRU
branch

FHEW

2014

fast bootstrapping
branch

2011BGV

leveled schemes
branch

LWE

GSW
2013

LWE

Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

16

17

Learning With Errors (LWE)
2005 - Regev: hard problem on lattices

• Set a secret (s0, …, sn−1) ∈ ℤn

• Choose random elements (a0, …, an−1) ∈ ℤn
q

• Compute b =
n−1

∑
i=0

ai ⋅ si + e ∈ ℤq

• Choose a little random element (Gaussian) e ∈ ℤq
Call LWE sample(a0, …, an−1, b) ∈ ℤn+1

q

Decisional Problem

Given many LWE samples: (a0, …, an−1, b) ∈ ℤn+1
q

Given many random samples: (a0, …, an−1, u) ∈ ℤn+1
q

Hard to distinguish them!

Computational Problem

Given many LWE samples: (a0, …, an−1, b) ∈ ℤn+1
q

Hard to retrieve the secret  
!(s0, …, sn−1) ∈ ℤn

RLWE - “LWE over the Rings”
2009 - Stehlé, Steinfeld, Tanaka, Xagawa
2010 - Lyubashevsky, Peikert, Regev

18

LWE encryption (in the MSB)

m
⃗s

where b =
n−1

∑
i=0

ai ⋅ si + e + Δm ∈ ℤq

(s0, …, sn−1) ∈ {0,1}n

{
ai ∈ ℤq

uniform random Gaussian

= (a0, …, an−1, b)
⃗a b

Decryption

Message Ciphertext in m ∈ ℤp ⟶ ℤn+1
q

⃗ab − ⋅ ⃗s Δm + e=1 ⌊ Δm + e
Δ ⌉ ⟶ m2

Examples:
B/FV, CKKS, TFHE

19

LWE encryption (in the MSB)

𝖫𝖲𝖡𝖬𝖲𝖡

|e | < Δ/2

em

m ∈ ℤp

Δ 0q

Why this works? ⌊ Δm + e
Δ ⌉ ⟶ m

20

LWE encryption (in the LSB)

m
⃗s

where b =
n−1

∑
i=0

ai ⋅ si + p ⋅ e + m ∈ ℤq

(s0, …, sn−1) ∈ {0,1}n

{
ai ∈ ℤq

uniform random Gaussian

= (a0, …, an−1, b)
⃗a b

Decryption

Message Ciphertext in m ∈ ℤp ⟶ ℤn+1
q

⃗ab − ⋅ ⃗s p ⋅ e + m=1 p ⋅ e + m mod p ⟶ m2

Examples: BGV

21

LWE encryption (in the LSB)

Why this works? p ⋅ e + m mod p ⟶ m

𝖫𝖲𝖡𝖬𝖲𝖡

e m

m ∈ ℤp
0q p

We will focus on MSB schemes

22

23

LWE homomorphic properties

Addition m
⃗s

m′

⃗s
m + m′

⃗s
+ =

⃗a b ⃗a ′ b′ ⃗a + ⃗a ′ b + b′

Small constant
multiplication

m
⃗s

γ ⋅ m
⃗s⋅ =

⃗a b γ ⋅ ⃗a γ ⋅ b′

γ
Small integer

24

LWE public key encryption
Message Ciphertext in m ∈ ℤp ⟶ ℤn+1

q

= (s0, …, sn−1) ∈ {0,1}n⃗s
PK Encryptions of 0

where bi = ⃗a i ⋅ ⃗s + ei ∈ ℤq

Gaussian

b1⃗a 1

b2⃗a 2

bk⃗a k

⋮

r1 ⋅
r2 ⋅

rk ⋅

Small random

(⃗e , Δm + e)

+
+

+
+

m
⃗s

⃗a b =

25

RLWE encryption (in the MSB)

Decryption

⌊ ΔM + E
Δ ⌉ ⟶ M2

where B = A ⋅ S + E + ΔM ∈ ℤq[X]/(XN + 1)

S0 + S1X + … + SN−1XN−1

Si ∈ {0,1} Ai ∈ ℤq uniform random
A0 + A1X + … + AN−1XN−1

= (A, B)
A B

M
S

GaussianEi

E0 + E1X + … + EN−1XN−1

Message Ciphertext in M ∈ ℤp[X]/(XN + 1) ⟶ (ℤq[X]/(XN + 1))
2

1 AB − ⋅S ΔM + E=

26

RLWE encryption (in the MSB)

Why this works? ⌊ ΔM + E
Δ ⌉ ⟶ M

|ei | < Δ/2

X + …+ XN−1+Δm0 + e0 Δm1 + e1 ΔmN−1 + eN−1

27

RLWE homomorphic properties

Addition + =M
S

M′

S

M + M′

S

A B A′ B′ A + A′ B + B′

Small constant
polynomial multiplication ⋅ =Γ

ℤ[X]/(XN + 1)

M
S

A B

Γ ⋅ M
S

Γ ⋅ A Γ ⋅ B

28

RLWE public key encryption

PK
A single encryption of 0

R ⋅

Small random  
polynomial

(EA, ΔM + EB)

+
+

= S0 + S1X + … + SN−1XN−1

Si ∈ {0,1}
S

Message Ciphertext in M ∈ ℤp[X]/(XN + 1) ⟶ (ℤq[X]/(XN + 1))
2

Apk Bpk
where B = A ⋅ S + E ∈ ℤq[X]/(XN + 1)

GaussianEi

E0 + E1X + … + EN−1XN−1

= M
S

A B

What if we want to multiply for
a large constant?

29

30

RLWE homomorphic properties
For simplicity Γ = γ ∈ ℤ large (order of)q

= γ ⋅ M
S

γ ⋅ A γ ⋅ B

⋅ M
S

A B

γ
Δ 0q Δ 0q

31

RLWE homomorphic properties
Decompose with respect to a

small base (e.g.,)β = 2 γ = γ1
q
β

+ γ1
q
β2

+ … + γℓ
q
βℓ

Δ 0q Δ 0q Δ 0q

RLev

⋅ M ⋅
q
β

M ⋅
q
β2

M ⋅
q
βℓ

⃗S

γ1

⃗S
⋅γ2

⃗S
⋅γℓ

⋮⋮

M ⋅ γ1
q
β

M ⋅ γ2
q
β2

M ⋅ γℓ
q
βℓ

=
=

=
⋮

⃗S

⃗S

⃗S

= γ ⋅ M
⃗S

+⋮

Two ways of doing
multiplication between ciphertexts

- GSW -

32

33

RGSW
Message Ciphertext in M ∈ ℤp[X]/(XN + 1) ⟶ (ℤq[X]/(XN + 1))

2ℓ×2

M
S

S0 + S1X + … + SN−1XN−1

Si ∈ {0,1}
RLWE

=
ℓ

2

2

RLev

B*j = A*j ⋅ S + E*j +M ⋅
q
β j

Bj = Aj ⋅ S + Ej−M ⋅ S ⋅
q
β j

j = 1,…, ℓ

Bj

B*jA*j

Aj

34

RGSW
Addition + =M′

S

A′ j B′ j

M
S

Aj Bj

M + M′

S

Aj + A′ j Bj + B′ j

⋅Γ
ℤ[X]/(XN + 1)

Small constant
polynomial multiplication

=M
S

Γ ⋅ M
S

Aj Bj Γ ⋅ Aj Γ ⋅ Bj

35

RGSW

=
M ⋅ M′

S
=

Multplication

⊗ =M
S

M′

S
M ⋅ M′

S

?A′ j B′ jAj Bj

1 - Decompose : M
S

𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)()
𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)()

Aj Bj =

𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (Aj) 𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (Bj)

2 - Matrix dot-product: ⋅
𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)()M

S

M
S⋅

A′ j B′ j

Two ways of doing
multiplication between ciphertexts

- BGV -

36

37

RLWE multiplication (BGV style)

Input: two RLWE ciphertexts
= A1 B1M1

S

= A2 B2M2
S

1

T = [⌊ A1 ⋅ A2

Δ ⌉]
q

A = [⌊ A1 ⋅ B2 + A2 ⋅ B1

Δ ⌉]
q

B = [⌊ B1 ⋅ B2

Δ ⌉]
q

Tensor product: C1 ⊗ C2 = A BT

S ⊗ SEncrypted under the secret key

38

RLWE multiplication (BGV style)

2 Relinearization: switching the key

C1 ⊗ C2 = A BT

A B

T 0S ⊗ S
S

⊙
+

+

A′ B′ = M1 ⋅ M2
S

How to deal with noise?

39

🌡

40

Bootstrapping

Generally
slow for BGV like

schemes

x x
Bootstrapping

1 bootstrapping key

2009 - Gentry

41

Bootstrapping

Fast in GSW like
schemes

x x
Bootstrapping

1 bootstrapping key

2009 - Gentry

Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

42

43

A timeline of ~40 years

Gentry

2009

2020

1978
privacy homomorphisms

TFHE

2016

CKKS

2016

partial HE

~30 years

BFV 2012DGHV

2010

“over the integers” branch

LTV

2012
NTRU
branch

FHEW

2014

fast bootstrapping
branch

2011BGV

leveled schemes
branch

LWE

GSW
2013

LWE

🍩

44

Ciphertexts: Summary
Addition
Constant multiplication{LWE ⃗a bm

⃗s
=

A BRLWE
Addition
Constant multiplication{=M

S

RGSW

Addition
Constant multiplication{Multiplication

=M
S(X)

Bj

B*jA*j

Aj

45

LWE

0q

𝖫𝖲𝖡𝖬𝖲𝖡

0

16

32

48

1 2 3
4

5
6

7
8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26
27

28
29

3031333435
36

37
38

39
40

41

42

43

44

45

46

47

49

50

51

52

53

54

55

56

57
58

59
60

61 62 63

q = 64 = 26

p = 4 = 22

Δ = q
p = 16 = 24Encoding 🍩

Δ =
q
p

= 16 = 24

p = 4 = 22

Δ

|e | <
Δ
2

= 8 = 23

}

In practice: or
q = 232 q = 264

Example: 1 1m = 3
Δm = 48 0 1 0 1

Δm + e = 53e = 5

ℳ = {0,1,2,3}
Encode(m) = Δm

}

Δ

0

1

2

3

46

RLWE
Encoding ΔM + E with {

M = M0 + M1X + … + MN−1XN−1

E = E0 + E1X + … + EN−1XN−1

0

1

3

4

ΔM0 + E0

0

1

3

4

ΔM1 + E1

0

1

3

4

ΔMN−1 + EN−1

X + …+ XN−1+

47

External Product

RLWE x RGSW

⊙ =μ
S

M
S

A B

μ ⋅ M
S

?A′ j B′ j

()A B𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) =1 - Decompose : M
S

𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (A) 𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (B)

2 - Vector-matrix dot-product: ⋅ =
𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)() μ

S⋅ =M
S

μ ⋅ M
S

A′ j B′ j

48

CMux

(d1 − d0) ⋅ b + d0 = db
0

1

d0

d1

b

db

b
S

d1
S

d0
S

db
S

⊙ b
S

d0
S

d1
S

d0
S

()− + = db
S

External
Product

Controlled Mux

49

Rotation
Rotate a polynomial of positionsM p

M(X) ⋅ X−p = Mp+Mp+1X + … + MN−1XN−p−1 − M0XN−p − … − Mp−1XN−1
⋅ X−p

Rotate an encrypted polynomial of positionsM p

A B

M
S

⋅ X−p =

⋅ X−p =

M ⋅ X−p

S

A ⋅ X−p B ⋅ X−p

M(X) = M0 + M1X + …+MpXp+… + MN−1XN−1 mod XN + 1
XN = − 1

p = p0 ⋅ 20 + …+pj2j+… + pk ⋅ 2k

50

Blind Rotation
Rotate an encrypted polynomial of encrypted positionsM p

S

p0
S

p1
S

pk…p = p0 ⋅ 20 + …+pj2j+… + pk ⋅ 2k

Secret Known
Constant

M ⋅ X−p = M ⋅ X−p0⋅20−…−pj2j−…−pk⋅2k

= M ⋅ X−p0⋅20 ⋅ … ⋅ X−pj2j ⋅ … ⋅ X−pk⋅2k

M ⋅ X−pj2j🔎 = {
M if pj = 0

M ⋅ X−2j if pj = 1
0

1

M
S

S

pj

⋅ X−2j
M

S

M ⋅ X−pj2j

S

51

Blind Rotation
Rotate an encrypted polynomial of encrypted positionsM p

p = p0 ⋅ 20 + … + pk ⋅ 2k
S

p0
S

p1
S

pk…

0

1

M
S

S

p0

⋅ X−1M
S

M0
S

M0 = M ⋅ X−p0

…0

1

M0
S

S

p1

⋅ X−21M0
S

M1
S

M1 = M0 ⋅ X−p12

52

Sample Extraction

a0 = A0

a1 = − AN−1
⋮

an−1 = − A1

b = B0

M0+M1X + … + MN−1XN−1

A BRLWE =M
S

S = S0 + S1X + … + SN−1XN−1

(A0 + A1X + … + AN−1XN−1, B0 + B1X + … + BN−1XN−1)

All the other coefficients can be
extracted in a similar way

LWE ⃗a bM0
⃗s

=

= (= , … , =)⃗s s0 S0 sn−1 SN−1

n N=

53

Key Switching

⃗a b

m
⃗sLWE to LWE

⃗a ′ b′

m
⃗s′

A B

M
S

M = m ⋅ Xj

LWE to RLWE
⃗a b

m
⃗s

many-LWE to 1-RLWE
A B

M
S

M =
N−1

∑
i=0

mi ⋅ Xi

⃗a 0 b0

m0
⃗s

bN−1⃗a N−1

mN−1
⃗s

…

RLWE to RLWE
A′ B′

M
S′

BA

M
S

EVERY KEY SWITCHING…

• Needs a key-switching key
• Used to switch the key
• Used to switch the parameters
• Can be used to evaluate a very

regular function (public or private)
• Increases the noise

• Needs a key-switching key
• Used to switch the key
• Used to switch the parameters
• Can be used to evaluate a very

regular function (public or private)
• Increases the noise

Rotation

54

Building Blocks: Summary

External Product
and CMux

Sample
Extraction

Key
Switching

RGSW =M
S(X)

LWE ⃗a bm
⃗s

=

A BRLWE =M
S

Bj

B*jA*j

Aj

Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

55

56

Bootstrapping
Original goal: reduce the noise when it grows too much

In TFHE, we can bootstrap LWE ciphertexts ⃗a bm
⃗s

=

b −
n−1

∑
i=0

ai ⋅ si = Δm + e1

⌈ Δm + e
Δ ⌋ = m2

To bootstrap, we need to evaluate the decryption:

57

Bootstrapping Let’s start from step 2 (the rounding of)Δm + e

m ∈ {0,1,…, p − 1}
0 1 2 p-1p-2…

m′ = Δm + e ∈ {0,1,…, q − 1}
0 1 2 q-1q-2…

⋅ X−m

m m+1 m+2 …

⋅ X−(Δm+e)

m’ m’+1 m’+2 …

58

Bootstrapping Let’s start from step 2 (the rounding of)Δm + e

0 1 2 q-1q-2…

0

16

32

48

1 2 3
4 5

6
7

8
9

10

11

12

13

14

15

17

18

19

20

21
22

23

24

25
26

27
28

293031333435
36

37
38

39
40

41

42

43

44

45

46

47

49

50

51

52

53

54
55

56
57

58
59

60
61 62 63

Δ

0

1

2

3

Introduce some redundancy in the table

q

0… 1 1… … p-1 p-1… 0 …

Δ Δ

59

Bootstrapping Let’s start from step 2 (the rounding of)Δm + e

0… 1 1… … p-1 p-1… 0 …

Δm + e → ⌈ Δm + e
Δ ⌋ = m

⋅ X−(Δm+e)

m′ m′ + 1 m′ + 2 …m′ = Δm + e ∈ {0,1,…, q − 1}
0 1 2 q-1q-2…

m… … … … m …
⋅ X−(Δm)

e

m … … m ……
⋅ X−(Δm+e)

60

Bootstrapping

m … … … m …V ⋅ X−(Δm+e) =

0… 1 1… … p-1 p-1… 0 …V =
⋅ X−(Δm+e)

q

Using polynomials with or
coefficients would be impractical!!!

q = 232 q = 264

Use instead polynomials
with (or a bit more)

coefficients!
N = 210

0q

𝖫𝖲𝖡𝖬𝖲𝖡

Δ

Use only the
MSB

61

Bootstrapping

How to compute ? V ⋅ X−(Δm+e)

S′

s0
S′

sn−1…

−(Δm + e) = − b +
n−1

∑
i=0

ai ⋅ si

= − b + a0 ⋅ s0 + … + an−1 ⋅ sn−1

Vn = V ⋅ X−b+∑n−1
i=0 aisi = V ⋅ X−(Δm+e)

1 0… 1 1… … p-1 p-1… 0 …V =

V0 = V ⋅ X−b2 Rotation

0

1

V0
S′

S′

s0

⋅ Xa0V0
S′

V1
S′

V1 = V0 ⋅ Xa0s0

3

Blind
Rotation

… 0

1

Vn−1
S′

S′

sn−1

⋅ Xan−1Vn−1
S′

Vn
S′

Vn = Vn−1 ⋅ Xan−1sn−1

62

Bootstrapping

m
⃗s

Vn =
S′

Vn = V ⋅ X−(Δm+e)

m… … … … …

S′

m
⃗s′

Sample
Extraction

Key Switching
to go back to ⃗s

63

Bootstrapping

m
⃗s

Vn =
S′

Vn = V ⋅ X−m̄′

f(m)… … … … f(m) …

S′

f(m)
⃗s′

Sample
Extraction

Key Switching
to go back to ⃗s

TFHE bootstrapping is “programmable”: evaluates a function while reducing the noise

Homomorphic LUT f(0)… f(1) f(1)… … f(p − 1) f(p − 1)… f(0) …V =

I lied a little bit… 🤥

64

65

m0
… m1 m1

… … m p
2 −1 m p

2 −1… −m0
… −m0

… −m1 −m1
… … −m p

2 −1 −m p
2 −1… m0

…

N N

0

16

32

48

1 2 3
4 5

6
7

8
9

10

11

12

13

14

15

17

18

19

20

21
22

23

24
25

26
27

28
293031333435

36
37

38
39

40

41

42

43

44

45

46

47

49

50

51

52

53

54
55

56
57

58
59

60
61 62 63

m0

m1

m p
2 −1

m0

−m0−m0

−m1

−m p
2 −1

⋮ ⋮

Negacyclicity

We have new solutions to
overcome this problem 😉

em

Δ 0q

Bootstrapping

66

Bootstrapping: Summary

Circuit
Bootstrapping

Rotation

External Product
and CMux

Sample
Extraction

Key
Switching

Reduces noise

Does not reduce noise

RGSW =M
S(X)

LWE ⃗a bm
⃗s

=

A BRLWE =M
S

Bj

B*jA*j

Aj

67

Other features in TFHE
• How to do Gate Bootstrapping 0⃣1⃣ 

• Leveled evaluation of LUT with vertical and horizontal packing 📊 

• Evaluate deterministic (weighted) finite automata 🔗 

• Homomorphic counter TBSR 🧮 

• Circuit bootstrapping 🔋 

• New WoP-PBS ⚙ 

• And more …

Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

68

69

Some open source implementations

There exists also some GPU implementations

FHEW

Concrete

HEAAN

HELib

70

Open source implementations

TFHE: bootstrapped binary circuits

Experimental TFHE: circuit bootstrapping (binary)

Concrete:
(programmable) bootstrapping,  
binary-integer-real encodings 
noise tracking…

More than a library

71

Some applications

E-voting

💻🗳

Machine Learning  

🧠🤖

MPC  

💁💁💁

Multi-key TFHE

🔑🗝

Statistics over
sensitive data  

📊📈

Blockchain

🧱⛓

Machine Learning
 

- Inference over encrypted data -

72

Server

User
data

prediction

data prediction

Empowering machine learning with FHE

73
Data stays encrypted during all the process!

The server learns nothing

74

Machine learning applications 🧠

Many type of layers: dense, convolution, activation, pooling, etc.
In FHE: different operations with different costs.

Neural network

y =
n

∑
i=1

xi ⋅ wi + b f(y)

x1

x2

x3

xn

⋮

fArtificial neuron 🧠

No depth limitations:
Inference of deep NN

BGV-like: approximate with polynomial

75

Homomorphic Addition 
(discretized weights)

TFHE-like: programmable bootstrapping

Let’s be Concrete

76

https://concrete.zama.ai/

Some experiments: NN-20

77

NN-20

NN-20

in the clear

homomorphic

MNIST dataset

~ 100 active neurons per layer

•CPU: PC with 2.6 GHz 6-Core Intel ® Core™ i7 processor,

•AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS

•AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

Accuracy CPU AWS AWS2

97.5% 0.17 ms 0.19 ms

97.5% 30.04 s 6.19 s 2.10 s 80 bits of security

97.1% 115.52 s 21.17 s 7.53 s 128 bits of security

[CJP21] “Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks”  
I. Chillotti, M. Joye and P. Paillier, CSCML 2021

Some experiments: NN-50

78

NN-50

NN-50

in the clear

homomorphic

MNIST dataset

~ 100 active neurons per layer

•CPU: PC with 2.6 GHz 6-Core Intel ® Core™ i7 processor,

•AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS

•AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

Accuracy CPU AWS AWS2

95.4% 0.20 ms 0.30 ms

95.1% 71.71 s 13.00 s 5.27 s 80 bits of security

94.7% 233.55 s 43.91 s 18.89 s 128 bits of security

[CJP21] “Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks”  
I. Chillotti, M. Joye and P. Paillier, CSCML 2021

Conclusion

79

What’s next in FHE?

What we learned?

80

Bibliography
[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005. 
 
[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. Efficient public key encryption based on ideal lattices. ASIACRYPT 2009.  
 
[LPR10] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. EUROCRYPT 2010. 
 
[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009.  
 
[RAD78] R. L. Rivest, L. Adleman, M. L. Dertouzos. On data banks and privacy homomorphisms. Foundations of secure computation 1978. 
 
[DGHV10] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan. Fully homomorphic encryption over the integers. EUROCRYPT 2010. 
 
[BGV12] Z. Brakerski, C. Gentry, V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. ITCS 2012. 
 
[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. CRYPTO 2012. 
 
[FV12] J. Fan, F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012. 
 
[CKKS17] J. H. Cheon, A. Kim, M. Kim, Y. Song. Homomorphic encryption for arithmetic of approximate numbers. ASIACRYPT 2017. 
 
[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. CRYPTO 2013. 
 
[DM15] L. Ducas, D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. EUROCRYPT 2015. 
 
[CGGI16] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. ASIACRYPT 2016. 
 
[CGGI17] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE. ASIACRYPT
2017. 
 
[CGGI20] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. TFHE: Fast Fully Homomorphic Encryption over the Torus. Journal of Cryptology 2020.

?
Thank you 🙏

81

Q&A

