
Introduction to 
FHE and the TFHE 
scheme

Workshop on Foundations and  
Applications of Lattice-based Cryptography 

ICMS, Edinburgh 

Ilaria Chillotti

1July 26, 2022



Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

2



Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications

3



4

What is FHE?

FHE = Computations over encrypted messages 
• Possibly any function (“Fully”)

• Bit, integer, real messages

• Secret key and public key encryption 

x y+ = x + y

× =x y x × y



Where FHE Could Be Used IRL?

• Learns nothing about client data

• No data breaches

• Irrelevant server location
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A little bit of history 📚 

1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

???What happened in the meantime?

2009 - Gentry: first fully homomorphic encrypton scheme
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Partially homomorphic 🔏
An example: RSA

• Select two large primes:  p ≠ q
• Compute:  and n = p ⋅ q φ(n) = (p − 1)(q − 1)
• Chose:  such that

•  

•  and  coprimes

e
1 < e < φ(n)
e φ(n)

• Compute: d = e−1 mod φ(n)

Decryption: c ⟼ m = cd mod n

Multiplicative Homomorphic 

c1 = me
1 mod n

c2 = me
2 mod n

c1 ⋅ c2 = (m1 ⋅ m2)e mod n

 Rivest, Shamir, Adleman - 1977

Security 
factoring problem

Encryption: m ⟼ c = me mod n

Secret  🔑

Public 🔓



???What happened in the meantime?

A little bit of history 📚

1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

Partially Homomorphic: RSA, ElGamal, Paillier, Goldwasser-Micali, … 
Somewhat Homomorphic: Boneh, Goh and Nissim (2005), … 
Leveled Homomorphic: …

2009 - Gentry: first fully homomorphic encrypton scheme
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A world full of noise 🌡
An example: DGHV

•  messagem ∈ {0,1}
•  large odd secretp ∈ ℤ
•  way larger than q ∈ ℤ p
•  way smaller than , called noisee ∈ ℤ p

2010 - Van Dijk, Gentry, Halevi, Vaikuntanathan

Security 
Approximate GCD 

problem

Encryption: m ⟼ c = pq+2e + m

Decryption: c ⟼ m = (c mod p) mod 2
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A world full of noise 🌡
An example: DGHV

2010 - Van Dijk, Gentry, Halevi, Vaikuntanathan

c1 = pq1 + 2e1+m1 c2 = pq2 + 2e2+m2

Homomorphic addition  
(XOR) c1 + c2 = p ⋅ (q1 + q2) + 2 ⋅ (e1 + e2) + m1 + m2

Homomorphic multiplication 
(AND) c1 ⋅ c2 = p ⋅ (pq1q2 + . . . ) + 2 ⋅ (2e1e2 + . . . ) + m1m2

Noise grows too much 🌡  decryption incorrect 🚨⇒
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Noise 🌡

=x y x + y+

=x y x × y×

Noise grows too much 🌡  decryption incorrect 🚨⇒
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Bootstrapping [Gen09]

x x x
Decryption

bootstrapping key 
(public)

𝖻𝗄
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𝖢𝗂𝗋𝖼𝗎𝗂𝗍

homomorphic

x y

To bootstrap or not to bootstrap?

• The largest the circuit, the largest the crypto 
parameters, the slowest the evaluation 

• Circuit depth must be known in advance
𝖻𝗈𝗈𝗍𝗌𝗍𝗋𝖺𝗉𝗉𝗂𝗇𝗀y y

𝖻𝗄

• No depth limitations
• Bootstrap when needed

Leveled approach

Your circuit is small and known

Bootstrapped approach

Your circuit is deep or unknown
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A timeline of ~40 years

Gentry

2009

1978
privacy homomorphisms

TFHE

2016

CKKS

2016

partial HE

~30 years

BFV 2012DGHV

2010

“over the integers” branch

LTV

2012
NTRU
branch

FHEW

2014

fast bootstrapping
branch

2011BGV

leveled schemes
branch

LWE

GSW
2013

LWE
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Learning With Errors (LWE)
2005 - Regev: hard problem on lattices

• Set a secret  (s0, …, sn−1) ∈ ℤn

• Choose random elements  (a0, …, an−1) ∈ ℤn
q

• Compute  b =
n−1

∑
i=0

ai ⋅ si + e ∈ ℤq

• Choose a little random element  (Gaussian) e ∈ ℤq
Call   LWE sample(a0, …, an−1, b) ∈ ℤn+1

q

Decisional Problem

Given many LWE samples: (a0, …, an−1, b) ∈ ℤn+1
q

Given many random samples: (a0, …, an−1, u) ∈ ℤn+1
q

Hard to distinguish them!

Computational Problem

Given many LWE samples: (a0, …, an−1, b) ∈ ℤn+1
q

Hard to retrieve the secret  
!(s0, …, sn−1) ∈ ℤn

RLWE - “LWE over the Rings” 
2009 - Stehlé, Steinfeld, Tanaka, Xagawa 
2010 - Lyubashevsky, Peikert, Regev
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LWE encryption (in the MSB)

m
⃗s

where b =
n−1

∑
i=0

ai ⋅ si + e + Δm ∈ ℤq

(s0, …, sn−1) ∈ {0,1}n

{
ai ∈ ℤq

uniform random Gaussian

= (a0, …, an−1, b)
⃗a b

Decryption

Message   Ciphertext in m ∈ ℤp ⟶ ℤn+1
q

⃗ab − ⋅ ⃗s Δm + e=1 ⌊ Δm + e
Δ ⌉ ⟶ m2

Examples:  
B/FV, CKKS, TFHE
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LWE encryption (in the MSB)

𝖫𝖲𝖡𝖬𝖲𝖡

|e | < Δ/2

em

m ∈ ℤp

Δ 0q

Why this works? ⌊ Δm + e
Δ ⌉ ⟶ m
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LWE encryption (in the LSB)

m
⃗s

where b =
n−1

∑
i=0

ai ⋅ si + p ⋅ e + m ∈ ℤq

(s0, …, sn−1) ∈ {0,1}n

{
ai ∈ ℤq

uniform random Gaussian

= (a0, …, an−1, b)
⃗a b

Decryption

Message   Ciphertext in m ∈ ℤp ⟶ ℤn+1
q

⃗ab − ⋅ ⃗s p ⋅ e + m=1 p ⋅ e + m mod p ⟶ m2

Examples: BGV



21

LWE encryption (in the LSB)

Why this works? p ⋅ e + m mod p ⟶ m

𝖫𝖲𝖡𝖬𝖲𝖡

e m

m ∈ ℤp
0q p



We will focus on MSB schemes
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LWE homomorphic properties

Addition m
⃗s

m′ 

⃗s
m + m′ 

⃗s
+ =

⃗a b ⃗a ′ b′ ⃗a + ⃗a ′ b + b′ 

Small constant 
multiplication

m
⃗s

γ ⋅ m
⃗s⋅ =

⃗a b γ ⋅ ⃗a γ ⋅ b′ 

γ
Small integer
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LWE public key encryption
Message   Ciphertext in m ∈ ℤp ⟶ ℤn+1

q

= (s0, …, sn−1) ∈ {0,1}n⃗s
PK Encryptions of 0

where bi = ⃗a i ⋅ ⃗s + ei ∈ ℤq

Gaussian

b1⃗a 1

b2⃗a 2

bk⃗a k

⋮

r1 ⋅
r2 ⋅

rk ⋅

Small random

( ⃗e , Δm + e)

+
+

+
+

m
⃗s

⃗a b =
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RLWE encryption (in the MSB)

Decryption

⌊ ΔM + E
Δ ⌉ ⟶ M2

where B = A ⋅ S + E + ΔM ∈ ℤq[X]/(XN + 1)

S0 + S1X + … + SN−1XN−1

Si ∈ {0,1} Ai ∈ ℤq uniform random
A0 + A1X + … + AN−1XN−1

= (A, B)
A B

M
S

GaussianEi

E0 + E1X + … + EN−1XN−1

Message   Ciphertext in M ∈ ℤp[X]/(XN + 1) ⟶ (ℤq[X]/(XN + 1))
2

1 AB − ⋅S ΔM + E=
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RLWE encryption (in the MSB)

Why this works? ⌊ ΔM + E
Δ ⌉ ⟶ M

|ei | < Δ/2

X + …+ XN−1+Δm0 + e0 Δm1 + e1 ΔmN−1 + eN−1
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RLWE homomorphic properties

Addition + =M
S

M′ 

S

M + M′ 

S

A B A′ B′ A + A′ B + B′ 

Small constant 
polynomial multiplication ⋅ =Γ

ℤ[X]/(XN + 1)

M
S

A B

Γ ⋅ M
S

Γ ⋅ A Γ ⋅ B
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RLWE public key encryption

PK
A single encryption of 0

R ⋅

Small random  
polynomial

(EA, ΔM + EB)

+
+

= S0 + S1X + … + SN−1XN−1

Si ∈ {0,1}
S

Message   Ciphertext in M ∈ ℤp[X]/(XN + 1) ⟶ (ℤq[X]/(XN + 1))
2

Apk Bpk
where B = A ⋅ S + E ∈ ℤq[X]/(XN + 1)

GaussianEi

E0 + E1X + … + EN−1XN−1

= M
S

A B



What if we want to multiply for  
a large constant?
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RLWE homomorphic properties
For simplicity Γ = γ ∈ ℤ large (order of )q

= γ ⋅ M
S

γ ⋅ A γ ⋅ B

⋅ M
S

A B

γ
Δ 0q Δ 0q
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RLWE homomorphic properties
Decompose with respect to a 

small base (e.g., )β = 2 γ = γ1
q
β

+ γ1
q
β2

+ … + γℓ
q
βℓ

Δ 0q Δ 0q Δ 0q

RLev

⋅ M ⋅
q
β

M ⋅
q
β2

M ⋅
q
βℓ

⃗S

γ1

⃗S
⋅γ2

⃗S
⋅γℓ

⋮⋮

M ⋅ γ1
q
β

M ⋅ γ2
q
β2

M ⋅ γℓ
q
βℓ

=
=

=
⋮

⃗S

⃗S

⃗S

= γ ⋅ M
⃗S

+⋮



Two ways of doing  
multiplication between ciphertexts 

- GSW -
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RGSW
Message   Ciphertext in M ∈ ℤp[X]/(XN + 1) ⟶ (ℤq[X]/(XN + 1))

2ℓ×2

M
S

S0 + S1X + … + SN−1XN−1

Si ∈ {0,1}
RLWE 

=
ℓ

2

2

RLev

B*j = A*j ⋅ S + E*j +M ⋅
q
β j

Bj = Aj ⋅ S + Ej−M ⋅ S ⋅
q
β j

j = 1,…, ℓ

Bj

B*jA*j

Aj
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RGSW
Addition + =M′ 

S

A′ j B′ j

M
S

Aj Bj

M + M′ 

S

Aj + A′ j Bj + B′ j

⋅Γ
ℤ[X]/(XN + 1)

Small constant 
polynomial multiplication

=M
S

Γ ⋅ M
S

Aj Bj Γ ⋅ Aj Γ ⋅ Bj
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RGSW

=
M ⋅ M′ 

S
=

Multplication

⊗ =M
S

M′ 

S
M ⋅ M′ 

S

?A′ j B′ jAj Bj

1 - Decompose                 : M
S

𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)(                              )
𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)(                              )

Aj Bj =

𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (Aj) 𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (Bj)

2 - Matrix dot-product: ⋅
𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)(         )M

S

M
S⋅

A′ j B′ j



Two ways of doing  
multiplication between ciphertexts 

- BGV -
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RLWE multiplication (BGV style)

Input: two RLWE ciphertexts
= A1 B1M1

S

= A2 B2M2
S

1

T = [⌊ A1 ⋅ A2

Δ ⌉]
q

A = [⌊ A1 ⋅ B2 + A2 ⋅ B1

Δ ⌉]
q

B = [⌊ B1 ⋅ B2

Δ ⌉]
q

Tensor product:  C1 ⊗ C2 = A BT

S ⊗ SEncrypted under the secret key 
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RLWE multiplication (BGV style)

2 Relinearization: switching the key

C1 ⊗ C2 = A BT

A B

T 0S ⊗ S
S

⊙
+

+

A′ B′ = M1 ⋅ M2
S



How to deal with noise?

39

🌡
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Bootstrapping

Generally  
slow for BGV like 

schemes

x x
Bootstrapping

1 bootstrapping key

2009 - Gentry
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Bootstrapping

Fast in GSW like 
schemes

x x
Bootstrapping

1 bootstrapping key

2009 - Gentry
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A timeline of ~40 years

Gentry

2009

2020

1978
privacy homomorphisms

TFHE

2016

CKKS

2016

partial HE

~30 years

BFV 2012DGHV

2010

“over the integers” branch

LTV

2012
NTRU
branch

FHEW

2014

fast bootstrapping
branch

2011BGV

leveled schemes
branch

LWE

GSW
2013

LWE

🍩
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Ciphertexts: Summary
Addition 
Constant multiplication{LWE ⃗a bm

⃗s
=

A BRLWE
Addition 
Constant multiplication{=M

S

RGSW

Addition 
Constant multiplication{Multiplication

=M
S(X)

Bj

B*jA*j

Aj



45

LWE

0q

𝖫𝖲𝖡𝖬𝖲𝖡

0

16

32

48

1 2 3
4

5
6

7
8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26
27

28
29

3031333435
36

37
38

39
40

41

42

43

44

45

46

47

49

50

51

52

53

54

55

56

57
58

59
60

61 62 63

q = 64 = 26

p = 4 = 22

Δ = q
p = 16 = 24Encoding 🍩

Δ =
q
p

= 16 = 24

p = 4 = 22

Δ

|e | <
Δ
2

= 8 = 23

}

In practice:  or 
q = 232 q = 264

Example: 1 1m = 3
Δm = 48 0 1 0 1

Δm + e = 53e = 5

ℳ = {0,1,2,3}
Encode(m) = Δm

}

Δ

0

1

2

3
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RLWE
Encoding ΔM + E with {

M = M0 + M1X + … + MN−1XN−1

E = E0 + E1X + … + EN−1XN−1

0

1

3

4

ΔM0 + E0

0

1

3

4

ΔM1 + E1

0

1

3

4

ΔMN−1 + EN−1

X + …+ XN−1+
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External Product

RLWE x RGSW

⊙ =μ
S

M
S

A B

μ ⋅ M
S

?A′ j B′ j

(                              )A B𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) =1 - Decompose                 : M
S

𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (A) 𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ) (B)

2 - Vector-matrix dot-product: ⋅ =
𝖣𝖾𝖼𝗈𝗆𝗉(β,ℓ)(         ) μ

S⋅ =M
S

μ ⋅ M
S

A′ j B′ j
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CMux

(d1 − d0) ⋅ b + d0 = db
0

1

d0

d1

b

db

b
S

d1
S

d0
S

db
S

⊙ b
S

d0
S

d1
S

d0
S

(                )− + = db
S

External 
Product

Controlled Mux
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Rotation
Rotate a polynomial  of  positionsM p

M(X) ⋅ X−p = Mp+Mp+1X + … + MN−1XN−p−1 − M0XN−p − … − Mp−1XN−1
⋅ X−p

Rotate an encrypted polynomial  of  positionsM p

A B

M
S

⋅ X−p =

⋅ X−p =

M ⋅ X−p

S

A ⋅ X−p B ⋅ X−p

M(X) = M0 + M1X + …+MpXp+… + MN−1XN−1 mod XN + 1
XN = − 1



p = p0 ⋅ 20 + …+pj2j+… + pk ⋅ 2k

50

Blind Rotation
Rotate an encrypted polynomial  of  encrypted positionsM p

S

p0
S

p1
S

pk…p = p0 ⋅ 20 + …+pj2j+… + pk ⋅ 2k

Secret Known 
Constant

M ⋅ X−p = M ⋅ X−p0⋅20−…−pj2j−…−pk⋅2k

= M ⋅ X−p0⋅20 ⋅ … ⋅ X−pj2j ⋅ … ⋅ X−pk⋅2k

M ⋅ X−pj2j🔎 = {
M  if pj = 0

M ⋅ X−2j  if pj = 1
0

1

M
S

S

pj

⋅ X−2j
M

S

M ⋅ X−pj2j

S
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Blind Rotation
Rotate an encrypted polynomial  of  encrypted positionsM p

p = p0 ⋅ 20 + … + pk ⋅ 2k
S

p0
S

p1
S

pk…

0

1

M
S

S

p0

⋅ X−1M
S

M0
S

M0 = M ⋅ X−p0

…0

1

M0
S

S

p1

⋅ X−21M0
S

M1
S

M1 = M0 ⋅ X−p12
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Sample Extraction

a0 = A0

a1 = − AN−1
⋮

an−1 = − A1

b = B0

M0+M1X + … + MN−1XN−1

A BRLWE =M
S

S = S0 + S1X + … + SN−1XN−1

(A0 + A1X + … + AN−1XN−1, B0 + B1X + … + BN−1XN−1)

All the other coefficients can be 
extracted in a similar way

LWE ⃗a bM0
⃗s

=

= (     =     , … ,         =         )⃗s s0 S0 sn−1 SN−1

n N=
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Key Switching

⃗a b

m
⃗sLWE to LWE

⃗a ′ b′ 

m
⃗s′ 

A B

M
S

M = m ⋅ Xj

LWE to RLWE
⃗a b

m
⃗s

many-LWE to 1-RLWE
A B

M
S

M =
N−1

∑
i=0

mi ⋅ Xi

⃗a 0 b0

m0
⃗s

bN−1⃗a N−1

mN−1
⃗s

…

RLWE to RLWE
A′ B′ 

M
S′ 

BA

M
S

EVERY KEY SWITCHING… 

• Needs a key-switching key 
• Used to switch the key 
• Used to switch the parameters 
• Can be used to evaluate a very 

regular function (public or private) 
• Increases the noise

• Needs a key-switching key
• Used to switch the key
• Used to switch the parameters
• Can be used to evaluate a very 

regular function (public or private)
• Increases the noise



Rotation
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Building Blocks: Summary

External Product 
and CMux

Sample 
Extraction

Key 
Switching

RGSW =M
S(X)

LWE ⃗a bm
⃗s

=

A BRLWE =M
S

Bj

B*jA*j

Aj
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Bootstrapping
Original goal: reduce the noise when it grows too much

In TFHE, we can bootstrap LWE ciphertexts ⃗a bm
⃗s

=

b −
n−1

∑
i=0

ai ⋅ si = Δm + e1

⌈ Δm + e
Δ ⌋ = m2

To bootstrap, we need to evaluate the decryption:  
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Bootstrapping Let’s start from step 2 (the rounding of )Δm + e

m ∈ {0,1,…, p − 1}
0 1 2 p-1p-2…

m′ = Δm + e ∈ {0,1,…, q − 1}
0 1 2 q-1q-2…

⋅ X−m

m m+1 m+2 …

⋅ X−(Δm+e)

m’ m’+1 m’+2 …
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Bootstrapping Let’s start from step 2 (the rounding of )Δm + e

0 1 2 q-1q-2…

0

16

32

48

1 2 3
4 5

6
7

8
9

10

11

12

13

14

15

17

18

19

20

21
22

23

24

25
26

27
28

293031333435
36

37
38

39
40

41

42

43

44

45

46

47

49

50

51

52

53

54
55

56
57

58
59

60
61 62 63

Δ

0

1

2

3

Introduce some redundancy in the table

q

0… 1 1… … p-1 p-1… 0 …

Δ Δ
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Bootstrapping Let’s start from step 2 (the rounding of )Δm + e

0… 1 1… … p-1 p-1… 0 …

Δm + e → ⌈ Δm + e
Δ ⌋ = m

⋅ X−(Δm+e)

m′ m′ + 1 m′ + 2 …m′ = Δm + e ∈ {0,1,…, q − 1}
0 1 2 q-1q-2…

m… … … … m …
⋅ X−(Δm)

e

m … … m ……
⋅ X−(Δm+e)
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Bootstrapping

m … … … m …V ⋅ X−(Δm+e) =

0… 1 1… … p-1 p-1… 0 …V =
⋅ X−(Δm+e)

q

Using polynomials with  or  
coefficients would be impractical!!!

q = 232 q = 264

Use instead polynomials 
with  (or a bit more) 

coefficients!
N = 210

0q

𝖫𝖲𝖡𝖬𝖲𝖡

Δ

Use only the 
MSB
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Bootstrapping

How to compute ? V ⋅ X−(Δm+e)

S′ 

s0
S′ 

sn−1…

−(Δm + e) = − b +
n−1

∑
i=0

ai ⋅ si

= − b + a0 ⋅ s0 + … + an−1 ⋅ sn−1

Vn = V ⋅ X−b+∑n−1
i=0 aisi = V ⋅ X−(Δm+e)

1 0… 1 1… … p-1 p-1… 0 …V =

V0 = V ⋅ X−b2 Rotation

0

1

V0
S′ 

S′ 

s0

⋅ Xa0V0
S′ 

V1
S′ 

V1 = V0 ⋅ Xa0s0

3

Blind 
Rotation

… 0

1

Vn−1
S′ 

S′ 

sn−1

⋅ Xan−1Vn−1
S′ 

Vn
S′ 

Vn = Vn−1 ⋅ Xan−1sn−1
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Bootstrapping

m
⃗s

Vn =
S′ 

Vn = V ⋅ X−(Δm+e)

m… … … … …

S′ 

m
⃗s′ 

Sample 
Extraction

Key Switching 
to go back to ⃗s
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Bootstrapping

m
⃗s

Vn =
S′ 

Vn = V ⋅ X−m̄′ 

f(m)… … … … f(m) …

S′ 

f(m)
⃗s′ 

Sample 
Extraction

Key Switching 
to go back to ⃗s

TFHE bootstrapping is “programmable”: evaluates a function while reducing the noise

Homomorphic LUT f(0)… f(1) f(1)… … f(p − 1) f(p − 1)… f(0) …V =



I lied a little bit… 🤥  
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m0
… m1 m1

… … m p
2 −1 m p

2 −1… −m0
… −m0

… −m1 −m1
… … −m p

2 −1 −m p
2 −1… m0

…

N N

0

16

32
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61 62 63

m0

m1

m p
2 −1

m0

−m0−m0

−m1

−m p
2 −1

⋮ ⋮

Negacyclicity

We have new solutions to  
overcome this problem 😉

em

Δ 0q



Bootstrapping
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Bootstrapping: Summary

Circuit 
Bootstrapping

Rotation

External Product 
and CMux

Sample 
Extraction

Key 
Switching

Reduces noise

Does not reduce noise

RGSW =M
S(X)

LWE ⃗a bm
⃗s

=

A BRLWE =M
S

Bj

B*jA*j

Aj
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Other features in TFHE
• How to do Gate Bootstrapping 0⃣1⃣ 

• Leveled evaluation of LUT with vertical and horizontal packing 📊 

• Evaluate deterministic (weighted) finite automata 🔗 

• Homomorphic counter TBSR 🧮 

• Circuit bootstrapping 🔋 

• New WoP-PBS ⚙ 

• And more …



Overview

• What is FHE? 

• A little bit of history  

• FHE schemes based on LWE 

• TFHE ciphertexts and operations  

• TFHE Bootstrapping  

• Implementations and applications
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Some open source implementations

There exists also some GPU implementations

FHEW

Concrete

HEAAN

HELib
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Open source implementations

TFHE: bootstrapped binary circuits 

Experimental TFHE: circuit bootstrapping (binary)

Concrete:
(programmable) bootstrapping,  
binary-integer-real encodings 
noise tracking…

More than a library
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Some applications

E-voting  

💻🗳

Machine Learning  

🧠🤖

MPC  

💁💁💁

Multi-key TFHE  

🔑🗝

Statistics over  
sensitive data  

📊📈

Blockchain 

🧱⛓



Machine Learning 
 

- Inference over encrypted data -
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Server

User
data

prediction

data prediction

Empowering machine learning with FHE

73
Data stays encrypted during all the process!  

The server learns nothing
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Machine learning applications 🧠

Many type of layers: dense, convolution, activation, pooling, etc. 
In FHE: different operations with different costs.

Neural network



y =
n

∑
i=1

xi ⋅ wi + b f(y)

x1

x2

x3

xn

⋮

fArtificial neuron 🧠

No depth limitations: 
Inference of deep NN

BGV-like: approximate with polynomial
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Homomorphic Addition 
(discretized weights)

TFHE-like: programmable bootstrapping 



Let’s be Concrete
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https://concrete.zama.ai/



Some experiments: NN-20
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NN-20

NN-20

in the clear

homomorphic

MNIST dataset

~ 100 active neurons per layer 

•CPU: PC with 2.6 GHz 6-Core Intel ® Core™ i7 processor,

•AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS

•AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

Accuracy CPU AWS AWS2

97.5% 0.17 ms 0.19 ms

97.5% 30.04 s 6.19 s 2.10 s 80 bits of security

97.1% 115.52 s 21.17 s 7.53 s 128 bits of security

[CJP21] “Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks”  
I. Chillotti, M. Joye and P. Paillier, CSCML 2021



Some experiments: NN-50
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NN-50

NN-50

in the clear

homomorphic

MNIST dataset

~ 100 active neurons per layer 

•CPU: PC with 2.6 GHz 6-Core Intel ® Core™ i7 processor,

•AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS

•AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

Accuracy CPU AWS AWS2

95.4% 0.20 ms 0.30 ms

95.1% 71.71 s 13.00 s 5.27 s 80 bits of security

94.7% 233.55 s 43.91 s 18.89 s 128 bits of security

[CJP21] “Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks”  
I. Chillotti, M. Joye and P. Paillier, CSCML 2021



Conclusion 
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What’s next in FHE?

What we learned?
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Thank you 🙏
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Q&A


