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What is FHE?

FHE = Computations over encrypted messages
* Possibly any function (“Fully”)
e Bit, integer, real messages
* Secret key and public key encryption




Where FHE Could Be Used IRL?

Health data
é Blood work .
8 Genomics m
>TDs, HIV oo Lifestyle tracking .l\;
—
Gov data
[-®-] Tax evasion m PO“C@/JUSUCG
case solving m m
Crime prevention I fg
T

Financial data
« lransaction , -
= record's 1 AML regulation f (m) “  Learns nothing about client data

2 « No data breaches
e |rrelevant server location

24 Fraud prevention Ll Investments
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A little bit of history

=

Cc— 1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

=

What happened in the meantime?

=
Cc— 2009 - Gentry: first fully homomorphic encrypton scheme




Rivest, Shamir, Adleman - 1977

Security

Partially homomorphic .
An example: RSA

factoring problem

 Select two large primes: p \#(g
» Compute:n=p - gandigp(n)=(p—1)(g—1)
 Chose: e such that

e 1 <e < pn)

e ¢ and @(n) coprimes a
. Compute: d=e~! mod ¢(n)

Encryption: m — ¢ = m°® mod n Multiplicative Homomorphic

€
ci =m; mod n
: ciCy=(my;-m,)° mod n

d

—_ €
¢, =m, mod n

Decryption: c — m = ¢¢ mod n




A little bit of history

1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

Partially Homomorphic: RSA, ElIGamal, Palillier, Goldwasser-Micali, ...
Somewhat Homomorphic: Boneh, Goh and Nissim (2005), ...
Leveled Homomorphic: ... '

2009 - Gentry: first fully homomorphic encrypton scheme

I 0|




-
A world full of noise

An example: DGHV

Security

Approximate GCD
problem

. e {0,1} message
e p € / large odd secret

e ( € /Z way larger than p

« ¢ € /Z way smaller than p, called noise

Encryption: /1 — ¢ = p +2¢ +
Decryption: c — /77 = (¢ mod p) mod 2

10



A world full of noise %
An example: DGHV

Cl — pQI + 2€1+m1 C2 — qu + 2€2+m2

Noise grows too much % = decryption incorrect ¥
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Noise grows too much % = decryption incorrect ¥
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Bootstrapping [Gen09]

bootstrapping key
(public)
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To bootstrap or not to bootstrap?

X Circuit
Your circuit is small and known Your circuit is deep or unknown
Leveled approach Bootstrapped approach
* The largest the circuit, the largest the crypto * No depth limitations
parameters, the slowest the evaluation » Bootstrap when needed
e Circuit depth must be known in advance
bootstrapping
- ok -

14



A timeline of ~40 years

2009

NTRU
branch

fast bootstrapping
branch

~30 years 2012

paral e (|

!ﬁ leveled schemes
branch

15
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ng Wi
Learning With Errors (LWE)

RLWE - “LWE over the Rings”
2009 - Stehle, Steinfeld, Tanaka, Xagawa
. Set a secret (s, ..., 5, ;) € Z" 2010 - Lyubashevsky, Peikert, Regev

- Choose random elements (ay, ..., a,_1) € Z;

n+1
. Choose a little random element e € Z g (Gaussian) Call (CZO» ey Ay 1, b) € Zq LWE sample

» Compute b = Zai-sl-+e € Zq
i=0

Decisional Problem Computational Problem

Given many LWE samples: (qy, ..., a,_;,b) € Z”Jrl Given many LWE samples: (d, ...,a,_{,b) € Z”Jrl
Given many random samples: (a,, ..., JU) E Z”“ i
4 ples: (dy, ..., a1, 1) Hard to retrieve the secret
Hard to distinguish them! (Sgs ---»8,_1) € Z™

17



LWE encryption (in the MSB)

Examples:

B/FV, CKKS, TFHE

Message m & Zp — Ciphertext in ZZH

T )b
(a()a N/ 1919) where

\.ﬁ,-/

aiFZC]

(Sgs -+ 8,_1) € 10,1}"

uniform random

1 W-C_@ J-s=Am+e ° [—

H—
b=2ai-si+e+AmF7q

o

(Gaussian

18



LWE encryption (in the MSB)

Am + e
A

Why this works? l

[ —n

m €

MSBqlllllllA[]{ I ]llllllllllllllllllo

mEZp le| < A/2
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LWE encryption (in the LSB)

Examples: BGV

Message m & Zp — Ciphertext in ZZH

T )b
(a()a N/ 1919) where

\.ﬁ,-/

aiFZC]

(Sgs -+ 8,_1) € 10,1}"

uniform random

1—
b=zai°Si+p°€+WLF7q

T

(Gaussian

1 W-C_a@ J-s=p-etm 2 pre+m modp—m

20



LWE encryption (in the LSB)

Why thisworks? p-e+m mod p — m

€ m

SEEEEE0EEEEEEEREEEENENENNE =
P 0
m e Zp

wse (U
q

21



We will focus on MSB schemes

22



LWE homomorphic properties

+ | ™

5 S
)
Small constant ® m
multiplication —
()

Yy -m
Cra )

2]
° +
!
H
l &
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LWE public key encryption

Message m & Zp — Ciphertext in Z’;“
E = (Sg, ---»5,_1) € {0,1}"

Small r*andom P K

v T +

Encryptions of O

e (_ap )0 + where by = ;.

v (@ OB +

(e Am+e) —|—

oo = [ s

s+e€”Z,

'

(Gaussian

24



RLWE encryption (in the MSB)

2
Message M & ZP[X]/(XN+ 1) — Ciphertext in (ZQ[X]/(XN+ 1))

A B
M — (A, B) where B=A-S+Z[+AM€ Zq[X]/(XN+1)
So+ S X+ ...+ Sy_ X1 Ag+A X+ ... +A,_ XV .-
5; € {0,1} A. € Z_uniform random Eo+ By + ..+ By &
l 9 E; Gaussian
AM + E
1 B T A ¢ — AM‘I‘ E 2 T — M

25



RLWE encryption (in the MSB)

AM+ E
A

Why this works? [ ] — M

SNLEEE GG ess X4+ + CfUeee

Amg + e Am; + e, Amy_1 + en_;

le.| < A/2

XN—I

260



RLWE homomorphic properties

M54 M

Small constant ® M
polynomial multiplication

M+ M

A+A B+B

21



RLWE public key encryption

2
Message M & Zp[X]/(XN+ 1) — Ciphertext in (Zq[X]/(XN+ 1))

=Sy +S X+ ...+ Sy_ X1
S, € 10,1}

A single encryption of 0

Small random

polynomial
v
where B=A-S+Ee Z [X]/(X"+1)
R - Apk Bpk _I_ ‘
E,+EX+..+Ey XV
(EA’ AM + EB) _l_ : EilGaussian |
A b — M

28



What if we want to multiply for
a large constant?

29



RLWE homomorphic properties

large (order of g)

e M s o= )]

qlllllllAEIII:I:I:I:]DE[UEDDDIIIIIIIIIIO qllllll?llllllllllllllllllllllllo
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RLWE homomorphic properties

Decompose with respect to a
small base (e.g., / = 2)

| -
' — A

o : —— M }/lﬂ 3
]

I -
.' e v 4|5 -
[ — Rwy ]

i 4 }/ * M X

]
]
]
: a
C: e M %fﬁ -
|
qlllllllAUIlIlIUI[[[m.lllllllllO qlllllllAIIUIlIUI[DlllllllllllllO qlllllllAEIIlI]llllllllllllllllllllo
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Two ways of doing
multiplication between ciphertexts

- GSW -

32



RGSW

20X2
Message M & Zp[X]/(XN+ 1) — Ciphertext in (ZQ[X]/(XN+ 1))

g
BY = A% .S+ Exi M- L
J J J IBJ

i=1,....¢




RGSW
polynoma st

Small constant
polynomial multiplication

34



RGSW

1 - Decompose : Decomp(ﬁ,f)(
Decomp, Lﬂ)(

2 - Matrix dot-product:

M-M

35



Two ways of doing
multiplication between ciphertexts

- BGV -

36



RLWE multiplication (BGV style)

|
Input: two RLWE ciphertexts l
M2
@ Tensor product: C; @ C, = T
1A A, [ A -By+A,-B ]
T = A =
A _ A

Encrypted under the secret key

A

37



RLWE multiplication (BGV style)

(2) Relinearization: switching the key

C1®C2= T A B

A B

S

A’ B’

MI‘MZ

38



How to deal with noise?

39



Bootstrapping

1 bootstrapping key

¥

Bootstrapping

2009 - Gentry

Generally

slow for BGV like
schemes

40



Bootstrapping

1 bootstrapping key

@J

Bootstrapping

2009 - Gentry

Fast in GSW like

schemes

41
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A timeline of ~40 years

2009 NTRU
branch
~30 years 2012 fast bootstrapping
paralHE |
2020
\ L 2011
= J ) 2012
2010
1 978 !ﬁ leveled schemes
branch

“over the integers” branch
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Ciphertexts: Summary

=@

v |l=c"a

Aj .
e SO ED
AF

B

Addition
Constant multiplication

Addition
Constant multiplication

Addition
Constant multiplication

Multiplication

44



LWE

g =64 = 26
p=4=2°
A=L—16=2
P
MSB..K—\
N/
q . , A
M = {0,1,2,3)

Encode(m) = Am

In practice: ¢ = 232 or g = 2%

m =3 1
Example: Am = 48

e =15

45



RLWE
AM + E with {

M=M,+MX+ ...+ My XN
E=E,+EX+...+Ey X"!

DO eee _ 0

AM, + L, AM, + E, AMy_ + En_4

_ 0

46



External Product

RLWE x RGSW
A B
1-Decompose @ M | : Decomp , A A B )

2 - Vector-matrix dot-product:

C— O C—

Decomp(ﬁf)( M )

Decomp 5.0) (A)

Decomp(ﬂf) (B)

47



CMux

Controlled Mux

(dl—d())‘b‘l‘d():db

( d | —| 4, )@+ dy

External
Product

48



Rotation

MX)=My+MX+ .. +M X +... +My_ X" v

MX)-XP=MA+M, X+ ...+ My_ X" P = MX P — . —M,_ XN

Rotate an encrypted polynomial M of p positions

M X P = M- X7

A B . X P = A-X7P B- X7

49



Blind Rotation

Rotate an encrypted polynomial M of p encrypted positions

p=py-2°+ .. 4p2+...+p. - 2*

/N

Secret Known
Constant

M- XP=M- X_Po‘zo—...—pJQj—,,,—pk.zk
M- X2, X

M - X‘szj

50



Blind Rotation

Rotate an encrypted polynomial M of p encrypted positions

p=py-2°+..+p, -2

51



Sample Extraction

A B

RLWE M

M+M X + ...+ M,_ XN (Ag+A X+ ... +Ay_ X" LBy+ B X+ ... + By_ X" ")

i = — Ayn_q
- 7O -
_
an—l__Al

[E):(S(): !"'5Sn_1= ) szO

l I = All the other coefficients can be
extracted in a similar way 59



EVERY KEY SWITCHING...
Needs a key-switching key

Key Switching

Used to switch the key

Used to switch the parameters

- Can be used to evaluate a very
LWE to LWE - regular function (public or private)

Increases the noise

M E— M

RLWE to RLWE >

— M M=m-.X
LWE to RLWE

o I A B

m, o o o Mpy_1 —_— M M:Zml.-X’

many-LWE to 1-RLWE i=0
C & ey (a0, A B 53



Building Blocks: Summary

=@

M| = s b

A; b;
= L CEOCED

Rotation

Sample
Extraction

External Product
and CMux

Key
Switching

54
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Bootstrapping
Original goal: reduce the noise when it grows too much

In TFHE, we can bootstrap LWE ciphertexts = a )b

{@ b—gai-si=Am+e
@ [25]-n

To bootstrap, we need to evaluate the decryption:

56



Bootstrapping

m e {0,1,..., p—1}

m =Am+e € {0,1,...,g— 1}

Let’s start from step 2 (the rounding of Am + ¢)

@E]@ ¢ o o - X
e - OO

@@@ ° o o . Y —(Am+e)
0 ) N o

57



Let’s start from step 2 (the rounding of Am + ¢)

A

Bootstrapping

Introduce some redundancy in the table

A A

58



Bootstrapping

m =Am+e € {0,1,...,qg— 1}

Let’s start from step 2 (the rounding of Am + ¢)

@@@ ¢ o o . Y —(Am+e)
-+ (O3 «J

59



Bootstrapping

Using polynomials with ¢ = 2°? or g =
coefficients would be impractical!!!

264

Use instead polynomials
with N = 219 (or a bit more)

coefficients!

)




Bootstrapping

n—1
—(Am +e) = —b+zai.sl.
(Am+e)n 0

—b+ay-sg+ ... +a, ;s

n—1

How to compute V - X~

@ Vo=V - X" — oo

Blind
Rotation
0

61



Bootstrapping

Key SW|tch|ng
to go back to s

62



Bootstrapplng

63



| ied a little bit...

64



We have new solutions to
overcome this problem &




Bootstrapping: Summary

Bootstrapping

n | =C T Ow

Sample Key
Extraction Switching

Circuit
Bootstrapping

External Product
and CMux

Rotation

|
N
S

RLWE M

A; b;

Reduces noise

Does not reduce noise




Other features in TFHE

* How to do Gate Bootstrapping

 Leveled evaluation of LUT with vertical and horizontal packing ul

)

« Evaluate deterministic (weighted) finite automata &’

« Homomorphic counter TBSR
« Circuit bootstrapping £
 New WoP-PBS ©

e And more ...

6/
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Some open source implementations

HEAAN @ JLATTI
= Microsoft . : |

HELib | e |
SEAL S PALISADE

Concrete

There exists also some GPU implementations a0



Open source implementations

‘ TFHE: bootstrapped binary circuits
Experimental TFHE: circuit bootstrapping (binary)

) ) ] (programmable) bootstrapping,
. Concrete: | binary-integer-real encodings
. . l noise tracking...

More than a library

70



Some applications

Multi-key TFHE

PE

Statistics over

Blockchain

S i

sensitive data Machine Learning

al ~

/1



Machine Learning

- Inference over encrypted data -

/2



Empowering machine learning with FHE

6? data |}
User o /4
A\\I/A
y ) RSAS )
b

—

prediction }
0O
Data stays encrypted during all the process!
The server learns nothing

/3



Machine learning applications <«

Neural network

Many type of layers: dense, convolution, activation, pooling, etc.
In FHE: different operations with different costs.

74



Artificial neuron <«

Homomorphic Addition
(discretized weights)

(

/
)

l

2.0
1.5+ /
f 1.0F — max(0, X)

I sgn(x)
0.5 r

a(x)
tanh(x)

~1.0+

No depth limitations:

Inference of deep NN

BGV-like: approximate with polynomial

TFHE-like: programmable bootstrapping

lfs



Let’s be Concrete

https://concrete.zama.ai/

/6



Some experiments: NN-20

[CJP21] “Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks”
|. Chillotti, M. Joye and P. Paillier, CSCML 2021

MNIST dataset

in the clear Accuracy CPU AWS AWS2
NN-20 97.5%  0.17ms  0.19 ms
97.5% 30.04 s 6.19 s 2.10 s 80 bits of security
NN-20
97.1% 115.52 s 21.17 s /.53 s 128 bits of security

homomorphic

~ 100 active neurons per layer

-
 CPU: PC with 2.6 GHz 6-Core Intel ® Core™ i7 processor,
« AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS
. e AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

~

J
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Some experiments: NN-50

[CJP21] “Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks”
|. Chillotti, M. Joye and P. Paillier, CSCML 2021

in the clear Accuracy CPU AWS AWS?2
NN-50 95.4%  020ms  0.30 ms

95.1% 71.71s 13.00 s 5.27's

NN-50

homomorphic

~ 100 active neurons per layer

MNIST dataset

80 bits of security

94.7%  233.55s 43.91 s 18.89 s 128 bits of security

-
 CPU: PC with 2.6 GHz 6-Core Intel ® Core™ i7 processor,
« AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS
. e AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

~

J
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Conclusion

What we learned?

What’s next in FHE?

79
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Thank you ..,

Q&A
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