ZAIVIA

Introduction to FHE and the TFHE scheme

Ilaria Chillotti

Overview

- What is FHE?
- A little bit of history
- FHE schemes based on LWE
- TFHE ciphertexts and operations
- TFHE Bootstrapping
- Implementations and applications

Overview

- What is FHE?
- A little bit of history
- FHE schemes based on LWE
- TFHE ciphertexts and operations
- TFHE Bootstrapping
- Implementations and applications

What is FHE?

FHE = Computations over encrypted messages

- Possibly any function ("Fully")
- Bit, integer, real messages
- Secret key and public key encryption

Where FHE Could Be Used IRL?

Overview

- What is FHE?
- A little bit of history
- FHE schemes based on LWE
- TFHE ciphertexts and operations
- TFHE Bootstrapping
- Implementations and applications

A little bit of history

1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

2009 - Gentry: first fully homomorphic encrypton scheme

Partially homomorphic
 An example: RSA

- Select two large primes: $p \neq q$
- Compute: $n=p \cdot q$ and $\varphi(n)=(p-1)(q-1)$

Secret

- Chose: e such that
- $1<e<\varphi(n)$
- e and $\varphi(n)$ coprimes
- Compute: $d=e^{-1} \bmod \varphi(n)$

Encryption: $m \longmapsto c=m^{e} \bmod n$

Decryption: $c \longmapsto m=c^{d} \bmod n$

Multiplicative Homomorphic

$$
\left.\begin{array}{l}
c_{1}=m_{1}^{e} \bmod n \\
c_{2}=m_{2}^{e} \bmod n
\end{array}\right\} \quad c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod n
$$

A little bit of history

1978 - Rivest, Adleman and Dertouzos: talk about privacy homomorphisms

Partially Homomorphic: RSA, EIGamal, Paillier, Goldwasser-Micali, ... Somewhat Homomorphic: Boneh, Goh and Nissim (2005), ... Leveled Homomorphic: ..

2009 - Gentry: first fully homomorphic encrypton scheme

A world full of noise

An example: DGHV

- $m \in\{0,1\}$ message
- $p \in \mathbb{Z}$ large odd secret
- $q \in \mathbb{Z}$ way larger than p
- $e \in \mathbb{Z}$ way smaller than p, called noise

$$
\text { Encryption: } m \longmapsto c=p q+2 e+m
$$

Decryption: $c \longmapsto m=(c \bmod p) \bmod 2$

A world full of noise

An example: DGHV

$$
c_{1}=p q_{1}+2 e_{1}+m_{1} \quad c_{2}=p q_{2}+2 e_{2}+m_{2}
$$

Homomorphic addition (XOR)

Homomorphic multiplication (AND)

$$
c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+2 \cdot\left(e_{1}+e_{2}\right)+m_{1}+m_{2}
$$

$$
c_{1} \cdot c_{2}=p \cdot\left(p q_{1} q_{2}+\ldots\right)+2 \cdot\left(2 e_{1} e_{2}+\ldots\right)+m_{1} m_{2}
$$

Noise grows too much ठ \Rightarrow decryption incorrect *

Noise

Noise grows too much $>\Rightarrow$ decryption incorrect ©

Bootstrapping [Gen09]

To bootstrap or not to bootstrap?

Your circuit is small and known

Leveled approach

Bootstrapped approach

- The largest the circuit, the largest the crypto parameters, the slowest the evaluation
- Circuit depth must be known in advance
- No depth limitations
- Bootstrap when needed

A timeline of ~ 40 years

Overview

- What is FHE?
- A little bit of history
- FHE schemes based on LWE
- TFHE ciphertexts and operations
- TFHE Bootstrapping
- Implementations and applications

- Set a secret $\left(s_{0}, \ldots, s_{n-1}\right) \in \mathbb{Z}^{n}$
- Choose random elements $\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}_{q}^{n}$
- Choose a little random element $e \in \mathbb{Z}_{q}$ (Gaussian)
- Compute $b=\sum_{i=0}^{n-1} a_{i} \cdot s_{i}+e \in \mathbb{Z}_{q}$

2005 - Regev: hard problem on lattices

RLWE - "LWE over the Rings"
2009 - Stehlé, Steinfeld, Tanaka, Xagawa
2010 - Lyubashevsky, Peikert, Regev

Call $\left(a_{0}, \ldots, a_{n-1}, b\right) \in \mathbb{Z}_{q}^{n+1}$ LWE sample

Decisional Problem

Given many LWE samples: $\left(a_{0}, \ldots, a_{n-1}, b\right) \in \mathbb{Z}_{q}^{n+1}$ Given many random samples: $\left(a_{0}, \ldots, a_{n-1}, u\right) \in \mathbb{Z}_{q}^{n+1}$

Hard to distinguish them!

Computational Problem

Given many LWE samples: $\left(a_{0}, \ldots, a_{n-1}, b\right) \in \mathbb{Z}_{q}^{n+1}$
Hard to retrieve the secret

$$
\left(s_{0}, \ldots, s_{n-1}\right) \in \mathbb{Z}^{n}!
$$

LWE encryption (in the MSB)

Message $m \in \mathbb{Z}_{p} \longrightarrow$ Ciphertext in \mathbb{Z}_{q}^{n+1}

Decryption

1 (b) $\vec{a} \cdot \vec{s}=\Delta m+e$
2

LWE encryption (in the MSB)

$$
\text { Why this works? } \quad\left\lfloor\frac{\Delta m+e}{\Delta}\right\rceil \rightarrow m
$$

LWE encryption (in the LSB)

Message $m \in \mathbb{Z}_{p} \longrightarrow$ Ciphertext in \mathbb{Z}_{q}^{n+1}

Decryption
(b) $\vec{a} \cdot \vec{s}=p \cdot e+m \quad 2 \quad p \cdot e+m \bmod p \rightarrow m$

LWE encryption (in the LSB)

We will focus on MSB schemes

LWE homomorphic properties

LWE public key encryption

$$
\text { Message } m \in \mathbb{Z}_{p} \longrightarrow \text { Ciphertext in } \mathbb{Z}_{q}^{n+1}
$$

$$
\vec{S}=\left(s_{0}, \ldots, s_{n-1}\right) \in\{0,1\}^{n}
$$

RLWE encryption (in the MSB)

Message $M \in \mathbb{Z}_{p}[X] /\left(X^{N}+1\right) \longrightarrow$ Ciphertext in $\left(\mathbb{Z}_{q}[X] /\left(X^{N}+1\right)\right)^{2}$

RLWE encryption (in the MSB)

$$
\text { Why this works? } \quad\left[\frac{\Delta M+E}{\Delta}\right\rceil \rightarrow M
$$

RLWE homomorphic properties

RLWE public key encryption

$$
\text { Message } M \in \mathbb{Z}_{p}[X] /\left(X^{N}+1\right) \longrightarrow \text { Ciphertext in }\left(\mathbb{Z}_{q}[X] /\left(X^{N}+1\right)\right)^{2}
$$

$$
\begin{gathered}
S=S_{0}+S_{1} X+\ldots+S_{N-1} X^{N-1} \\
S_{i} \in\{0,1\}
\end{gathered}
$$

What if we want to multiply for a large constant?

RLWE homomorphic properties

RLWE homomorphic properties

Decompose with respect to a small base (e.g., $\beta=2$)

$$
\gamma=\gamma_{1} \frac{q}{\beta}+\gamma_{1} \frac{q}{\beta^{2}}+\ldots+\gamma_{\ell} \frac{q}{\beta^{\ell}}
$$

Two ways of doing multiplication between ciphertexts

- GSW -

RGSW

$$
\text { Message } M \in \mathbb{Z}_{p}[X] /\left(X^{N}+1\right) \longrightarrow \text { Ciphertext in }\left(\mathbb{Z}_{q}[X] /\left(X^{N}+1\right)\right)^{2 \ell \times 2}
$$

RGSW

RGSW

Multplication

2 - Matrix dot-product:

Two ways of doing multiplication between ciphertexts

- BGV -

RLWE multiplication (BGV style)

(1) Tensor product: $C_{1} \otimes C_{2}=T \quad A$

$$
T=\left[\left\lfloor\frac{A_{1} \cdot A_{2}}{\Delta}\right\rceil\right]_{q} \quad A=\left[\left\lfloor\frac{A_{1} \cdot B_{2}+A_{2} \cdot B_{1}}{\Delta}\right\rceil\right]_{q} \quad B=\left[\left\lfloor\frac{B_{1} \cdot B_{2}}{\Delta}\right\rceil\right]_{q}
$$

RLWE multiplication (BGV style)

(2) Relinearization: switching the key

$$
C_{1} \otimes C_{2}=T \quad A \quad B
$$

How to deal with noise?

Bootstrapping

2009 - Gentry

Bootstrapping

2009 - Gentry

Overview

- What is FHE?
- A little bit of history
- FHE schemes based on LWE
- TFHE ciphertexts and operations
- TFHE Bootstrapping
- Implementations and applications

A timeline of ~ 40 years

Ciphertexts: Summary

LWE

$$
\left\{\begin{array}{l}
q=64=2^{6} \\
p=4=2^{2} \\
\Delta=\frac{q}{p}=16=2^{4}
\end{array}\right.
$$

$$
\text { In practice: } q=2^{32} \text { or } q=2^{64}
$$

Encoding ${ }^{\circ}$

$\mathscr{M}=\{0,1,2,3\}$
$\operatorname{Encode}(m)=\Delta m$

$$
|e|<\frac{\Delta}{2}=8=2^{3}
$$

Example: $\Delta m=48$

$$
e=5
$$

110101
$\Delta m+e=53$

RLWE

Encoding
$\Delta M+E$ with $\left\{\begin{array}{l}M=M_{0}+M_{1} X+\ldots+M_{N-1} X^{N-1} \\ E=E_{0}+E_{1} X+\ldots+E_{N-1} X^{N-1}\end{array}\right.$

External Product

2 - Vector-matrix dot-product:

CMux

Controlled Mux

Rotation

Rotate a polynomial M of p positions

$$
\cdot X^{-p}\left\{\begin{array}{l}
M(X)=M_{0}+M_{1} X+\ldots+M_{p} X^{p}+\ldots+M_{N-1} X^{N-1} \\
M(X) \cdot X^{-p}=M_{p}+M_{p+1} X+\ldots+M_{N-1} X^{N-p-1}-M_{0} X^{N-p}-\ldots-M_{p-1} X^{N-1}
\end{array}\right.
$$

Rotate an encrypted polynomial M of p positions

A
B -
$\cdot X^{-p}=A \cdot X^{-p}$
$B \cdot X^{-p}$

Blind Rotation

Rotate an encrypted polynomial M of p encrypted positions

$$
\begin{aligned}
M \cdot X^{-p} & =M \cdot X^{-p_{0} \cdot 2^{0}-\ldots-p_{j} 2^{j}-\ldots-p_{k} \cdot 2^{k}} \\
& =M \cdot X^{-p_{0} \cdot 2^{0}} \cdot \ldots \cdot X^{-p_{j} 2^{j}} \cdot \ldots \cdot X^{-p_{k} \cdot 2^{k}}
\end{aligned}
$$

$\begin{array}{ll}M \cdot X^{-p_{j}^{2}}\end{array}= \begin{cases}M & \text { if } p_{j}=0 \\ M \cdot X^{-2^{j}} & \text { if } p_{j}=1\end{cases}$

Blind Rotation

Rotate an encrypted polynomial M of p encrypted positions

$$
p=p_{0} \cdot 2^{0}+\ldots+p_{k} \cdot 2^{k}
$$

Sample Extraction

$$
S=S_{0}+S_{1} X+\ldots+S_{N-1} X^{N-1}
$$

$$
\int \vec{S}=\left(S_{0}=S_{0}, \ldots, S_{n-1}=S_{N-1}\right)
$$

$$
n=N
$$

Key Switching


```
    many-LWE to 1-RLWE
```


Building Blocks: Summary

Overview

- What is FHE?
- A little bit of history
- FHE schemes based on LWE
- TFHE ciphertexts and operations
- TFHE Bootstrapping
- Implementations and applications

Bootstrapping

Original goal: reduce the noise when it grows too much

In TFHE, we can bootstrap LWE ciphertexts

Bootstrapping

Let's start from step 2 (the rounding of $\Delta m+e$)

$$
m \in\{0,1, \ldots, p-1\}
$$

$$
\begin{array}{ll}
m^{\prime}=\Delta m+e \in\{0,1, \ldots, q-1\} & \left.\begin{array}{r}
0 \\
\hline
\end{array}\right) \cdot X^{-}(\Delta m+e)
\end{array}
$$

Bootstrapping

Introduce some redundancy in the table

Bootstrapping

Let's start from step 2 (the rounding of $\Delta m+e$)

$$
\Delta m+e \rightarrow\left\lceil\frac{\Delta m+e}{\Delta}\right\rfloor=m
$$

$$
000000
$$

$$
0000
$$

$$
\square \square \square \square \square \square \square
$$

$$
\begin{aligned}
& m^{\prime}=\Delta m+e \in\{0,1, \ldots, q-1\} \\
& m^{\prime} m^{\prime}+1 m^{\prime}+2 \bullet \bullet \square \square
\end{aligned}
$$

Bootstrapping

Bootstrapping

How to compute $V \cdot X^{-(\Delta m+e)}$?

$$
\begin{aligned}
&-(\Delta m+e)=-b+\sum_{i=0}^{n-1} a_{i} \cdot s_{i} \\
&=-b^{2}+a_{0} \cdot s_{0}+\ldots+a_{n-1} \cdot s_{n-1} \\
& \hline \ldots \ldots .
\end{aligned}
$$

(2) $V_{0}=V \cdot X^{-b}$

Rotation

3

Bootstrapping

Bootstrapping

TFHE bootstrapping is "programmable": evaluates a function while reducing the noise

I lied a little bit...

Negacyclicity

We have new solutions to overcome this problem $;$

Bootstrapping: Summary

Other features in TFHE

- How to do Gate Bootstrapping 01
- Leveled evaluation of LUT with vertical and horizontal packing ill
- Evaluate deterministic (weighted) finite automata θ
- Homomorphic counter TBSR 漛
- Circuit bootstrapping
- New WoP-PBS
- And more ...

Overview

- What is FHE?
- A little bit of history
- FHE schemes based on LWE
- TFHE ciphertexts and operations
- TFHE Bootstrapping
- Implementations and applications

Some open source implementations

FHEW

HELib

LATTIGO

 PALISADE

There exists also some GPU implementations

Open source implementations

TFHE: bootstrapped binary circuits Experimental TFHE: circuit bootstrapping (binary)

Concrete: $\left\{\begin{array}{l}\text { (programmable) bootstrapping, } \\ \text { binary-integer-real encodings } \\ \text { noise tracking... }\end{array}\right.$

More than a library

Some applications

E-voting

MPC

Blockchain

Statistics over sensitive data IIIN

Machine Learning

Machine Learning

- Inference over encrypted data -

Empowering machine learning with FHE

Machine learning applications

Neural network

Many type of layers: dense, convolution, activation, pooling, etc.
In FHE: different operations with different costs.

Artificial neuron

Let's be Concrete

https://concrete.zama.ai/

Some experiments: NN-20
 [CJP21] "Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks"

 . Chillotti, M. Joye and P. Paillier, CSCML 2021in the clear

homomorphic

Accuracy	CPU	AWS	AWS2	
97.5%	0.17 ms	0.19 ms		
97.5%	30.04 s	6.19 s	2.10 s	80 bits of security
97.1%	115.52 s	21.17 s	7.53 s	128 bits of security

100 active neurons per layer

- CPU: PC with 2.6 GHz 6 -Core Intel \circledR^{\circledR} Core $^{\text {TM }}$ i7 processor,
-AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS
- AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

Some experiments: NN-50

[CJP21] "Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks" . Chillotti, M. Joye and P. Paillier, CSCML 2021
in the clear

NN-50
NN-50

homomorphic

Accuracy	CPU	AWS	AWS2	
95.4%	0.20 ms	0.30 ms		
95.1%	71.71 s	13.00 s	5.27 s	80 bits of security
94.7%	233.55 s	43.91 s	18.89 s	128 bits of security

100 active neurons per layer

- CPU: PC with 2.6 GHz 6 -Core Intel \circledR^{\circledR} Core $^{\text {TM }}$ i7 processor,
-AWS: a 3.00 GHz Intel ® Xeon ® Platinum 8275CL processor with 96 vCPUs hosted on AWS
- AWS2: as above but with 8 NVIDIA ® A100 Tensor Core GPUs

Conclusion

What's next in FHE?

Bibliography

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005.
[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. Efficient public key encryption based on ideal lattices. ASIACRYPT 2009.
[LPR10] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. EUROCRYPT 2010.
[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009.
[RAD78] R. L. Rivest, L. Adleman, M. L. Dertouzos. On data banks and privacy homomorphisms. Foundations of secure computation 1978.
[DGHV10] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan. Fully homomorphic encryption over the integers. EUROCRYPT 2010.
[BGV12] Z. Brakerski, C. Gentry, V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. ITCS 2012.
[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. CRYPTO 2012.
[FV12] J. Fan, F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012.
[CKKS17] J. H. Cheon, A. Kim, M. Kim, Y. Song. Homomorphic encryption for arithmetic of approximate numbers. ASIACRYPT 2017.
[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attributebased. CRYPTO 2013.
[DM15] L. Ducas, D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. EUROCRYPT 2015.
[CGGI16] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. ASIACRYPT 2016.
[CGGI17] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE. ASIACRYPT 2017.
[CGGI20] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. TFHE: Fast Fully Homomorphic Encryption over the Torus. Journal of Cryptology 2020.

Thank you d

Q\&A

