On metric dimension of circulant graphs

Martin Knor

Slovak University of Technology

Abstract

Let G be a graph and let W be a subset of vertices of V(G). If for every $u, v \in V(G)$ there is $w \in W$ such that $dist(w, u) \neq dist(w, v)$, then the set W is resolvable. The metric dimension of G is the cardinality of a minimum resolvable set.

The circulant graph $C_n(1, 2, ..., t)$ is the Cayley graph $\operatorname{Cay}(\mathbb{Z}_n, \{\pm 1, \pm 2, ..., \pm t\})$. We prove that the metric dimension of $C_n(1, 2, ..., t)$ is at least $\lceil \frac{2t}{3} \rceil + 1$ and we completely determine the cases when equality is attained.