On metric dimension of circulant graphs

Martin Knor
Slovak University of Technology

Abstract

Let G be a graph and let W be a subset of vertices of $V(G)$. If for every $u, v \in V(G)$ there is $w \in W$ such that $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$, then the set W is resolvable. The metric dimension of G is the cardinality of a minimum resolvable set.

The circulant graph $C_{n}(1,2, \ldots, t)$ is the Cayley graph Cay $\left(\mathbb{Z}_{n},\{ \pm 1, \pm 2, \ldots, \pm t\}\right)$. We prove that the metric dimension of $C_{n}(1,2, \ldots, t)$ is at least $\left\lceil\frac{2 t}{3}\right\rceil+1$ and we completely determine the cases when equality is attained.

