THE POPULARITY GAP

ILYA SHKREDOV

Suppose that $\$ \mathrm{~A} \$$ is a finite, nonempty subset of a cyclic group of either infinite or prime order. We show that if the difference set $\$ \mathrm{~A}-\mathrm{A} \$$ is " not too large", then there is a nonzero group element with at least as many as $\$(2+o(1))|A|^{\wedge} 2 /|A-A| \$$ representations as a difference of two elements of $\$ A \$$; that is, the second largest number of representations is, essentially, twice the average. Here the coefficient $\$ 2 \$$ is best possible.

