Gauge Fields in Arithmetic, Topdogy \& Physics
ICMS, Edinburgh
Banach Algebraic Geometry

- Oren Ben-Bacsacat Artides Preprits conversations with Kobi Kramnizer Jack Kelly
Goals and others

1) Find common language for different flavors of (derived) geometry
2) Find applications to arithmetic and the other tais of this work shop?!

Higher Category Viewpoint on Geometry Toén and Vezossi, Lurie.

Raksit merged these to some extent
$e=$ stable presentable symmetric monoidal ∞-category, \otimes
$\left(C_{\geq 0}, e_{00}\right)$ a compatible
t-structure: $e_{\leq 0}$ closed under filtered colimits
the unit object of e lies in $e_{\geq 0}$ $e_{\geq 0} e_{\geq 0}^{\geq 0} \subseteq e_{\geq 0}$
$e^{\infty} \subseteq e \Omega$ a full spmmetic monvild closed under finite caproducts in subdedesn C whose objects form cempordpriedne generders. Some technical conditions

There are actually two notions of algebra objects relive to e!
CAte and DAg ge
However they agree when e ling over a fid of characteristic zero.
Let Affe be the opposite cotegasy of are of the above. What kind of topoligies can we define on Affe?

$$
A \in C A g_{e} \circ \text { DA Ge }
$$

i) Zankki Topology $f_{1, \cdots \sim} f_{n} \in A$ generate
the unit ideal
covers $A \rightarrow A_{f_{1}} x \cdots \times A_{f_{n}}$
$A \Rightarrow A^{2}$ is flot/fathaty, if it

$$
\pi_{i}(B) \simeq \pi_{0}(B) \otimes \pi_{i}(A)
$$

2) faithfully topology
$A \rightarrow B$
is an epimorphism if $B \not A B \simeq B$
3) Monomophirom topology

$$
A \rightarrow A_{1} x-x A_{n}=B
$$

where $A \rightarrow A_{i}$ is an epimophicon
and $M \sim 0 \Leftrightarrow M \notin B \sim 0$
Det (Bhat)
$A \rightarrow B$ is weach étale if it is flat and

$$
\begin{aligned}
& B O B \\
& b_{B}
\end{aligned} \text { is flat }
$$

Frithfally Py, Gar Covers, Mor Mon
FlatCores $\geq \underset{\substack{\text { flat } \\ \text { oth }}}{\substack{\text { étale } \\ \text { cosers }}}$ III
W) covery a II
covers
Examphes

$$
\begin{aligned}
& \text { 1) } C=M_{\mathbb{2}}{ }_{2}^{\otimes D} \text { (e.g. as complexes) } \\
& C=M_{R} \stackrel{\propto}{R} \text { for a uning } R
\end{aligned}
$$

As algebraic examples
\longrightarrow Derived Alg. Geometry

In terms of analytic and smooth geometry we will be dealing with larger rings and so we want to consider them as rings with either

We need to do this for formulae like $\theta(x \times y)=O(x) \hat{Q}(y)$

Fix a Banach ring R $e \cdot g \cdot \mathbb{Z}, \mathbb{Z}_{p}, \mathbb{R}, Q_{p}, k\left\langle\frac{x}{r}\right\rangle$ for k nanarchimedean
$\mathbb{C}((t))$ etc.

1) Consider the monpidal Ban R \hat{R}. of complete normal and bounded R-linear R-modules, manas is not closed under infinite limits and colimits which arrive in functional andusis
2) Acjo coin formal filtered colimits soobjeds are written

$$
V=" c \operatorname{dim}_{i \in I} " V_{i}, W={ }^{" c} \operatorname{cim}_{j \in J}{ }^{\prime} W_{j}
$$

Categorical operations extend

$$
\begin{aligned}
& V \underset{R}{\hat{\otimes}} W="_{(i, j) \in I \times J} \operatorname{colim}_{i} V_{R}{\underset{Q}{j}}^{\hat{Q}} W_{j}
\end{aligned}
$$

closed symmetric mondidal structure $\operatorname{Hfom}_{R}(V, W)$ defined similarly.
Definition:
strict if

$$
\operatorname{cok}(\operatorname{ker} f \rightarrow V) \simeq \operatorname{ken}(W \rightarrow \cos f f)
$$

A projective object in ${ }^{P E}$ Ind (Ban) is anobject such that for an ry Strict epimorphis nor
$V \xrightarrow{f_{s}} W$ we get
a surjectire map

$$
\operatorname{Hom}(P, V) \rightarrow \operatorname{Hom}_{\operatorname{ma}}(P, W)
$$

A flatobjed $F \in \operatorname{Ind}\left(\mathrm{Ban}_{R}\right)$ is an object sech that for any strict mono en $V \rightarrow W, \underset{\sim}{F} V \rightarrow F \hat{\theta} W$ is a strict mono
Definition (For Jack's Talk)

$$
\text { Born }_{R} \subseteq \operatorname{Ind}\left(\text { Bank }^{2}\right)
$$

is the full subcategory of objects "colin" Wi where $i \in I$
the transition maps are injective.

When $R=\mathbb{C}$ or \mathbb{Z}_{p} this is equistent to to re category of $\Lambda^{v e c t o r s p a c e s ~ a l ~ b o r n o l o g y ~ i c d e c t i o n ~ o f ~}$ Subsets thought of as bounded satisfying some axioms.

egg. direct sums of projectivos in Ban
$\sum_{\geq 0}=$ the sifted cocompletion

$$
\begin{array}{l|l}
e & S t a b(C \\
\begin{array}{l}
\text { Building Books } \\
R\left\{\frac{x}{r}\right\}
\end{array} & \begin{array}{l}
\text { modeled by } \\
\text { simpliciol } \\
\text { objetsin } \\
\sum_{i=0}^{\infty} a_{i} x^{i} \text { with condition }
\end{array} \\
\text { Ind (Ban } R))
\end{array}
$$

$$
\sum_{i=0}^{\infty}\left|a_{i}\right| r^{i}<\infty
$$

The monoidal str million be written \hat{Q}_{R}^{L}

Which topology is approp riot?
(1) The open sets in the Zariski topology ane too big
(2) Many to pologies in algebraic geometry have covers of the form $\left\{x_{a} \xrightarrow{\phi_{a}} X\right\}$ where each ϕ_{a} is flat, These are interesting her but as the following example shows the x_{a} are also tombing for analytic purposes. using $\widehat{\hat{H}_{R}}$

Let $A=Q_{p}\langle x\rangle$

$$
\begin{aligned}
& A_{w}=A\left\langle\frac{z}{2}\right\rangle_{(x z-1)} \\
& A_{v}=Q_{p}\langle 3 x\rangle
\end{aligned}
$$

A_{r} is not flat over A

(3) So we consider the monomorphism topolay y

$$
\left\{A \rightarrow B_{\alpha}\right\}_{\text {finite }}
$$

as a conservative core
where $B_{\alpha} \hat{ष}^{\text {II }} B_{\alpha} \cong B_{\alpha}$
Descent Results
Recover Rigid Geometry on Affinoids (2013) and other types of analytic geometry (dagger, Stein etc)
This topology alsom-kes sense in ailed praia geometry.

My hope is to analyze Maybe enlarge The Berkavich Spectrum of \mathbb{Z}.

- Find interesting covers by homotopy manes

$$
R \hat{\theta}_{2} \underset{Z}{\mathbb{Z}} \rightarrow R
$$

- Idea that if $S \subseteq M(\mathbb{Z})$ $R \mathrm{Hom}_{2}(\theta(S), \mathbb{Z}[i])$ of cocentain form

$$
=E_{X t^{\prime}}(\theta(s), \mathbb{Z})
$$

$$
\simeq O(M(\mathbb{Z})-S)
$$

Example of such a cover:

$$
\widetilde{\mathbb{Z}\left[\frac{1}{p}\right]} \leftarrow \mathbb{Z} \rightarrow \mathbb{Z}_{p}^{\dagger}
$$

completion of Quot to $\max \left\{11_{\infty}, 110\right\}$

$$
\begin{aligned}
& \mathcal{Z}_{p}:=\left(\lim _{r<1} \mathbb{Z}\left\{\frac{x}{r}\right\}\right) /(x-p) \\
& R^{+}:={ }^{\prime} c_{n} \operatorname{colim}_{n \in\{1,2,3, \ldots\}} \geq \mathbb{Z}\{y\}^{\dagger} /(n y-1)
\end{aligned}
$$

$$
\mathbb{Z} \rightarrow R^{+} \times \prod_{p} \tilde{z}_{p}
$$

like integral addles

