Convergence of the Restricted Additive Schwarz method with impedance boundary conditions for the Helmholtz equation

Ivan Graham
Joint work with Shihua Gong and Euan Spence (Bath)
and Martin Gander (Geneva) and David Lafontaine (Bath)

Frequency domain wave problems - Strathclyde - 24 June 2022
Research supported by UK EPSRC Joint project with Victorita Dolean's group

Outline of talk

- Helmholtz equation and discretization
- Overlapping DD for solving discrete system: 'ORAS'
- It's cousin SORAS and some theory - inspiring but limited
- A new result on convergence of ORAS
- Bootstrapped from theory of a related 'Parallel Schwarz method' method at the PDE (non-discrete) level

Helmholtz sound-soft scattering problem

Model problem:

$$
\begin{aligned}
\Delta u+k^{2} u & =f \text { in } \Omega \\
u & =0 \text { on } \Gamma
\end{aligned}
$$

Impedance B.C. $\quad \partial_{\nu} u-\mathrm{i} k u=g, \quad$ on far field boundary
Most of the theory:

$$
\Omega^{-}=\emptyset \quad \longrightarrow \quad \text { Interior impedance problem }
$$

Finite Element Method

Variational formulation $u \in H^{1}(\Omega)$
$\underbrace{\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v}\right)-\mathrm{i} k \int_{\partial \Omega} u \bar{v}}_{a(u, v)}=\int_{\Omega} f \bar{v}+\int_{\partial \Omega} g \bar{v}, \quad v \in H^{1}(\Omega)$

Finite element discretization (degree p, meshsize h)

$$
\mathbf{A u}:=\left(\mathbf{S}-k^{2} \mathbf{M}-i k \mathbf{N}\right) \mathbf{u}=\mathbf{f}
$$

A non-Hermitian, indefinite
For existence/bounded error as $k \rightarrow \infty$: $h \sim k^{-1-1 / 2 p} \quad$ Du \& Wu, 2015
To accurately compute 100 waves in Ω using linear elements:

$$
\text { \#DoF } \sim 10^{6} \text { in 2D, } \sim 10^{9} \text { in 3D }
$$

Domain decomposition - one level basics

overlapping subdomains Ω_{ℓ}

Partition of unity: $\left\{\chi_{\ell}\right\}$.

$$
\operatorname{supp}\left(\chi_{\ell}\right) \subset \Omega_{\ell} \quad \text { and } \quad \sum_{\ell} \chi_{\ell}=1
$$

'Local' impedance matrices \mathbf{A}_{ℓ}, discretization of

$$
a_{\ell}(u, v)=\int_{\Omega_{\ell}}\left(\nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v}\right)-\mathrm{i} k \int_{\partial \Omega_{\ell}} u \bar{v}
$$

Restricted Additive Schwarz (RAS) methods

	On nodal vectors
Restriction (chopping)	\mathbf{R}_{ℓ}
Extension (by zero)	\mathbf{R}_{ℓ}^{\top}
Weighting by POU	$\mathbf{D}_{\ell}=\operatorname{diag}\left(\chi_{\ell}\right)$

$$
\begin{array}{ll}
\mathbf{B}^{-1}:=\sum_{\ell} \mathbf{R}_{\ell}^{\top} \mathbf{D}_{\ell} \mathbf{A}_{\ell}^{-1} \mathbf{R}_{\ell} & \begin{array}{l}
\text { 'Optimised' RAS }=\text { 'ORAS' } \\
\\
\\
\mathbf{B}^{-1}:=\sum_{\ell} \mathbf{R}_{\ell}^{\top} \mathbf{D}_{\ell} \mathbf{A}_{\ell}^{-1} \mathbf{D}_{\ell} \mathbf{R}_{\ell} \\
\\
\\
\\
\text { 'Symmetric ORAS' }=\text { Impedance BC } \\
\text { Talk by M. Bonazzoli }
\end{array}
\end{array}
$$

One approach to the theory (indefinite operator)

- Introduce absorption $k^{2} \rightsquigarrow k^{2}+\mathrm{i} \varepsilon, \quad \varepsilon>0$ a_{ε} is now coercive!
- $\mathbf{A} \rightsquigarrow \mathbf{A}_{\varepsilon}, \quad \mathbf{B}^{-1} \rightsquigarrow \mathbf{B}_{\varepsilon}^{-1}$
- Analyse: $\quad \mathbf{B}_{\varepsilon}^{-1}$ as a preconditioner for \mathbf{A}_{ε} use coercivity!
and hence : $\quad \mathbf{B}_{\varepsilon}^{-1}$ as a preconditioner for $\mathbf{A}(?)$

Theory with ε

[Gong, IGG, Spence - IMAJNA 2021]

Assumptions:

- $k h \rightarrow 0$, as $k \rightarrow \infty$
- allows general geometries and variable A and n

Theorem: for the SORAS preconditioner,

$$
\begin{aligned}
\left\|\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\| & \lesssim(1+C(p) k h) \\
\operatorname{dist}\left(0, \mathbf{F o V}\left(\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right)\right) & \gtrsim\left(1-(1+C(p) k h) \frac{k}{\varepsilon}\right),
\end{aligned}
$$

- $C(p) h k \rightarrow 0$ for fixed $p \Longrightarrow$ no p dependence
- Need key parameter $\frac{k}{\varepsilon}$ small enough to get to \mathbf{A}

GMRES with SORAS: $\quad \varepsilon=0, \quad$ overlap $\delta \sim H=k^{-0.3}$
$\Omega=(0,1)^{2}$, rectangular subdomains

$k \backslash p$	1	2	3	4
40	13	14	13	13
80	12	13	12	12
120	13	14	14	13

GMRES with SORAS (ORAS) $\varepsilon=0, \delta=k^{-0.3}$

$\Omega=(0,1)^{2}$, rectangular subdomains

$k \backslash p$	1	2	3	4
40	$13(6)$	$14(7)$	$13(7)$	$13(6)$
80	$12(5)$	$13(6)$	$12(6)$	$12(5)$
120	$13(7)$	$14(8)$	$14(8)$	$13(7)$

Can our FoV estimates be improved?

Boundary of FoV of $\mathbf{B}^{-1} \mathbf{A}, \quad$ for ORAS with $\varepsilon=0$:

It appears not!
But ORAS is a very useful algorithm.....

3D Maxwell ("cobra cavity" at 10 GHz):

[Bonazzoli, Dolean, IGG, Spence, Tournier, Math Comp 2019]

Nédélec elements, degree 2: $\sim 107,000,000$ DOFs DD method: ORAS, applied hierarchically: Coarse grid: $3.3 \mathrm{pts} /$ wavelength (inner GMRES, $\varepsilon_{\text {prec }}=k$)

cores	outer GMRES iterations	Total time
1536	31	515.8
3072	32	285.0

There should be a theory for ORAS

$\mathbf{u}^{n}=\mathbf{u}^{n-1}+\mathbf{B}^{-1}\left(\mathbf{f}-\mathbf{A} \mathbf{u}^{n-1}\right) \Longleftrightarrow \mathbf{e}^{n}=\left(\mathbf{I}-\mathbf{B}^{-1} \mathbf{A}\right)^{n} \mathbf{e}^{0} \quad$ error equation
Discussion with Martin Gander: Look at power contractivity

If $\left\|\left(\mathbf{I}-\mathbf{B}^{-1} \mathbf{A}\right)^{n}\right\|<1$ then convergence in $\mathcal{O}(n)$ iterations for stationary iteration and GMRES

Expt:
N subdomains

Average \# GMRES iterations

$k \backslash N$	4	8	16
20	6.0	12.3	25.1
40	5.6	10.2	17.0
80	4.4	8.0	15.9

Convergence analysis strategy

- Analyse a parallel Schwarz method at PDE level and show it is a power contraction [Gong, Gander, IGG, Lafontaine, Spence, 2021]
- show ORAS (as an iterative method) 'converges' to the parallel Schwarz method as mesh diameter $h \rightarrow 0$ [Gong, IGG, Spence, Math Comp 2022]

Parallel Schwarz method - N subdomains Ω_{ℓ}

- given u^{n-1} on Ω, solve for local components u_{ℓ}^{n} on each Ω_{ℓ} s.t.

$$
\begin{aligned}
-\left(\Delta+k^{2}\right) u_{\ell}^{n} & =f \quad \text { in } \Omega_{\ell} \\
\left(\partial_{\nu}-\mathrm{i} k\right) u_{\ell}^{n} & =\left(\partial_{\nu}-\mathrm{i} k\right) u^{n-1} \quad \text { on } \partial \Omega_{\ell} \backslash \partial \Omega \quad \text { exchange of data } \\
\left(\partial_{\nu}-\mathrm{i} k\right) u_{\ell}^{n} & =g \quad \text { on } \partial \Omega_{\ell} \cap \partial \Omega
\end{aligned}
$$

- new global iterate

$$
u^{n}=\sum_{\ell} \chi_{\ell} u_{\ell}^{n}
$$

Well-posedness of the parallel Schwarz method

For general Lipschitz domains, and χ_{ℓ} smooth enough,
Function space setting:

$$
\mathrm{U}(\Omega):=\left\{u \in H^{1}(\Omega) \mid \Delta u \in L^{2}(\Omega), \partial_{\nu} u \in L^{2}(\partial \Omega)\right\}
$$

Lemma If $u \in U(\Omega)$ then $\left(\partial_{\nu}-\mathrm{i} k\right) u \in L^{2}(\Gamma)$

Theorem

$$
\text { If } u^{n-1} \in \mathrm{U}(\Omega) \text {, then } u^{n} \in \mathrm{U}(\Omega) \text {. }
$$

Error propagation operator \mathcal{T}

Error vector: $\boldsymbol{e}^{n}=\left(e_{1}^{n}, e_{2}^{n}, \cdots e_{N}^{n}\right)^{T}$, where $e_{\ell}^{n}:=\left.u\right|_{\Omega_{\ell}}-u_{\ell}^{n}$

$$
e^{n}=\mathcal{T} e^{n-1}
$$

where

$$
\begin{aligned}
\left(\Delta+k^{2}\right)\left(\mathcal{T}_{\ell, j} e_{j}\right) & =0 \quad \text { in } \Omega_{\ell}, \\
\left(\partial_{\nu_{\ell}}-i k\right)\left(\mathcal{T}_{\ell, j} e_{j}\right) & =\left(\partial_{\nu_{\ell}}-i k\right)\left(\chi_{j} e_{j}\right), \quad \text { on } \partial \Omega_{\ell} \backslash \partial \Omega \\
\left(\partial_{\nu}-i k\right)\left(\mathcal{T}_{\ell, j} e_{j}\right) & =0, \quad \text { on } \partial \Omega_{\ell} \cap \partial \Omega
\end{aligned}
$$

Function space for errors

$$
\begin{array}{rlr}
U_{0}\left(\Omega_{\ell}\right) & :=\left\{v_{\ell} \in U\left(\Omega_{\ell}\right):\left(\Delta+k^{2}\right) v_{\ell}=0\right\} & \text { Helmholtz harmonic } \\
\mathbb{U}_{0} & :=\prod_{\ell} U_{0}\left(\Omega_{\ell}\right) & \text { tensor product } \\
\|\boldsymbol{v}\|_{U_{0}}^{2} & :=\sum_{\ell} \int_{\partial \Omega_{\ell}}\left|\left(\partial_{\nu_{\ell}}-i k\right) v_{\ell}\right|^{2} d s & \text { Boundary impedance norm }
\end{array}
$$

Després, 1997

Structure of \mathcal{T}

\mathcal{T} is sparse and related to the connectivity of the DD
For example in the 'strip domain' case:

Fig 1. strip-type DD

$$
\mathcal{T}=\left(\begin{array}{ccccc}
0 & \mathcal{T}_{1,2} & & & \\
\mathcal{T}_{2,1} & 0 & \mathcal{T}_{2,3} & & \\
& \mathcal{T}_{3,2} & 0 & \mathcal{T}_{3,4} & \\
& & \ddots & \ddots & \ddots \\
& & \mathcal{T}_{N-1, N-2} & 0 & \mathcal{T}_{N-1, N} \\
& & & \mathcal{T}_{N, N-1} & 0
\end{array}\right)
$$

Impedance-to-impedance maps - strip domain

Consider $\mathcal{T}_{2,1} v_{1}$, with $v_{1} \in U_{0}\left(\Omega_{1}\right)$.

Impedance-to-impedance maps

Consider $\mathcal{T}_{2,1} v_{1}$, with $v_{1} \in U_{0}\left(\Omega_{1}\right)$.
Case : v_{1} has impedance data given on Γ_{1}^{+}
Then $\operatorname{imp}_{\Gamma_{2}^{-}}\left(\mathcal{T}_{2,1} v_{1}\right)=\mathcal{I}_{\Gamma_{1}^{+} \rightarrow \Gamma_{2}^{-}} \operatorname{imp}_{\Gamma_{1}^{+}}\left(v_{1}\right)$
Right-to-Left impedance map $\mathcal{I}_{\Gamma_{1}^{+} \rightarrow \Gamma_{2}^{-}}$

Impedance-to-impedance maps

Consider $\mathcal{T}_{2,1} v_{1}$, with $v_{1} \in U_{0}\left(\Omega_{1}\right)$.
Case : v_{1} has impedance data given on Γ_{1}^{-}
Then $\operatorname{imp}_{\Gamma_{2}^{-}}\left(\mathcal{T}_{2,1} v_{1}\right)=\mathcal{I}_{\Gamma_{1}^{-} \rightarrow \Gamma_{2}^{-}} \operatorname{imp}_{\Gamma_{1}^{+}}\left(v_{1}\right)$
Left-to-Left impedance map $\mathcal{I}_{\Gamma_{1}^{-} \rightarrow \Gamma_{2}^{-}}$

Power contractivity of $\boldsymbol{\mathcal { T }}$

Key parameters:

$$
\rho:=\max \left\{\left\|\mathcal{I}_{R \rightarrow L}\right\|,\left\|\mathcal{I}_{L \rightarrow R}\right\|\right\}, \quad \gamma:=\max \left\{\left\|\mathcal{I}_{R \rightarrow R}\right\|,\left\|\mathcal{I}_{L \rightarrow L}\right\|\right\}
$$

Computable by solving local EVPs
in 1-D $, \quad \rho=0, \quad \gamma=1$,
in general: $\quad \gamma \leq \sqrt{1+\rho^{2}}$
Theorem (Power contractivity when ρ small)
For strip with N subdomains

$$
\left\|\boldsymbol{T}^{N}\right\|_{U_{0}} \leq 4 \gamma^{N-1}(N-1) \rho+\mathcal{O}\left(\rho^{2}\right)
$$

Power contractivity of $\boldsymbol{\mathcal { T }}$

Key parameters:

$$
\rho:=\max \left\{\left\|\mathcal{I}_{R \rightarrow L}\right\|,\left\|\mathcal{I}_{L \rightarrow R}\right\|\right\}, \quad \gamma:=\max \left\{\left\|\mathcal{I}_{R \rightarrow R}\right\|,\left\|\mathcal{I}_{L \rightarrow L}\right\|\right\}
$$

Computable by solving local EVPs
in 1-D $, \quad \rho=0, \quad \gamma=1$,
in general: $\quad \gamma \leq \sqrt{1+\rho^{2}}$
Theorem (Power contractivity)
For strip with N subdomains

$$
\left\|\mathcal{T}^{N}\right\|_{U_{0}} \leq 4 \underbrace{\gamma^{N-1}(N-1) \rho}_{(*)}+\mathcal{O}\left(\rho^{2}\right)
$$

$(*)=N-1$ 'one-switch' products, e.g. $\mathcal{I}_{L \rightarrow L} \mathcal{I}_{L \rightarrow L} \cdots \mathcal{I}_{L \rightarrow L} \mathcal{I}_{L \rightarrow R}$
Dependence on N can be removed by estimating the iterated products

Power contractivity of $\boldsymbol{\mathcal { T }}$

Key parameters:

$$
\rho:=\max \left\{\left\|\mathcal{I}_{R \rightarrow L}\right\|,\left\|\mathcal{I}_{L \rightarrow R}\right\|\right\}, \quad \gamma:=\max \left\{\left\|\mathcal{I}_{R \rightarrow R}\right\|,\left\|\mathcal{I}_{L \rightarrow L}\right\|\right\}
$$

Computable by solving local EVPs
in 1-D $, \quad \rho=0, \quad \gamma=1$,
in general: $\quad \gamma \leq \sqrt{1+\rho^{2}}$
Theorem (Power contractivity)
For strip with N subdomains

$$
\left\|\mathcal{T}^{s N}\right\|_{U_{0}} \leq C(N, \gamma) \rho^{s}+\mathcal{O}\left(\rho^{s+1}\right)
$$

Convergence history

Benefit of overlap

Theorem [Lafontaine and Spence 2021] There exists a constant C independent of k such that

$$
\left\|\mathcal{I}_{R \rightarrow L}\right\|,\left\|\mathcal{I}_{L \rightarrow R}\right\| \leq C \delta^{-2}, \quad \text { for all } \quad k \text { sufficiently large }
$$

(But assumes perfect ABC not impedance on outer boundary.)

\mathcal{I} is computable

- $\mathcal{I} \mapsto \mathcal{I}^{h}$ via a variational formulation
- The norm of \mathcal{I}^{h} is computable (eigenvalue problem)
- like a condition number

Theorem [Gong, IGG \& Spence, 2021]

$$
\left\|\mathcal{I}-\mathcal{I}^{h}\right\|_{L^{2}} \rightarrow 0, \quad \text { as } \quad h \rightarrow 0
$$

Proof uses interior regularity for u.

ρ_{h} is small

Computation of $\rho_{h} \approx \rho, \quad p=2, h \sim k^{-5 / 4}$

	$k \backslash \delta$	$1 / 3$	$2 / 3$	$4 / 3$	$8 / 3$	$16 / 3$
ρ_{h}	20	0.190	0.0997	0.0382	0.0175	0.00909
	40	0.234	0.116	0.0434	0.0205	0.00884
	80	0.284	0.148	0.0557	0.0231	0.0115

Parallel Schwarz \Longrightarrow ORAS [Gong, IGG \& Spence, 2021]

	Parallel Schwarz	ORAS
error equation	$\mathbf{e}^{n}=\mathcal{T} \mathbf{e}^{n-1}$	$\mathbf{e}_{h}^{n}=\mathcal{T}_{h} \mathbf{e}_{h}^{n-1}$
function space on Ω_{ℓ}	'Helmholtz harmonic' with L^{2} impedance data \mathbb{U}_{0}	Discrete 'Helmholtz harmonic' \mathbb{V}_{0}
impedance map (e.g.)	$\begin{aligned} & \operatorname{imp}_{\Gamma_{2}^{-}}\left(\mathcal{T}_{2,1} v_{1}\right) \\ & \quad=\mathcal{I}_{\Gamma_{1}^{+} \rightarrow \Gamma_{2}^{-}} \operatorname{imp}_{\Gamma_{1}^{+}}\left(v_{1}\right) \end{aligned}$	$\begin{aligned} & \operatorname{imp}_{h, \Gamma_{2}^{-}}\left(\mathcal{T}_{h, 2,1} v_{h, 1}\right) \\ & =\mathcal{I}_{\Gamma_{1}^{+} \rightarrow \Gamma_{2}^{-}} \operatorname{imp}_{h, \Gamma_{1}^{+}}\left(v_{h, 1}\right) \end{aligned}$

Main Result

Theorem
for all $n,\left\|\left(\mathcal{T}_{h}\right)^{n}\right\|_{\mathbb{V}_{0}} \rightarrow\left\|(\mathcal{T})^{n}\right\|_{\mathbb{U}_{0}}$, as $h \rightarrow 0$.
Corollary: For h sufficiently small...
ORAS has the same power contractivity property as the Schwarz method ORAS convergence is independent of h and p

ORAS preconditioned GMRES - independence of h and p

$\Omega=(0,1)^{2}$, square subdomains, diameter $H \sim k^{-0.4}$
Iteration counts :

$k \backslash h$	$\frac{1}{k}$	$\frac{1}{2 k}$	$\frac{1}{4 k}$	$\frac{1}{8 k}$
40	13	13	13	13
80	17	17	16	15
120	19	19	18	17
160	22	22	21	19
$k \backslash p$				1

ORAS preconditioned GMRES - general DD

$\Omega=(0,1)^{2}, p=2, h \sim k^{-5 / 4}$, mesh partitioning via METIS

(a) 4 subdomains

(b) 16 subdomains

(c) 64 subdomains

$k \backslash N$	4	16	64
40	7	17	39
80	7	17	37
120	6	16	33
160	6	15	33

Summary

- Both the parallel Schwarz and ORAS are analysed as fixed point operators in Helmholtz harmonic spaces.
- For strip domains the parallel Schwarz method is power contractive at the PDE level (under conditions).
- For h small enough, ORAS has the same power contraction property.
- ORAS converges independently of h and polynomial degree p.
- Dependence on number of subdomains N is similar to the Laplace case

