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Robert Brown (1827): particles de-
tached from pollen of Clarkia pulchella
have “rapid oscillatory motion”.

Jan Ingenhousz (1785): coal particles in alcohol.

“These motions [...] arose neither from currents in the fluid, nor from its
gradual evaporation, but belonged to the particle itself.”

Even inside quartz with trapped water!
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Molecular motion

James Maxwell (1859), Ludwig Boltzmann (1871): kinetic theory.

Motivation: explain the ideal gas law PV ∝ T .

Important link to Brownian motion...



Molecular motion

Amedeo Avogadro (1811): “number of integral molecules in any
gases is always the same for equal volumes”

⇝ Avogadro number: # molecules in 32g of oxygen.

Johann Josef Loschmidt (1865): first estimate Avogadro’s number
(mean free path and condensation ratio)
▶ Estimate: 0.4 × 1023.
▶ Now known as 6.022 × 1023.

Many were sceptical of kinetic theory: seen only as explanatory.
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Brownian motion explained

Albert Einstein (1905),
Marian Smoluchowski (1906):
bombardment by tiny particles causes
observable movement.

Idea not new, but Einstein and Smoluchowski made it quantitative.
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Key insight: mean square displacement is proportional to time.

Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.



Random walk
Key insight: mean square displacement is proportional to time.

Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.



Random walk
Key insight: mean square displacement is proportional to time.

Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.



Random walk
Key insight: mean square displacement is proportional to time.

Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.



Random walk
Key insight: mean square displacement is proportional to time.

Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.



Random walk
Key insight: mean square displacement is proportional to time.

Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.



Random walk
Key insight: mean square displacement is proportional to time.

Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.



After 100 steps, where will the ant be?

We don’t know! Steps sideways are random.

But on average, 10 steps sideways.
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20 ants moving together:



Distance xn at step n.

Move direction s on (n + 1)-th step: xn+1 = xn + s.

x2
n+1 = (xn + s)2 = x2

n + 2xns + s2.

But s = 1 and s = −1 with equal probability.

So 2xns is zero on average.

Moreover s2 = 1.

Therefore x2
n+1 is x2

n + 1 on average.
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Much slower than directed movement.



Random walk in 2D



Einstein–Smoluchowski explanation

N molecules in a room hitting a Brownian particle x .

Newton’s law of motion with resistance:

m d2x
dt2︸︷︷︸

accel.

+r dx
dt︸︷︷︸
vel.

= F .

m is mass; r is resistance; F is force ⇝ white noise.

The average of 1
2mv2 is T/N – thermal equilibrium.

Using symmetry and m small, deduce at time t:

average of x2 = 4t T
rN .
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Einstein–Smoluchowski explanation

average of x2 = 4t T
rN

Resistance r and temperature T are measurable.

Average of x2 is also measurable.

Allows us to measure N: count molecules by patiently watching dirt
under microscope (Perrin).

Jean Perrin (1909):
measured Avogadro’s number
as 6.4 × 1023

(true value is 6.02 × 1023)
⇝ Nobel Prize 1926.
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What is randomness?

Two ways to understand randomness:

uncertainty due to lack of knowledge,

intrinsic randomness

In classical mechanics, there is no intrinsic randomness (cf. quantum
mechanics).

Brownian motion in gas is deterministic.

Nonetheless we gain a lot by treating it as random.



What is randomness?

Two ways to understand randomness:

uncertainty due to lack of knowledge,

intrinsic randomness

In classical mechanics, there is no intrinsic randomness (cf. quantum
mechanics).

Brownian motion in gas is deterministic.

Nonetheless we gain a lot by treating it as random.



What is randomness?

Two ways to understand randomness:

uncertainty due to lack of knowledge,

intrinsic randomness

In classical mechanics, there is no intrinsic randomness (cf. quantum
mechanics).

Brownian motion in gas is deterministic.

Nonetheless we gain a lot by treating it as random.



Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy,
Kiyosi Itô, ...
Brownian motion is rough and fractal.
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Mathematics of Brownian motion

Take 2D Brownian motion and zoom in. It stays a Brownian motion!



Stock prices

Brownian motion models randomness in finance.

Louis Bachelier (1900): “The Theory of
Speculation”: stock prices St behaves like
Brownian motion

St+h = St + σ(Bt+h − Bt)

More sophisticated models by Black–Scholes (1967), Merton
(1973) – Nobel Prize 1997.

Formulae for financial derivative prices.

(Revival of Bachelier model in 2020 with negative oil prices!)
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Black–Scholes–Merton model

Change in price proportional to current price:

St+h = St + σSt(Bt+h − Bt) .

If Bt = t, then St = S0eσt (think: compound interest).

Sensible to expect
St = S0eσBt .

Wrong! In fact
St = S0eσBt−σ2t/2 .

What? Why σ2t/2 ?

Can be guessed: average of eσBt is eσ2t/2.

Brownian motion does not respect rules of calculus.
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Today?

Brownian motion is a core part of probability theory.

Many questions remain open.

A lot of research in higher dimensional processes.

Credit: Nils Berglund

Connections between Harmonic Analysis, Stochastics, and PDEs
are being explored.
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Thank you for listening!

Happy Summer Solstice


