The rough journey of Brownian motion: from pollen particles, to Avogadro number, to stock markets

Ilya Chevyrev

The University of Edinburgh
21 June 2022
Harmonic Analysis, Stochastics and PDEs
ICMS, Edinburgh

Robert Brown (1827): particles detached from pollen of Clarkia pulchella have "rapid oscillatory motion".

Jan Ingenhousz (1785): coal particles in alcohol.

Robert Brown (1827): particles detached from pollen of Clarkia pulchella have "rapid oscillatory motion".

Jan Ingenhousz (1785): coal particles in alcohol.

"These motions [...] arose neither from currents in the fluid, nor from its gradual evaporation, but belonged to the particle itself."

Robert Brown (1827): particles detached from pollen of Clarkia pulchella have "rapid oscillatory motion".

Jan Ingenhousz (1785): coal particles in alcohol.

"These motions [...] arose neither from currents in the fluid, nor from its gradual evaporation, but belonged to the particle itself."

Even inside quartz with trapped water!

Molecular motion

James Maxwell (1859), Ludwig Boltzmann (1871): kinetic theory.

Motivation: explain the ideal gas law $P V \propto T$. Important link to Brownian motion...

Molecular motion

- Amedeo Avogadro (1811): "number of integral molecules in any gases is always the same for equal volumes"
\rightsquigarrow Avogadro number: \# molecules in 32g of oxygen.

Molecular motion

- Amedeo Avogadro (1811): "number of integral molecules in any gases is always the same for equal volumes"
\rightsquigarrow Avogadro number: \# molecules in 32 g of oxygen.
- Johann Josef Loschmidt (1865): first estimate Avogadro's number (mean free path and condensation ratio)
- Estimate: 0.4×10^{23}.

Molecular motion

- Amedeo Avogadro (1811): "number of integral molecules in any gases is always the same for equal volumes"
\rightsquigarrow Avogadro number: \# molecules in 32 g of oxygen.
- Johann Josef Loschmidt (1865): first estimate Avogadro's number (mean free path and condensation ratio)
- Estimate: 0.4×10^{23}.
- Now known as 6.022×10^{23}.

Molecular motion

- Amedeo Avogadro (1811): "number of integral molecules in any gases is always the same for equal volumes"
\rightsquigarrow Avogadro number: \# molecules in 32 g of oxygen.
- Johann Josef Loschmidt (1865): first estimate Avogadro's number (mean free path and condensation ratio)
- Estimate: 0.4×10^{23}.
- Now known as 6.022×10^{23}.
- Many were sceptical of kinetic theory: seen only as explanatory.

Brownian motion explained

Albert Einstein (1905),
Marian Smoluchowski (1906):
bombardment by tiny particles causes observable movement.

Brownian motion explained

Albert Einstein (1905), Marian Smoluchowski (1906): bombardment by tiny particles causes observable movement.

Idea not new, but Einstein and Smoluchowski made it quantitative.

Random walk

Key insight: mean square displacement is proportional to time.

Random walk

Key insight: mean square displacement is proportional to time. Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.

Random walk

Key insight: mean square displacement is proportional to time. Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.

Random walk

Key insight: mean square displacement is proportional to time. Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.

Random walk

Key insight: mean square displacement is proportional to time. Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.

Random walk

Key insight: mean square displacement is proportional to time. Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.

Random walk

Key insight: mean square displacement is proportional to time. Confused ant tries to find its home.

Every step forward, it takes one step left or right at random.

After 100 steps, where will the ant be?

After 100 steps, where will the ant be?

We don't know! Steps sideways are random.

After 100 steps, where will the ant be?
We don't know! Steps sideways are random.

But on average, 10 steps sideways.

20 ants moving together:

- Distance x_{n} at step n.
- Distance x_{n} at step n.
- Move direction s on $(n+1)$-th step: $x_{n+1}=x_{n}+s$.
- Distance x_{n} at step n.
- Move direction s on $(n+1)$-th step: $x_{n+1}=x_{n}+s$.
- $x_{n+1}^{2}=\left(x_{n}+s\right)^{2}=x_{n}^{2}+2 x_{n} s+s^{2}$.
- Distance x_{n} at step n.
- Move direction s on $(n+1)$-th step: $x_{n+1}=x_{n}+s$.
- $x_{n+1}^{2}=\left(x_{n}+s\right)^{2}=x_{n}^{2}+2 x_{n} s+s^{2}$.
- But $s=1$ and $s=-1$ with equal probability.
- Distance x_{n} at step n.
- Move direction s on $(n+1)$-th step: $x_{n+1}=x_{n}+s$.
- $x_{n+1}^{2}=\left(x_{n}+s\right)^{2}=x_{n}^{2}+2 x_{n} s+s^{2}$.
- But $s=1$ and $s=-1$ with equal probability.
- So $2 x_{n} s$ is zero on average.
- Distance x_{n} at step n.
- Move direction s on $(n+1)$-th step: $x_{n+1}=x_{n}+s$.
- $x_{n+1}^{2}=\left(x_{n}+s\right)^{2}=x_{n}^{2}+2 x_{n} s+s^{2}$.
- But $s=1$ and $s=-1$ with equal probability.
- So $2 x_{n} s$ is zero on average.
- Moreover $s^{2}=1$.
- Distance x_{n} at step n.
- Move direction s on $(n+1)$-th step: $x_{n+1}=x_{n}+s$.
- $x_{n+1}^{2}=\left(x_{n}+s\right)^{2}=x_{n}^{2}+2 x_{n} s+s^{2}$.
- But $s=1$ and $s=-1$ with equal probability.
- So $2 x_{n} s$ is zero on average.
- Moreover $s^{2}=1$.
- Therefore x_{n+1}^{2} is $x_{n}^{2}+1$ on average.

Much slower than directed movement.

Random walk in 2D

Einstein-Smoluchowski explanation

- N molecules in a room hitting a Brownian particle x.

Einstein-Smoluchowski explanation

- N molecules in a room hitting a Brownian particle x.
- Newton's law of motion with resistance:

$$
m \underbrace{\frac{d^{2} x}{d t^{2}}}_{\text {accel. }}+r \underbrace{\frac{d x}{d t}}_{\text {vel. }}=F .
$$

m is mass; r is resistance; F is force \rightsquigarrow white noise.

Einstein-Smoluchowski explanation

- N molecules in a room hitting a Brownian particle x.
- Newton's law of motion with resistance:

$$
m \underbrace{\frac{d^{2} x}{d t^{2}}}_{\text {accel. }}+r \underbrace{\frac{d x}{d t}}_{\text {vel. }}=F
$$

m is mass; r is resistance; F is force \rightsquigarrow white noise.

- The average of $\frac{1}{2} m v^{2}$ is T / N - thermal equilibrium.

Einstein-Smoluchowski explanation

- N molecules in a room hitting a Brownian particle x.
- Newton's law of motion with resistance:

$$
m \underbrace{\frac{d^{2} x}{d t^{2}}}_{\text {accel. }}+r \underbrace{\frac{d x}{d t}}_{\text {vel. }}=F
$$

m is mass; r is resistance; F is force \rightsquigarrow white noise.

- The average of $\frac{1}{2} m v^{2}$ is T / N - thermal equilibrium.
- Using symmetry and m small, deduce at time t :

$$
\text { average of } x^{2}=4 t \frac{T}{r N}
$$

Einstein-Smoluchowski explanation

$$
\text { average of } x^{2}=4 t \frac{T}{r N}
$$

- Resistance r and temperature T are measurable.
- Average of x^{2} is also measurable.

Einstein-Smoluchowski explanation

$$
\text { average of } x^{2}=4 t \frac{T}{r N}
$$

- Resistance r and temperature T are measurable.
- Average of x^{2} is also measurable.
- Allows us to measure N : count molecules by patiently watching dirt under microscope (Perrin).

Einstein-Smoluchowski explanation

$$
\text { average of } x^{2}=4 t \frac{T}{r N}
$$

- Resistance r and temperature T are measurable.
- Average of x^{2} is also measurable.
- Allows us to measure N : count molecules by patiently watching dirt under microscope (Perrin).

Jean Perrin (1909):
measured Avogadro's number as 6.4×10^{23}
(true value is 6.02×10^{23})
\leadsto Nobel Prize 1926.

What is randomness?

Two ways to understand randomness:

- uncertainty due to lack of knowledge,
- intrinsic randomness

What is randomness?

Two ways to understand randomness:

- uncertainty due to lack of knowledge,
- intrinsic randomness

In classical mechanics, there is no intrinsic randomness (cf. quantum mechanics).

Brownian motion in gas is deterministic.

What is randomness?

Two ways to understand randomness:

- uncertainty due to lack of knowledge,
- intrinsic randomness

In classical mechanics, there is no intrinsic randomness (cf. quantum mechanics).

Brownian motion in gas is deterministic.
Nonetheless we gain a lot by treating it as random.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Norbert Wiener (1928): mathematical construction. Then Paul Lévy, Kiyosi Itô, ...
Brownian motion is rough and fractal.

Mathematics of Brownian motion

Take 2D Brownian motion and zoom in. It stays a Brownian motion!

Stock prices

Brownian motion models randomness in finance.

Louis Bachelier (1900): "The Theory of Speculation": stock prices S_{t} behaves like Brownian motion

$$
S_{t+h}=S_{t}+\sigma\left(B_{t+h}-B_{t}\right)
$$

Stock prices

Brownian motion models randomness in finance.

Louis Bachelier (1900): "The Theory of Speculation": stock prices S_{t} behaves like Brownian motion

$$
S_{t+h}=S_{t}+\sigma\left(B_{t+h}-B_{t}\right)
$$

- More sophisticated models by Black-Scholes (1967), Merton (1973) - Nobel Prize 1997.

Stock prices

Brownian motion models randomness in finance.

Louis Bachelier (1900): "The Theory of Speculation": stock prices S_{t} behaves like Brownian motion

$$
S_{t+h}=S_{t}+\sigma\left(B_{t+h}-B_{t}\right)
$$

- More sophisticated models by Black-Scholes (1967), Merton (1973) - Nobel Prize 1997.
- Formulae for financial derivative prices.

Stock prices

Brownian motion models randomness in finance.

Louis Bachelier (1900): "The Theory of Speculation": stock prices S_{t} behaves like Brownian motion

$$
S_{t+h}=S_{t}+\sigma\left(B_{t+h}-B_{t}\right)
$$

- More sophisticated models by Black-Scholes (1967), Merton (1973) - Nobel Prize 1997.
- Formulae for financial derivative prices.
- (Revival of Bachelier model in 2020 with negative oil prices!)

Black-Scholes-Merton model

- Change in price proportional to current price:

$$
S_{t+h}=S_{t}+\sigma S_{t}\left(B_{t+h}-B_{t}\right)
$$

Black-Scholes-Merton model

- Change in price proportional to current price:

$$
S_{t+h}=S_{t}+\sigma S_{t}\left(B_{t+h}-B_{t}\right)
$$

- If $B_{t}=t$, then $S_{t}=S_{0} e^{\sigma t}$ (think: compound interest).

Black-Scholes-Merton model

- Change in price proportional to current price:

$$
S_{t+h}=S_{t}+\sigma S_{t}\left(B_{t+h}-B_{t}\right)
$$

- If $B_{t}=t$, then $S_{t}=S_{0} e^{\sigma t}$ (think: compound interest).
- Sensible to expect

$$
S_{t}=S_{0} e^{\sigma B_{t}}
$$

Black-Scholes-Merton model

- Change in price proportional to current price:

$$
S_{t+h}=S_{t}+\sigma S_{t}\left(B_{t+h}-B_{t}\right)
$$

- If $B_{t}=t$, then $S_{t}=S_{0} e^{\sigma t}$ (think: compound interest).
- Sensible to expect

$$
S_{t}=S_{0} e^{\sigma B_{t}}
$$

- Wrong! In fact

$$
S_{t}=S_{0} e^{\sigma B_{t}-\sigma^{2} t / 2}
$$

- What? Why $\sigma^{2} t / 2$?

Black-Scholes-Merton model

- Change in price proportional to current price:

$$
S_{t+h}=S_{t}+\sigma S_{t}\left(B_{t+h}-B_{t}\right)
$$

- If $B_{t}=t$, then $S_{t}=S_{0} e^{\sigma t}$ (think: compound interest).
- Sensible to expect

$$
S_{t}=S_{0} e^{\sigma B_{t}}
$$

- Wrong! In fact

$$
S_{t}=S_{0} e^{\sigma B_{t}-\sigma^{2} t / 2}
$$

- What? Why $\sigma^{2} t / 2$?
- Can be guessed: average of $e^{\sigma B_{t}}$ is $e^{\sigma^{2} t / 2}$.

Black-Scholes-Merton model

- Change in price proportional to current price:

$$
S_{t+h}=S_{t}+\sigma S_{t}\left(B_{t+h}-B_{t}\right)
$$

- If $B_{t}=t$, then $S_{t}=S_{0} e^{\sigma t}$ (think: compound interest).
- Sensible to expect

$$
S_{t}=S_{0} e^{\sigma B_{t}}
$$

- Wrong! In fact

$$
S_{t}=S_{0} e^{\sigma B_{t}-\sigma^{2} t / 2}
$$

- What? Why $\sigma^{2} t / 2$?
- Can be guessed: average of $e^{\sigma B_{t}}$ is $e^{\sigma^{2} t / 2}$.
- Brownian motion does not respect rules of calculus.

Multiple sources of randomness

Order of events and microscopic differences are crucial.

Multiple sources of randomness

Order of events and microscopic differences are crucial.

Today?

- Brownian motion is a core part of probability theory.
- Many questions remain open.

Today?

- Brownian motion is a core part of probability theory.
- Many questions remain open.
- A lot of research in higher dimensional processes.

Today?

- Brownian motion is a core part of probability theory.
- Many questions remain open.
- A lot of research in higher dimensional processes.

- Connections between Harmonic Analysis, Stochastics, and PDEs are being explored.

Thank you for listening!

Happy Summer Solstice

