Paracontrolled calculus and regularity structures

Masato Hoshino

Osaka University

June 21, 2022

Joint work with Ismaël Bailleul (Université Rennes 1)

・ロト ・回 ト ・ ヨト ・

イロン イロン イヨン イヨン

Paracontrolled calculus and regularity structures

メロト メタト メヨト メヨト

Two approaches to singular PDEs

Singular SPDEs contain ill-posed multiplications, e.g., generalized KPZ equation

$$\partial_t h = \partial_x^2 h + \underbrace{f(h)}_{\frac{1}{2} - -\frac{1}{2} -} \underbrace{g(h)}_{\frac{1}{2} - -\frac{3}{2} -} \underbrace{\xi}_{\frac{1}{2} - -\frac{3}{2} -}$$

Multiplication $C^{\alpha} \times C^{\beta} \to C^{\alpha \wedge \beta}$ is well-posed iff $\alpha + \beta > 0$.

 \rightarrow We need renormalizations.

Two approaches

• Regularity structure (Hairer '14)

 \rightarrow "Black box" (Bruned-Hairer-Zamotti '19, Chandra-Hairer '16, & Bruned-Chandra-Chevyrev-Hairer '21)

- Paracontrolled calculus (Gubinelli-Imkeller-Perkowski '15)
 - \rightarrow High order PC (Bailleul-Bernicot '19)

The two approaches are different but believed to be equivalent.

Goal of our work

Regularity structure

- Based on (local) Euclid structures.
- Highly algebraic.

Paracontrolled calculus

- Based on Fourier analysis.
- Familiar PDE tools.

Both are extensions of the rough path theory for SDEs

dX = F(X)dB.

• RS provides a pointwise description

$$X_t - X_s = F(X_s)(B_t - B_s) + O(|t - s|^{1-}).$$

• PC provides a spectral description

$$X = F(X) \otimes B + (C^{1-})$$
 \otimes : Bony's paraproduct

< D > < P > < E > < E</p>

Main result (rough)

Rough path theory	RS		PC
Rough path	Model	\Leftrightarrow	Pararemainders
Controlled path	Modelled distribution	\Leftrightarrow	Paracontrolled distribution
Stochastic integral	Chandra-Hairer	future work	No systematic theories

Theorem (Bailleul-H '21)

- (JMSJ '21a) $RS \Rightarrow PC$ in general settings.
- (JEP '21b) PC ⇒ RS under additional (but harmless) assumptions satisfied by another basis of Bruned-Hairer-Zambotti's algebra.
- Gubinelli-Imkeller-Perkowski '15 & Martin-Perkowski '20: Fourier representation of the reconstruction operator.
- Tapia-Zambotti '20: a geometry of the space of branched rough paths.

• • • • • • • • • • • • •

2 Languages of RS

3 Main results

Masato Hoshino (Osaka University)

Paracontrolled calculus and regularity structures

≣ ► Ξ ∽ ۹. ભ June 21, 2022 7/17

< □ > < □ > < □ > < □ > < □ >

Rough story of RS

Regularity structure

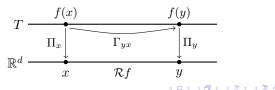
- $T = \langle \mathcal{B} \rangle$ model space $\cdots \mathcal{B}$ is the set of "trees".
- $G \subset \operatorname{Aut}(T) \cdots$ Structure group.

Model

- $\Pi_x: T \to \mathcal{S}'(\mathbb{R}^d) \cdots$ Recentering operators.
- $\Gamma_{yx}: T \to T \cdots$ Compatibility conditions.

Modelled distribution & Reconstruction

- $f: \mathbb{R}^d \to T \cdots$ Local Taylor expansions.
- $\mathcal{R}f \in \mathcal{S}'(\mathbb{R}^d) \cdots$ Original distribution.



We consider more specific situations containing Bruned-Hairer-Zamotti ('19).

 $(T,G) \leftrightarrow (T,T^+).$

Assumption

- $T^+ = \bigoplus_{\alpha \in A^+} T^+_{\alpha}$ is a graded Hopf algebra, where A^+ is a countable and locally finite set of nonnegative numbers containing 0.
- $T = \bigoplus_{\alpha \in A} T_{\alpha}$ is graded by a countable, locally finite, and bounded below set $A \in \mathbb{R}$. A right comodule structure $\Delta : T \to T \otimes T^+$ is given and compatible with the grading.
- Each $T_{\alpha}^{(+)}$ is finite dimensional.

G is the group of all algebra maps from T^+ to $\mathbb R.$ Then $g\in G$ acts on $\tau\in T$ by

$$g \cdot \tau = (\mathrm{id} \otimes g) \Delta \tau.$$

Specific situation $(\Pi, \Gamma) \leftrightarrow (\Pi, g)$.

Definition (Model)

• $g \in C(\mathbb{R}^d; G)$ such that

$$g_{yx}(\tau) := (g_y \otimes g_x^{-1}) \Delta^+ \tau = O(|y - x|^\alpha), \quad \tau \in T^+_\alpha.$$

• $\Pi \in \mathcal{L}(T; \mathcal{S}'(\mathbb{R}^d))$ such that

$$\Pi_x \tau(y) := (\mathbf{\Pi} \otimes g_x^{-1}) \Delta \tau(y) = O(|y - x|^{\beta}), \quad \tau \in T_{\beta}$$

(in a distributional sense).

Definition (Modelled distribution)

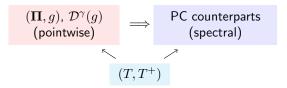
For $\gamma \in \mathbb{R}$, the space $\mathcal{D}^{\gamma}(g)$ consists of all functions $f: \mathbb{R}^d \to T$ such that

$$\left(f(y) - g_{yx} \cdot f(x)\right)_{T_{\alpha}} = O(|y - x|^{\gamma - \alpha}), \quad \alpha < \gamma.$$

If $\gamma > 0$, then $\exists_1 \mathcal{R} f \in \mathcal{S}'(\mathbb{R}^d)$ such that $\mathcal{R} f = \prod_x f(x) + O(|\cdot -x|^{\gamma})$. (Hairer '14, Caravenna-Zambotti '20)

Masato Hoshino (Osaka University)

< □ > < □ > < □ > < □ > < □ >



Notations

Each T_α⁽⁺⁾ is finite dimensional.
Fix a basis B_α⁽⁺⁾ of T_α⁽⁺⁾, and set B⁽⁺⁾ = U_{α∈A⁽⁺⁾} B_α⁽⁺⁾.
|τ| := α ⇔ τ ∈ B_α⁽⁺⁾.
For any τ, σ ∈ B⁽⁺⁾, we define the element τ/σ ∈ T⁺ by

$$\Delta^{(+)}\tau = \sum_{\sigma \in \mathcal{B}^{(+)}} \sigma \otimes (\tau/\sigma).$$

- e.g. in Bruned-Hairer-Zambotti's (BHZ) algebra,
 - $\mathcal{B}^{(+)}$ consists of rooted decorated trees.
 - σ is a subtree of τ and τ/σ is a quotient graph.

ヘロト ヘ戸ト ヘモト ヘモト

We actually consider the Hölder space with polynomial weights, but we omit the details here.

Theorem (Bailleul-H '21a)

 $\textbf{9} \ \ \textit{For any model} \ (\mathbf{\Pi},g) \ \textit{for} \ (T,T^+) \ \textit{and for any } \tau \in \mathcal{B}^+ \textit{, one has }$

$$g(\tau) = \sum_{\sigma \in \mathcal{B}^+, \, |\sigma| < |\tau|} g(\tau/\sigma) \otimes [\sigma] + [\tau],$$

with $[\tau] \in C^{|\tau|}$. One has a similar expansion for Π .

2 Let $\gamma \in \mathbb{R}$. For any modelled distribution $f = \sum_{\tau \in \mathcal{B}, |\tau| < \gamma} f_{\tau} \tau \in \mathcal{D}^{\gamma}(g)$, one has

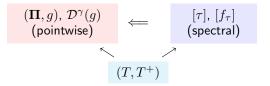
$$f_{\tau} = \sum_{\tau \in \mathcal{B}, \, |\tau| < |\sigma| < \gamma} f_{\sigma} \otimes [\sigma/\tau] + [f_{\tau}],$$

with $[f_{\tau}] \in C^{\gamma - |\tau|}$. One has a similar expansion for $\mathcal{R}f$.

These formulas give an algebraic meaning to the paracontrolled systems (Gubinelli-Imkeller-Perkowski '15 and Bailleul-Bernicot '19).

$\mathsf{RS} \Leftarrow \mathsf{PC}$

Next problem



"RS \Rightarrow PC" holds for general pairs (T, T^+) , but we need stronger assumption to state "PC \Rightarrow RS".

Assumption (rough)

- \mathcal{B}^+ is freely generated by a finite set $\mathcal{G}^+_{\circ} \subset \mathcal{B}^+$, polynomials $\{X^k\}_{k \in \mathbb{N}^d}$, and derivatives.
- **2** \mathcal{B} is freely generated by a finite set $\mathcal{B}_{\bullet} \subset \mathcal{B}$ and polynomials $\{X^k\}_{k \in \mathbb{N}^d}$.
- (g, Π) canonically applies to X^k .

e.g. in BHZ algebra,

- \mathcal{B}_{\bullet} : all strongly conforming trees with $\mathfrak{n} = 0$ at roots.
- \mathcal{G}_{\circ}^+ : all "planted" trees with n = 0 at roots and $\mathfrak{e} = 0$ at the edges leaving from roots.

Under the above assumptions,

Theorem (Bailleul-H '21b)

Subfamilies $\{[\tau] \in C^{|\tau|}; \tau \in \mathcal{G}_{\circ}^+\}$ and $\{[\sigma] \in C^{|\sigma|}; \sigma \in \mathcal{B}_{\bullet}, |\sigma| < 0\}$ uniquely determine the original model (Π, g) . This inverse map is continuous, hence the space of all models is homeomorphic to

$$\prod_{\tau \in \mathcal{G}_{\circ}^{+}} C^{|\tau|} \times \prod_{\sigma \in \mathcal{B}_{\bullet}, \, |\sigma| < 0} C^{|\sigma|}$$

Assumption

For any $\tau \in \mathcal{B}_{\bullet}$, its coproduct $\Delta \tau$ does not have terms of the form $\sigma \otimes X^k$ with $k \neq 0$.

then we have

Theorem (Bailleul-H '21b)

A subfamily $\{[f_{\sigma}]; \sigma \in \mathcal{B}_{\bullet}, |\sigma| < \gamma\}$ uniquely determines the original modelled distribution $f \in \mathcal{D}^{\gamma}(g)$. This inverse map is continuous, hence

$$\mathcal{D}^{\gamma}(g) \simeq \prod_{\tau \in \mathcal{B}_{\bullet}, |\tau| < \gamma} C^{\gamma - |\tau|}.$$

The canonical basis of BHZ algebra does not satisfy this assumption, but

Proposition (Bailleul-H '21b)

There is another basis of BHZ algebra which satisfies the above assumption.

- Renormalizations in the space $\prod_{\tau} C^{|\tau|} ?$
 - Bailleul-Bruned '21: parametrization of the BPHZ model by $[\tau]$'s.
 - Fourier approach to Chandra-Hairer '16?.
- **First motivation**: Can we complete anything within PC (only Fourier picture)?
- In Riemannian manifolds? (cf. Dahlqvist-Diehl-Driver '19, Bailleul-Bernicot '19)
- If T_{α} are infinite dimensional? (cf. Gerencsér-Hairer '19, Chandra-Chevyrev-Hairer-Shen '22)