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Problem statement: an exploration  seismology example

Model parameters (𝐦)



Applications of FWI (1/2)

Distributed Acoustic Sensing

Electrical Resistivity Tomography (ERT)

Oceanography (Understanding of 
the ocean turbulence 

phenomenon)

Nondestructive testing 
)Corrosion monitoring (

Geotechnical investigation Seismic while drilling 3

FWI offers an important method for modelling and remote sensing from sparse measurements in different 

fields of applications.
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Principle of FWI The optimal unknown model is the one that can
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FWI from mathematical point of view (Tarantola, 1984)

FWI is a non-linear (bi-linear) ill-posed PDE-constrained optimization problem:

Model

6

Some remarks:  

✓ This equation is quite general, and it is the typical form of imaging methods. 

✓ Most of the time, 𝐛 and 𝐝 are approximately known and we try to find 𝐦. 

✓ Sometimes only 𝐝 is approximately known, and we try to find 𝐛 and 𝐦. 

min
𝐦,𝐮

𝐏𝐮 − 𝐝 2
2 +𝝋(𝐦) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐀 𝐦 𝐮 = 𝐛

𝐦 ∈ ℝ𝑁 ×1→Model parameters

𝐮 ∈ ℂ𝑁 ×1→Wavefield

𝐛 ∈ ℂ𝑁 ×1→ Source
𝐝 ∈ ℂ𝑛𝑟×1→ Recorded dataWave equation

(bilinear term)
Observation 

equation

Regularization

function
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𝐏𝐮 − 𝐝 2
2 + 𝜑(𝐦) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐀 𝐦 𝐮 = 𝐛

FWI from mathematical point of view (Tarantola, 1984)

Wave equation

(bilinear term)
Observation 

equation

FWI is a non-linear (bi-linear) ill-posed PDE-constrained optimization problem:

Regularization

function

𝐋 𝐮𝐀 𝐦 = ∆ + 𝜔2𝑑𝑖𝑎𝑔(𝐦)

∆𝐮 + 𝜔2𝑑𝑖𝑎𝑔 𝐦 𝐮 = 𝐛𝐀 𝐦 𝐮 = 𝐛

Bilinear

𝜔2𝑑𝑖𝑎𝑔 𝐮 𝐦 = 𝐛 − ∆𝐮

With fixed 𝐦→ a linear system for 𝐮,  and, with fixed 𝐮→ a linear system for 𝐦

𝐲

ቐ

∆→ Laplacian

𝜔→ Frequency

𝑑𝑖𝑎𝑔 ∎ → a diagonal matrix

Model

𝐀 𝐦 →

Full-rank, 

ill-condition.
𝐏 → Rank deficient

black non-zero
white zero

Frequency

domain
Time

domain

✓ It can be solved in time or frequency domain.

✓ In time-domain, the explicit time-stepping (matrix-free)

methods are used.

✓ It is separable in frequency domain → Solvable for each

frequency separately.
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Pitfalls and challenges

Nonlinearity Non convexity and local minima 
(cycle skipping)

Approximate physics 
in forward problem

Ill-posedness Incomplete 
illumination

Parameter 
cross-talk

Systematic errors

HPC issue Computational 
burden



Some FWI solution methods2

Localized FWI or target-oriented FWI3

Outline

Full waveform inversion (FWI) and its challenges1



How to solve FWI:
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min
𝐦,𝐮

𝐏𝐮 − 𝐝 2
2 + 𝜑(𝐦) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐀 𝐦 𝐮 = 𝐛

FWI is a parameter identification problem for PDE which requires the joint update of 

parameter and the state variable. 

Some solution methods:

1- Method of Lagrange multipliers

2- Penalty method

3- Method of multipliers (Augmented Lagrangian)



ℒ 𝐦, 𝐮, 𝐯 = 𝐏𝐮 − 𝐝 2
2 + 𝜑(𝐦) + 𝐯T [𝐀 𝐦 𝐮 − 𝐛]

Reduced approach→
(Pratt et al., 1998)

Lagrangian→
(Nocedal & Wright, 2006)

min
𝐦

𝐏𝐀 𝐦 −1𝐛 − 𝐝 2
2 + 𝜑(𝐦)

Reduced approach

𝐮 = 𝐀 𝐦 −1𝐛→ Lagrangian

𝐯→ Lagrange multipliers

𝐦

O
b

je
ct

iv
e

 f
u

n
ct

io
n

It makes the objective function more oscillating.

Define the Lagrangian function + Determine the partial derivatives (KKT conditions) and set them equal to zero.

KKT conditions →
𝛿ℒ 𝐦, 𝐮, 𝐯

𝛿𝐦
= 0

𝛿ℒ 𝐦, 𝐮, 𝐯

𝛿𝐮
= 0

𝛿ℒ 𝐦, 𝐮, 𝐯

𝛿𝐯
= 0

Full space approach →
(Haber et al., 2000)

Solve for 𝐦,𝐮 and 𝐯, jointly.

9

1- Method of Lagrange multipliers



Works done to solve the local minima issue of the reduced formulation

𝐦O
b

je
ct

iv
e

 f
u

n
ct

io
n

Modifying the cost function:
✓ Correlation-based misfit function (Luo & Schuster, 

1991).

✓ Envelope and instantaneous phase-based

misfit function (Fichtner et al., 2008; Luo and Wu, 2015).

✓ Dynamic wrapping-based misfit function (Ma 

and Hale, 2013).

✓ Normalized integration-based misfit function 
(Donno et al., 2013)

✓ Optimal transport misfit function (Engquist et al., 

2016; Métivier et al., 2106)
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Preparing a good initial model:
✓ Ray-based tomography (Tavakoli et al., 2017, 

Sambolian et al., 2019)

✓ Migration velocity analysis (MVA) (Symes and 

Kern, 1994)

✓ Reflection wavefield inversion (RWI) 
(Brossier et al., 2015)

✓ Global optimization for FWI (Shaw and 

Srivastava, 2007, Ely et al., 2015, Datta and Sen, 2016, Sajeva

et al., 2016, Galuzzi et al., 2017)

O
b

je
ct

iv
e

 f
u

n
ct

io
n

𝐦



𝐶 𝐦, 𝐮 = 𝐏𝐮 − 𝐝 2
2 + 𝜑(𝐦) +  𝐀 𝐦 𝐮 − 𝐛 2

2 → Penalty parameterPenalty form→

2- Penalty method (Abubakar et al., 2009, van Leeuwen&Herrmann, 2013)

Transform a constrained optimization problem into a sequence of unconstrained optimization subproblems that are

easier to solve. By replacing the hard constraint with a soft constraint, we have:

11

2- Penalty method



Bi-convex optimizations (Gorski et al., 2007)

Is it possible to find the global minimum of a bi-convex optimization?

✓ Basically, FWI is a bi-convex optimization problem (Aghamiry et al, 2019).

✓ Such problems may have many local minima as generally they are non-convex optimization problems.

1. General methods that are used for non-convex optimizations.

2. The algorithms which exploit the convex subproblems of a biconvex

optimization (Gorski et al., 2007).

✓ Block relaxation methods, e.g., Alternating Convex set (ACS) (de

Leeuw, 1994), Alternating direction method of multipliers (ADMM)

(Boyd et al., 2010) are common methods for solving although they

don’t have a convergence proof.

✓ There are some methods, e.g., Global OPtimization algorithm (GOP)

(Floudas, 2000), with convergence proof.
12

Methods for solving biconvex 

optimization problems

2



𝐶 𝐦, 𝐮 = 𝐏𝐮 − 𝐝 2
2 + 𝜑(𝐦) +  𝐀 𝐦 𝐮 − 𝐛 2

2 → Penalty parameterPenalty form→

Superscript 𝑘→ mentions to  the value 

of variables 𝐦𝑘 and 𝐮𝑘 at iteration 𝑘.

2- Penalty method (Abubakar et al., 2009, van Leeuwen&Herrmann, 2013)

Wavefield reconstruction inversion ) WRI( (van Leeuwen&Herrmann, 2013)

Solving the penalty form with Alternate Convex Search (ACS) (Wendell & Hurter, 1976)

min
𝐮

𝐶 𝐦𝑘 , 𝐮 min
𝐦

𝐶 𝐦 , 𝐮𝑘 stopping criterion

ACS → 1- Keep 𝐦 fixed and solve the convex optimization for 𝐮.

2- Keep 𝐮 fixed and solve the convex optimization for 𝐦.
3- Check the stopping criterion if it is satisfied

The order of 1 and 2 
can be permuted.

Transform a constrained optimization problem into a sequence of unconstrained optimization subproblems that are

easier to solve. By replacing the hard constraint with a soft constraint, we have:

✓ Slow convergence.

✓ Selecting  is challenging.

✓ WRI, and generally ACS, may fail and stuck in local-minima (Symes, 2020).

✓ The Lagrange multipliers are scaled versions of wave-equation residuals, i.e., 𝐯 = (𝐀 𝐦 𝐮 − 𝐛) , which is

not efficient.
13

2- Penalty method



Augmented Lagrangian (AL) →

Scaled form of AL →

ℒ𝐴 𝐦,𝐮, 𝐯 = 𝐏𝐮 − 𝐝 2
2 + 𝜑(𝐦) + 𝐯𝑇 𝐀 𝐦 𝐮 − 𝐛 +  𝐀 𝐦 𝐮 − 𝐛 2

2

ℒ𝐴 𝐦,𝐮, ሚ𝐛 = 𝐏𝐮 − 𝐝 2
2 + 𝜑(𝐦) +  𝐀 𝐦 𝐮 − 𝐛 − ሚ𝐛

2

2
−  ሚ𝐛

2

2

ADMM Solves AL in an alternating mode for primal and dual variables as

min
𝐮

ℒ𝐴 𝐦𝑘 , 𝐮, ෩𝐛𝑘 min
𝐦

ℒ𝐴 𝐮𝑘+1,𝐦 , ሚ𝐛𝑘 max
ሚ𝐛

ℒ𝐴 𝐮𝑘+1, 𝐦𝑘+1, ሚ𝐛

 → Penalty parameter, 

𝐯 → Lagrange multipliers 

or dual variables.

Lagrangian + a penalty term  (Nocedal & Wright, 2006)

Define scaled form of dual variables as ሚ𝐛 = − Τ𝐯  (Boyd et al, 2010).

Primals Dual

ADMM is a recommended tool for biconvex optimizations (Boyd et al., 2010; Brás et al., 2012).

We prefer the scaled form of AL because we can have a physical interpretation for dual variables. 

14

3- Method of multipliers (Augmented Lagrangian)

ADMM-based FWI (Aghamiry et al., 2018)

It uses partial updates of primal variables (similar to the Gauss–Seidel method for solving linear equations)

The method was studied much in the 1970 and 1980s as a good alternative to penalty methods.



𝑛𝑠 forward modeling

Negligible

𝐏

𝐀 𝐦𝑘 𝐮𝑘+1 =
𝐝

 [𝐛 + ෩𝐛𝑘]

𝐮𝑘+1 = argmin
𝐮

𝐏𝐮 − 𝐝 2
2 +  𝐀 𝐦𝑘 𝐮 − 𝐛 − ෩𝐛𝑘

2

2

✓ Solve wave equation with a feedback term from data → data assimilated wavefield (Auroux & Blum, 2008).

✓ Extrapolation problem with a feedback term from physics.

First subproblem →

How does ADMM-based FWI work? 

𝐦𝑘+1 = argmin
𝐦

𝜑 𝐦 +  𝐋 𝐮𝑘+1 𝐦− 𝐲
2

2

✓ Push back 𝐮𝑘+1 toward the wave equation + satisfy the regularization.

Second subproblem →

Mechanism

1- Estimate an accurate wavefield (as much as possible).

2- Reconstruct the model parameters using this wavefield.

3- Iterative refinement/defect correction.

෩𝐛𝑘+1 = ෩𝐛𝑘 + 𝐛 − 𝐀 𝐦𝑘+1 𝐮𝑘+1Third subproblem →

✓ Updating the RHS by the running sum of wave-equation error.

15

Negligible



The challenges of the method

✓ We don’t know under which conditions the method works.

03

Qualitatively, we know the DA wavefield should be close to the true wavefield near the receivers. 

Initial DA True

✓ The dual variables, as well as wavefields, should be stored on the disk.

✓ Original ADMM has a linear convergence.

✓ Extracting DA wavefield is challenging for large scale (in time and frequency domain formulation).
16



2004 BP salt model

✓ It is representative of the geology of the deep offshore Gulf of

Mexico.

✓ It has a simple background with a complex rugose multivalued salt

body, sub-salt slow velocity anomalies related to over-pressure zones.

𝐝 = 𝐏𝐮 = 𝐏𝐀 𝐦 −𝟏𝐛

17

𝐝 = 𝐏𝐮 = 𝐏𝐀 𝐦 −𝟏𝐛 + 𝛔



Setup and initial model

✓ Surface acquisition with 162 sources and 650 receivers. 

✓ A 9-point finite-difference staggered-grid stencil with PML boundary condition and anti-lumped mass is used. 

✓ Inverted frequencies are 3-13Hz with frequency continuation when batches of 2 frequencies with a 0.5Hz 

spacing are used and three paths over batches are used.

18



Reduced approach  (Pratt et al., 1998) min
𝐦

𝐏𝐀 𝐦 −1𝐛 − 𝐝 2
2

The model parameters are updated with the L-BFGS quasi-Newton optimization and a line search procedure for step length 

estimation (that satisfies the Wolfe conditions).

The reduced approach FWI is stuck in a local minimum during the inversion of the first batch. 

19



WRI (van Leeuwen&Herrmann, 2013) 

Number of iterations → 561

20



IR-WRI (Aghamiry et al., 2019a)

21

The extracted model still is not acceptable because of the poor illumination of surface acquisition. 

Number of iterations → 288 →A faster convergence to more accurate subsurface model.



Pitfalls and challenges

Nonlinearity
Non convexity and local 
minima (cycle skipping)

Approximate 
physics in 

forward problem

Ill-posedness
Incomplete 
illumination

Parameter 
cross-talk

Systematic errors

HPC issue Computational burden



Regularization and adding prior information

✓ Regularization is a process of introducing additional information in order to solve an ill-

posed problem or to prevent overfitting.

min
𝐦

𝑓(𝐦)
min
𝐦

𝑓 𝐦 +𝝋 𝐦

Drive the inversion 

toward priors of 𝝋 𝐦

𝐦 0

𝐮 1
𝐦 1

𝐮 𝑘

𝐮 2

𝐦 2

…𝐦 𝑘

𝝋 𝐦 +

𝝋 𝐦 +

𝝋 𝐦 +

22

✓ Because of the insufficient illumination of surface data acquisition, some parts of the model can’t be

reconstructed (there are in the null space).

Aghamiry, et al. (2019). Compound regularization of full-waveform 
inversion for imaging piecewise media. IEEE TGRS, 58(2), 1192-1204.
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23

Localized FWI

𝐦2

𝐮2

𝐦 = 𝐦1 ∪𝐦2𝐮 = 𝐮1 ∪ 𝐮2

𝐦1

𝐮1

✓ FWI is a computationally intensive imaging technique to

reconstruct 𝐦 in the domain in which the waves propagate.

✓ For some specific applications like CO2 monitoring, reservoir

monitoring, geothermal exploitation, and teleseismic imaging we

only seek to update 𝐦 within a localized region of interest.

𝐀 𝐦 𝐮 𝐀1 𝐦1 𝐮1 𝐀2 𝐦2 𝐮2

Here, we want to update 𝐦2 when a good approximation of 𝐦1 exist.

I propose to use block decomposition to decompose the equations as

𝐏 𝐮 𝐏1 𝐮1 𝐏2 𝐮2

1. Data redatuming and then FWI.

2. FWI using local wave-equation solvers.

The conventional methods for 

localized FWI



ℒ𝐴 𝐦1, 𝐦2, 𝐮1, 𝐮2 = 𝜑1 𝐦1 + 𝜑2 𝐦2 + 𝐏1𝐮1 + 𝐏2𝐮2 − 𝐝 2
2 +  𝐀1 𝐦1 𝐮1 + 𝐀2 𝐦2 𝐮2 − 𝐛 − ሚ𝐛

2

2
−  ሚ𝐛

2

2

ADMM-based multi-block FWI → Solve AL in an alternating mode for primal and dual variables.

min
𝐮1

ℒ𝐴 𝐮1, 𝐮2
𝑘 ,𝐦1

𝑘 ,𝐦2
𝑘 , ෩𝐛𝑘

min
𝐮2

ℒ𝐴 𝐮1
𝑘+1, 𝐮2,𝐦1

𝑘 , 𝐦2
𝑘 , ෩𝐛𝑘

min
𝐦1

ℒ𝐴 𝐮1
𝑘+1, 𝐮2

𝑘+1,𝐦1,𝐦2
𝑘 , ෩𝐛𝑘

min
𝐦2

ℒ𝐴 𝐮1
𝑘+1, 𝐮2

𝑘+1,𝐦1
𝑘+1,𝐦2, ෩𝐛

𝑘

max
ሚ𝐛

ℒ𝐴 𝐮1
𝑘+1, 𝐮2

𝑘+1,𝐦1
𝑘+1,𝐦2

𝑘+1, ሚ𝐛

Multi-block FWI

Multi-block ADMM uses the augmented Lagrangian to update primal and dual variables in an alternating mode.

Wave equationObservation equation Reg. for sub.1
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min
𝐦1,𝐦2,𝐮1,𝐮2

𝐏1𝐮1 + 𝐏2𝐮2 − 𝐝 2
2 + 𝜑1 𝐦1 + 𝜑2 𝐦2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐀1 𝐦1 𝐮1 + 𝐀2 𝐦2 𝐮2 = 𝐛

FWI for sub-domains 1 and 2 can be written as:

Reg. for sub.2

𝐦2

𝐮2

𝐦 = 𝐦1 ∪𝐦2𝐮 = 𝐮1 ∪ 𝐮2

𝐦1

𝐮1

These subproblems converge to the solution of conventional IR-WRI, but with a slower convergence rate. 

Here we have four primal variables, 𝐦1, 𝐦2, 𝐮1 and 𝐮2.



An Adaptation of Multi-Block ADMM for Localized FWI
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In localized FWI, a good approximation of 𝐦1 is exist and the goal is to update 𝐦2.   

Localized Wavefield Inversion (LWI): Keep 𝐦1 and 𝐮1 as passive variables and solve the rest of subproblems: 

min
𝐮2

ℒ𝐴 𝐮1
0, 𝐮2,𝐦1

0,𝐦2
𝑘 , ෩𝐛𝑘

min
𝐦2

ℒ𝐴 𝐮1
0, 𝐮2

𝑘+1,𝐦1
0, 𝐦2, ෩𝐛

𝑘

max
ሚ𝐛

ℒ𝐴 𝐮1
0, 𝐮2

𝑘 ,𝐦1
0,𝐦2

𝑘 , ሚ𝐛

𝐮2
𝑘+1 = argmin

𝐮2

𝐀 𝐦2
𝑘 𝐮2 + 𝐀 𝐦1

0 𝐮1
0 − 𝐛 − ෩𝐛𝑘

2

2

𝐦2
𝑘+1 = argmin

𝐦2

𝜑2 𝐦2 +  𝐋 𝐮2
𝑘+1 𝐦2 + 𝐀1 𝐦1

0 𝐮1
0 − 𝐲

2

2

෩𝐛𝑘+1 = ෩𝐛𝑘 + 𝐛 − 𝐀 𝐦2
𝑘+1 𝐮2

𝑘+1 − 𝐀 𝐦1
0 𝐮1

0

How to extract 𝐮1
0 ? We can extract the

DA wavefield in the whole of the medium

one-time before starting the inversion.

We can update 𝐦1
0 and 𝐦2

0 since

updating model parameters in IR-WRI

doesn't have any computational cost.

𝐦2
0

𝐮2
1

𝐦2
1

𝐮2
𝑘

𝐮2
2

𝐦2
2

…𝐦2
𝑘

𝐦0 𝐮1
0

𝐮2
0

𝐦1
0

𝐦2
0

It requires solving

n𝑠 augmented

wave-equation.

Computational cost of LWI n𝑠 augmented wave-equation in full domain + n𝑖𝑡 ∗ n𝑠
wave-equation in subdomain 2.  



What is missed in LWI?
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When 𝐦2 changes, we should update 𝐮1 , otherwise the interaction of the wavefield between 2 and 1 are missed 

and extracted 𝐮2 is an approximation. 

𝐀1 𝐦1 𝐮1 + 𝐀2 𝐦2 𝐮2 = 𝐛 𝐮2 = 𝐀2 𝐦2
†[𝐛 − 𝐀1 𝐦1 𝐮1]wave-equation

𝐮1(𝐦1,𝐦2)∎†→ The generalized inverse of ∎.

𝐮2 = 𝐀2 𝐦2
+[𝐛 − 𝐀1 𝐦1 𝐮1]

Source

True model Initial model Wave-equation solution DA wavefield

𝐮2→

𝐮2 − 𝐮𝟐
𝒕
→

𝐮2→

𝐮2 − 𝐮𝟐
𝒕
→



What is missed in LWI?

26

When 𝐦2 changes, we should update 𝐮1 , otherwise the interaction of the wavefield between 2 and 1 are missed 

and extracted 𝐮2 is an approximation. 

𝐀1 𝐦1 𝐮1 + 𝐀2 𝐦2 𝐮2 = 𝐛wave-equation

𝐮2 = 𝐀2 𝐦2
+[𝐛 − 𝐀1 𝐦1 𝐮1]

Source

True model Initial model DA wavefield

Tru
e w

avefield

Wave-equation solution

DA wavefield in the initial
model is a good
approximation of 𝐮1

𝑡 .

𝐮2 = 𝐀2 𝐦2
†[𝐛 − 𝐀1 𝐦1 𝐮1]

𝐮1(𝐦1,𝐦2)∎†→ The generalized inverse of ∎.



Marmousi II test: a 4D example

Here the goal is to rapidly estimate the local

changes that happen because of injected fluids

or gas in the subsurface between a baseline

and monitor data.

The term 4D reflects that calendar time

represents the fourth dimension.

True 

baseline 

model

Initial 

model

IR-WRI 

applied on 

baseline 

data

The 

difference 

between 

true and 

inverted 

models

✓ Surface acquisition with 57 sources and 650

receivers.

✓ Inverted frequencies are 3-13Hz with

frequency.

✓ A 10 Hz Ricker is used as the wavelet.
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Marmousi II test: a 4D example

✓ We use three frequencies for the

monitor data inversion, [5, 10,

15]Hz, and a successive mono-

frequency inversion.

✓ We use the baseline inverted

model as the initial model.

True monitor model
The difference between the 
monitor and baseline model

LWI IR-WRI

LWI reaches approximately to 
the same model as IR-WR, but 

24 times faster.
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Pitfalls and challenges

Nonlinearity
Non convexity and local 
minima (cycle skipping)

Approximate 
physics in 

forward problem

Ill-posedness
Incomplete 
illumination

Parameter 
cross-talk

Systematic errors

HPC issue Computational burden

Conclusions

✓ FWI is a high-resolution imaging technique

that has a wide range of applications.

✓ We proposed to use augmented Lagrangian

for FWI when it is solved using ADMM.

✓ We show this formulation can improve the

difficulty of the classical formulation with

the initial model as well as the difficulties of

FWI based on penalty formulation.

✓ We show an adaption of multi-block

ADMM-based wavefield inversion to reduce

the computational cost of FWI for target-

oriented applications.

✓ In this method, the subproblems related to

the zone of interest are solved normally at

each iteration, while the rest are solved only

once.
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Questions?
Comments?


