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Full waveform inversion (FWI) and its challenges

Method of Lagrange multipliers

Some FWI solution methods Penalty method

Method of multipliers (Augmented

Lagrangian)

e Localized FWI or target-oriented FWI



Identifying the unknown model from partial wavefield
measurements when wave-equation describes the propagated
wavefields @ Full waveform inversion (FWI)



Problem statement: a medical imaging example

Identifying the unknown model from partial wavefield

measurements when V\LaVe equatlon deserlbes the propagated
wavefields 2 Full waaréformkln ,

The array of transducers
(sensors) used for data
generation and recording.

.
....lllll-“

Adapted from Guasch, L., Agudo, O. C., Tang, M. X., Nachev, P., & Warner, M. (2020). Full-waveform inversion imaging of the human brain



Identifying the unknown model from partial wavefield
measurements when V\LaV'e equatlon deserlbes the propagated
wavefields @ Full wavéform inversions(F\W|) ”o.
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Adapted from Guasch, L., Agudo, O. C., Tang, M. X., Nachev, P., & Warner, M. (2020). Full-waveform inversion imaging of the human brain.




Problem statement: an exploration seismology example
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Applications of FWI (1/2) (_.;ff//vp

FWI1 offers an important method for modelling and remote sensing from sparse measurements in different”
fields of applications.
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Applications of FWI (2/2)

ACROSS unit

Receivers

Liquefied CO, store

Helioseismology (study of the
structure and dynamics of
the sun)

Trgge Offsat Profile i
' ' Geophones
1 2 3 n




FWI offers an important method for modelling and remote sensing from sparse measurements in different ™=

fields of applications.

(',

z

Exploration Earthquake Medical Electromagnetic
seismology seismology ultrasonic (GPR)
Maximum
propagation 200 km 3000 km 15 cm 60 m
distance
Frequencies 1.5 Hz-80 Hz 0.05 Hz- 1 Hz 1 Mhz- 3 Mhz 10 Mhz-2.6 Ghz
Wavespeed | 1500 m/s-8200 m/s | 1500 m/s-11000 m/s | 1500 m/s-2500 m/s 3e8-4e8
Wavelength 20 m- 5000 m 1.5 km-220 km 0.0005m-0.0025 m 15¢m-30m
Aumber of 40-10000 13.63-2000 60-300 2-400
wavelengths
[1lumination Surface Surface Circular Surface

Table 1: A comparison of kinematic scaling parameters in Seismology, ultrasonic medical imaging and elec-

tromagnetic imaging. Inspired from [Pratt, 2018].
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Principle of FWI The optimal unknown model is the one that can
eproduce the observed data.
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Principle of FWI The optimal unknown model is the one that can
reproduce the observed data.
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Principle of FWI The optimal unknown model is the one that can
reproduce the observed data.
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Principle of FWI The optimal unknown model is the one that can
reproduce the observed data.
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Principle of FWI The optimal unknown model is the one that can
reproduce the observed data.
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FW1 is a non-linear (bi-linear) ill-posed PDE-constrained optimization problem:

. ) , m € RY *!— Model parameters
min |[Pu — d|l3 + ¢(m) Subjectto A(m)u=b ] ue e¥xios Wavefield
| \/ v HK_/ b € CV*1— Source
Observation  Regularization Wave equation | € €' Recorded data
equation function (bilinear term)

/Some remarks: \

v" This equation is quite general, and it is the typical form of imaging methods.

v Most of the time, b and d are approximately known and we try to find m.

v' Sometimes only d is approximately known, and we try to find b and m.




FWI from mathematical point of view (Tarantola, 1984)
FW1 is a non-linear (bi-linear) ill-posed PDE-constrained optimization problem:

_ 5 , m € RN *1 Model parameters
min |IPu — d||5 + @¢(m) Subjectto A(m)u=D>b ] ue cv¥iss Wavefield
~N v N~ b € CY*1- Source
Observation  Regularization Wave equation | € C"*'— Recorded data
equation function (bilinear term)
A— Laplacian A(m) = A+ w?diag(m) Bilinear L(u) y

w— Frequency
diag(m)— a diagonal matrix | A(mu=b =P Au+ w?diag(m)u=Db =P  w’diag(u)m =b - /u

With fixed m — a linear system for u, and, with fixed u — a linear system for m

Amplitudc
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T
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FWI from mathematical point of view (Tarantola, 1984)
FW1 is a non-linear (bi-linear) ill-posed PDE-constrained optimization problem:

_ 5 , m € RN *1 Model parameters
min |IPu — d||5 + @¢(m) Subjectto A(m)u=D>b ] ue ol Wavefield
~N v N~ b € CY*1- Source
Observation  Regularization Wave equation | € C"*'— Recorded data
equation function (bilinear term)
A— Laplacian A(m) = A+ w?diag(m) Bilinear L(u) y

w— Frequency
diag(m)— a diagonal matrix | A(mu=b =P Au+ w?diag(m)u=Db =P  w’diag(u)m =b - /u

With fixed m — a linear system for u, and, with fixed u — a linear system for m

0

Time |
domain

| FreqUency ‘7

''v It can be solved in time or frequency domain.
: domain
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=\/ In time-domain, the explicit time-stepping (matrix-free) '.
| methods are used.
[

I v It is separable in frequency domain — Solvable for each
I frequency separately. 1l
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FWI1 is a non-linear (bi-linear) ill-posed PDE-constrained optimization problem:

€ RN *1_ Model parameters

Pitfalls and challenges u € CN*1 Wavefield
b € C"*1—> Source

Non convexity and local minima

€ C"*1_ Recorded data

(cycle skipping) L(u)

S,
w?diag(u)m =b — Au

y

Incomplete Parameter

illumination cross-talk 2d u — a linear system for m

ency
Approximate physics ain
in forward problem

Computational
burden

1 10

80 ¢
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(FWI) and its challenges

Some FWI solution methods

e Localized FWI or target-oriented FWI




How to solve FWI:

FWI1 is a parameter identification problem for PDE which requires the joint update of
parameter and the state variable.

min [|[Pu — d||5 + ¢(m) Subjectto A(m)u=>b
m,u

Some solution methods:

1- Method of Lagrange multipliers

mmm 2- Penalty method

3- Method of multipliers (Augmented Lagrangian)




N tlrsin,. of N6M

Define the Lagrangian function + Determine the partial derivatives (KKT conditions) and set them equal to zero.

v— Lagrange multipliers

r _________
I

Lagrangian — L(m,u,v) = |[|Pu —d|l5 + ¢(m) + v' [A(m)u —b]
(Nocedal & Wright, 2006)

6L(m, u, V) _ 0 6L(m,u,v) 0 6L(m,u,v) 0

KKT conditions >
om ou OV

Full space approach — Solve for m, u and My.
(Haber et al., 2000)

Reduced approach - u = A(m)~'b — min IPA(m)~'b —d||5 + ¢(m)

fPratt et al., 1998)
Reduced approach

— 1IN

Objective function

It makes the objective function more oscillating.



>

\

Objective function

Modifying the cost function:

v" Correlation-based misfit function (Luo & Schuster,
1991).

v Envelope and instantaneous phase-based
misfit function (Fichtner et al., 2008; Luo and Wu, 2015).

v Dynamic wrapping-based misfit function (va
and Hale, 2013).

v Normalized integration-based misfit function
(Donno et al., 2013)

v Optimal transport misfit function (Engquist et al.,
2016; Métivier et al., 2106)
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Preparing a good initial model:

v' Ray-based tomography (Tavakoli et al., 2017,
Sambolian et al., 2019)

v Migration velocity analysis (MVA) (Symes and
Kern, 1994)

v" Reflection wavefield inversion (RWI)
(Brossier et al., 2015)

v" Global optimization for FWI (shaw and
Srivastava, 2007, Ely et al., 2015, Datta and Sen, 2016, Sajeva
etal., 2016, Galuzzi et al., 2017)

10



p 20 1 E1NAVA T4, (1 Il (Abubakar et al., 2009, van Leeuwen&Herrmann, 2013)

. M =
Transform a constrained optimization problem into a sequence of unconstrained optimization subproblems that’ are
easier to solve. By replacing the hard constraint with a soft constraint, we have:

Penalty form— C(m,u) = [|[Pu —d||5 + ¢(m) + A [|[A(m)u — b||5 |k—> Penalty parameter |

11



Bi-convex optimizations (Gorski et al., 2007)

v’ Basically, FWI is a bi-convex optimization problem (Aghamiry et al, 2019).

v Such problems may have many local minima as generally they are non-convex optimization problems.

Is it possible to find the global minimum of a bi-convex optimization?

o 1. General methods that are used for non-convex optimizations.
Methods for solving biconvex 2. The algorithms which exploit the convex subproblems of a biconvex

optimization problems optimization (Gorski et al., 2007).

local minimum (6.667, 10)

x (5.5, 10)

9 Block relaxation methods, e.g., Alternating Convex set (ACS) (dh o
Leeuw, 1994), Alternating direction method of multipliers (ADMM) | £°
(Boyd et al., 2010) are common methods for solving although they ;
don’t have a convergence proof. B N

v" There are some methods, e.g., Global OPtimization algorithm (GOP) i
\ (Floudas, 2000), with convergence proof. / ,




Transform a constrained optimization problem into a sequence of unconstrained optimization subproblems that are
easier to solve. By replacing the hard constraint with a soft constraint, we have:

Penalty form— C(m,u) = ||Pu —d||5 + ¢(m) + A ||A(m)u — b||5 I A Penalty parameter |
K/Vavefield reconstruction inversion ( WRI) (van Leeuwen&Herrmann, 2013) \
Solving the penalty form with Alternate Convex Search (ACS) (Wendell & Hurter, 1976)
ACS — 1- Keep m fixed and solve the convex optimization for u. The order of 1 and 2
<\ | 2- Keep u fixed and solve the convex optimization for m. can be permuted.

.~ 3- Check the stopping criterion if it is satisfied

: o S ' '

: k : k uperscript k— mentions to the value |

min C(m",u)=» min C(m,u” )=y stopping criterion _ ) _

\ u ( ) m ( ) PPIS I of variables m” and u* at iteration k. | /

v" Slow convergence.

v" Selecting A is challenging.
v" WRI, and generally ACS, may fail and stuck in local-minima (Symes, 2020).

v The Lagrange multipliers are scaled versions of wave-equation residuals, i.e., v = L(A(m)u — b) , which is

not efficient. 13



3- Method of multipliers (Augmented Lagrangian)

The method was studied much in the 1970 and 1980s as a good alternative to penalty methods.

Augmented Lagrangian (AL) — Lagrangian + a penalty term (Nocedal & Wright, 2006) ;-K—_;Pe?a@ carameter, |

— —All2 T _ RNV v — Lagrange multipliers |

LA(m; u, V) ”Pu d”Z T (p(m) TV (A(m)u b) + }\“”A(m)u b”Z :_OI’ dual variables. I
Scaled form of AL — Define scaled form of dual variablesas b = — V/k (Boyd et al, 2010).

£,(m,u,b) = [[Pu— dl3 + ¢(m) + 2 [ AGm)u — b — b|[Z — 2 ||b||;

We prefer the scaled form of AL because we can have a physical interpretation for dual variables.

ﬁ)MM-based FWI (Aghamiry et al., 2018) \

ADMM is a recommended tool for biconvex optimizations (Boyd et al., 2010; Brés et al., 2012).

ADMM Solves AL in an alternating mode for primal and dual variables as

min £,(m*,u, b* )= min £,(u**!, m,b* )= max L,(u*l, m**1 b ) [\ l
u m
e
Primals Dual \ )

wses partial updates of primal variables (similar to the Gauss—Seidel method for solving linear equations) /14




w1 = argmin [P — d|I3 + 2 |A(m*)u - b — B G
u

P k+1 _ d
[\/XA(m")] v L/T[b + B"]]

v Solve wave equation with a feedback term from data — data assimilated wavefield (Auroux & Blum, 2008).
v" Extrapolation problem with a feedback term from physics.

m**! = argmin @(m) + A|[L(u**!)m — Y”z e
m

v" Push back u**? toward the wave equation + satisfy the reqularization.

B+ = B + b _A(mk+1)uk+1 e

v" Updating the RHS by the running sum of wave-equation error.

1- Estimate an accurate wavefield (as much as possible). :> ns forward modeling

Mechanism = | 2- Reconstruct the model parameters using this wavefield.:> Negligible

3- Iterative refinement/defect correction. ::> Negligible

15



The challenges of the method
v We don’t know under which conditions the method works.

: Qualitatively, we know the DA wavefield should be close to the true wavefield near the receivers.

: Quality of DA
wavefield

Sparse
Acquisition

ILow-frequency
I data

|

| Quality of the
: initial model

ereeeeeeesseeeeee—— ——

v" The dual variables, as well as wavefields, should be stored on the disk.

v" Original ADMM has a linear convergence.

v’ Extracting DA wavefield is challenging for large scale (in time and frequency domain formulation). .



2004 BP salt model

v It is representative of the geology of the deep offshore Gulf of

Mexico.
v" It has a simple background with a complex rugose multivalued salt

body, sub-salt slow velocity anomalies related to over-pressure zones.

v, (km/s)

0 2 1 6 8 10 12 14
Distance (km)

17



Setup and initial model

v" Surface acquisition with 162 sources and 650 receivers.

v A 9-point finite-difference staggered-grid stencil with PML boundary condition and anti-lumped mass is used.

v Inverted frequencies are 3-13Hz with frequency continuation when batches of 2 frequencies with a 0.5Hz
spacing are used and three paths over batches are used.

0 2 4 6 8 10 12 14
Distance (km)

18



Reduced approach (pratt et al., 1998) min ||[PA(m)~'b —d||3 (M[”//VD
; . )

2.,

The model parameters are updated with the L-BFGS quasi-Newton optimization and a line search procedure for step length
estimation (that satisfies the Wolfe conditions).

The reduced approach FWI1 is stuck in a local minimum during the inversion of the first batch.

0

0 2 1 6 8 10 12 14 16
Distance (km)

19



WRI (van Leeuwen&Herrmann, 2013)

Number of iterations — 561

Distance (km)

20



IR-WRI (Aghamiry et al., 2019a) (;n..[.f//(/D )

%o, R i
Friersian of Nw“D

Number of iterations — 288 — A faster convergence to more accurate subsurface model.

The extracted model still is not acceptable because of the poor illumination of surface acquisition.

K.a/

t‘

0 2 1 6 8 10 12 14 16
Distance (km)

21



Non convexity and local
minima (cycle skipping)

Nonlinearity

Incomplete Parameter I

lll-posedness illumination cross-talk :

- e e s Y gy gt ™ Ny o e e aw

Approximate

Systematic errors physics in
forward problem

Computational burden




Regularization and adding prior information

v Because of the insufficient illumination of surface data acquisition, some parts of the model can’t be
reconstructed (there are in the null space).

v Regularization is a process of introducing additional information in order to solve an ill-
posed problem or to prevent overfitting.

Cost minimum
W, (unregularized estimate) wy

R

Cost minimum
(regularized estimate)

min f(m) + ¢(m)

<

Drive the inversion
Aghamiry, et al. (2019). Compound regularization of full-waveform -
inversion for imaging piecewise media. IEEE TGRS, 58(2), 1192-1204. toward prlors Of (p(m) 22

|
|
|
|
|
|
< |
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Localized FWI or target-oriented FWI




v FWI is a computationally intensive imaging technique to
reconstruct m in the domain in which the waves propagate.

v For some specific applications like CO2 monitoring, reservoir ull ) 1
monitoring, geothermal exploitation, and teleseismic imaging we ':2
only seek to update m within a localized region of interest. ?
| ore we want to tndate m. when a aood annroximation of m. exist |l u=u,Vu, m=m; Um,
b o e e e e e e e o o e e e e e e e e o o e = e = = J
The conventional methods for 1. Data redatuming and then FWI.
localized FWI 2. FWI using local wave-equation solvers.
| propose to use block decomposition to decompose the equations as
N == | o 1 = | =
A(m) u = Aj(m;) u; g A;(my) u, P L — P, u; = P, Uz 23



FWI for sub-domains 1 and 2 can be written as:

min  |[Pyu; + Pyu, —df|5 + @;(my) + 9,(my)  subjectto  A;(my)u; + Ay(myu, =

TN N N ~ ' >

Observation equation  Reg. for sub.1 Reg. for sub.2 Wave equation

Here we have four primal variables, m;, m,, u; and u,.
Multi-block ADMM uses the augmented Lagrangian to update primal and dual variables in an alternating mode.

Ly(my, my, uy,u3) = @q(my) + @z (my) + [[Pruy + Poup —dll3 + 2 [[A;(m)uy + Ay (mp)u, —b - B”; — A ”i)”;

Solve AL in an alternating mode for primal and dual variables.

min £,(uy, uf, mf, m§, B) . _SSERVAVAVAVAVAVAVAVAVAVAVAVAVAVAV.
min £,(uf*", u;, mf, mf, %) m, 1
C mnllrll L, uk* m,, m%, b¥) t m, 2
S min Ly(uEt gt mit m,, B) 2
max Ly(uf* ub*™ mf* mitt b) u=u Uu, m=m; Um,

These subproblems converge to the solution of conventional IR-WRI, but with a slower convergence rate. 24



An Adaptation of Multi-Block ADMM for Localized FWI
In localized FWI1, a good approximation of m, is exist and the goal is to update m,.

@calized Wavefield Inversion (LWI): Keep m; and u, as passive variables and solve the rest of subproblems: \

a min Ly(u,u,, md, mk, B%) -  u,"' =argmin ||A(mf)u, + Amu) —b - Bk||z
2

up \
| 2 <N

e mnllrzl Ly(ud,uf*, md, m,, b*) - m5t! = argmln @, (m,) + A||L(uf*)m, + A;(m)uf — Y||2 k;,

e max Ly(uf,uf, m)mfb) - bt = bk"'b — A(m5™ )uz*! — A(mQ)u?

How to extract uy ? = We can extract the DA extraction ? me = |0 nn -
DA wavefield in the whole of the medium M —— u) 0 = 0 2

|
one-time before starting the inversion. :
/ ‘ [ m% _ u%
I U,
|
|
|

It requires solving | |We can update mj and m9 since |
| ng augmented ! updatlng model parameters in IR-WRI : , u2
| wave-equation. : |doesnthave any computational cost. | m; 17 v
____________________________ I %
: ) o - _ | K
Computational cost of LWI =» n, augmented wave-equation in full domain + n;; * ng | lmk = u;

wave-equation in subdomain 2.



What is missed in LWI?
wave-equation ey A (m;)u; +A,(My)u, =b ==l y, =4, (m2)+[b —A;(my) uy]

I m' 5 The generalized inverseof m. | u;(my, my)

When m, changes, we should update u, , otherwise the interaction of the wavefield between 2 and 1 are missed
and extracted u, Is an approximation.

I | .
: 0 True model 0 Initial model Wa\6€-equatlon solution
i | 1 ~ Source 1 S 1

I > — \ ~—~ — =

i §’2 |2. A §,2 | . * & 2

: 3 o > 3 / — >~ 3

: 4 _ 4 4

I 0 1 2 3 4 0/1 2[3 4

: X (km) X(kin)

I

: 3.9

1 . ' N

: ,E u; = A; (mz) [b - Al(ml) ul] 2

I 2.5 —

I >

I

I

I




What is missed in LWI?
wave-equation ey A (m;)u; +A,(My)u, =b ==l y, =4, (m2)+[b —A;(my) uy]

I m' 5 The generalized inverseof m. | u;(my, my)

When m, changes, we should update u, , otherwise the interaction of the wavefield between 2 and 1 are missed
and extracted u, Is an approximation.

I . .
: True model Initial model Wave-equation solution :
" 0 ———r 0 —rmmm— Op 0 7 !
I Saurce " -
! 1 1 \‘ 1 1 1 I
T=IN G | =) | s = -
L E2 @, % E2 | | A &2 & 2 !
: >~ 3 — >~ 3 —_ ~ 3 >~ 3 i
Y R, ' 4 4 2 :
: 0 1 2 3 4 0/1 2[3 4 0 SR
: X (km) X (ki) 1 5
i
! 3.5 DA wavefield in the initial \E/ 2 § |
: ; @ v model is a good >~ 3 LY :
: E u, =A, (m2)+[b —A;(my) u,] approximation of u’i. A % i
2.5 —
| > 2 :
1 I
| ;
-



Marmousi Il test: a 4D example il log - - ———————~ — =
The term 4D reflects that calendar time : True ﬁil
represents the fourth dimension. | baseline =g == 22
_ _ _ | model A 3
Here the goal Is to rapidly estimate the local | 0
changes that happen because of injected fluids | g 1
or gas in the subsurface between a baseline | Initial - \E/
and monitor data. |  model .-
l S 3
v" Surface acquisition with 57 sources and 650 : IR-WRI = Y
receivers. | applied on S e —
v Inverted frequencies are 3-13Hz with | baseline = ’% = ¥
frequency. | data A 3 T ,
v A 10 Hz Ricker is used as the wavelet. I 0 — -
b The é 1 |
: difference wip- % )~ —rea—s -
: ?rel}zv :r? (rj] R e e |
I inverted 0 2 4 6 8 10 12 14 16 |
: models Distance (km) I
]
]




Marmousi Il test: a 4D example

v" We use three frequencies for the

monitor data inversion, [5, 10,
15]Hz, and a successive mono-

frequency inversion.
v We use the baseline

inverted

model as the initial model.

-

\

LWI reaches approximately to
the same model as IR-WR, but
24 times faster.

~

J

The difference between the
monitor and baseline model
0 0.2

3 10
Distance (km)
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Pitfalls and challenges

Non convexity and local
minima (cycle skipping)

Parameter
cross-talk

Incomplete

lll-posedness Mt on

Approximate
physics in
forward problem

Systematic errors

Computational burden

Conclusions

v FWI is a high-resolution imaging technique
that has a wide range of applications.

v" We proposed to use augmented Lagrangian
for FWI1 when it is solved using ADMM.

v" We show this formulation can improve the
difficulty of the classical formulation with
the initial model as well as the difficulties of
FWI based on penalty formulation.

v We show an adaption of multi-block
ADMM-based wavefield inversion to reduce
the computational cost of FWI for target-
oriented applications.

v In this method, the subproblems related to
the zone of interest are solved normally at
each iteration, while the rest are solved only
once.
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