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Finite-depth fluid equation

X

X

Finite-depth fluid equation (FDF): on M =Ror T = (R/27Z)
(FDFs) Oy — L5 0 Dpu + 0,(u?) = 0

@ § = dy + do =fluid depth (0 < § < 00)
o | L5 =—0;coth(60,) + %

@ Lo d, =dispersive (not parabolic - no smoothing at the linear level)
Q: Study the convergence property to FDF in
@ deep water limit: § — oo

@ shallow water limit: 6 — 0
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Deep water limit: § — oo

(FDF) Opu — LsOpu+ 0y (u?) =0

L5 in the integral form:
1 o m(r —y
LsOzu(z) = 2—6p.v./_oocoth ( ( 55 ))8§u(y)dy

1 20 1

2% w(@—y) . r@—y)

0 Asd 00, | coth(”(ggy)) o

— by taking § — oo,

o] 2
Ls0zu(z) — lp.v./ Mdy = HO2u(x)
™

—o0

Hence, we expect FDF to converge to the Benjamin-Ono equation:

(BO) Opu — HOZ2u + 0, (u?) =0
Goal: Mathematically justify this formal convergence
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Shallow water limit: 6 — 0

o Scaled amplitude: | v(t,z) = 3u(2t,z)

Scaled FDF: 00— 2L50,v + 0,(v?) =0

@ Write L; as a formal power series in d:

80, —380, - 393
&=_¢<3—i3———§gﬁ=—&(“ﬁ+5@+060

€0z — =00z § 3 45
————
=coth(60z)

o Take § — 0: | —3£50, = 0% — 2% 4 O(8%) — 0

Hence, we expect scaled FDF to converge to the Korteweg-de Vries equation:
(KdV) v+ 020 + 0, (v?) =0

Goal: Mathematically justify this formal convergence
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Physical interests:
@ Oceanography, atmospheric science, quantum hall effect, etc.
Lipovskiy ’86 , Berntson-Langmann-Lenells 20
Previous results:
@ Solitary wave convergence: Joseph 77
@ Soliton convergence and numerical study: Kubota-Ko-Dobbs *78
@ Convergence of FDF in C; H; on R or T (Abdelouhab-Bona-Felland-Saut "89):

(i) deep water limit for s > %
(i1) shallow water limit for s > 2

<= classical energy method

Part 1: Deterministic approach
o for lower values of s

o for a general nonlinearity (mathematical interest)

Part 2: Probabilistic approach
@ convergence of the statistical ensemble
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Part 1: Deterministic approach

microscopic viewpoint
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Main result

M=RorT

Theorem 1:

(i) Deep water limit (6 — oo): Given s > 2, fix ug € H*(M). Given § > 1, let
e us be the solution to FDF with us|t—0 = uo
e u be the solution to BO with u|;—0 = uo.
Then, us converges to u in CpHJ3, where T = T(||uo|| 7= ) = local existence time

(ii) Shallow water limit (§ — 0): Given s > 2, fix vy € H*(M). Given § > 0, let
e ;5 be the solution to scaled FDF with vs|i=0 = vo
e v be the solution to KdV with v|¢—=¢ = vo.
Then, vs converges to v in Cr H, where T = T'(||vo || =) = local existence time

e improved regularities for FDF on M = R and T

@ Our argument (robust) works for a general analytic nonlinearity f(u)

o First convergence result on T for uF k>3
Some previous results on R for u*, k > 3: Guo-Wang *08, Han-Wang "08
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Idea of the proof: (deep-water limit on T)

@ On T, the problem is more difficult due to the lack of the local smoothing estimate
Main goals:
@ “Uniform” local well-posedness of FDF;s in CrHZ, d > 1

e Convergence property of {us}ss1 as § — 0o

Strategy: Write FDF; as

Opus — HO?us + 0, (u3) +(HOy — Ls)Opus =0

=BO

o F{(HO, — Ls5)f}(n) =~ 2f(n)

@ Giveny > ¢ > 1, let u,, us solve FDF with the same initial data uo. Then, by
integration by parts (= typical tool in hyperbolic quasilinear equtions),

d 1\2
Tlhus =y lgems S (5) sl + hus =y o
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Proposition:
(i) A priori bound:

us|| g 1z < lluolle +TPC(|usllLgs ms ) llus|Lee s
(ii) Difference estimate:

1 2 1 2
leg? = wPl e < llug? = ug? [z

6 1 2 1
+ TP Ol o, ) lesg? = wP e g

Difficulty on T: No local smoothing estimate (which is available on R)
Main tools:
o Fourier restriction norm method: Bourgain 93
o X*"-spaces: ||ul| xo.0 = [[(n)*(7 — hs(n))"u(r,n) ez 2
<= space-time Sobolev space adapted to dispersive equations
@ As for (i), multiply FDF; by us and integrate in ¢
= Littlewood-Paley decomposition &
separately estimate resonant and non-resonant interactions
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(a) Resonant interaction:
@ short-time Strichartz estimate: Koch-Tzvetkov "03
<= over time intervals of length ~ N~%, N = size of spatial freq.

o new ingredient: uniform in 6 > 1

en? < (coth(én) — ﬁ)rﬂ < Cn?

(b) Non-resonant interaction:
@ Gain of derivative from “multilinear dispersion”

<= manifested in multilinear analysis via the Fourier restriction norm method
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Part 2: Probabilistic approach
macroscopic viewpoint

[m] [l = = = LA™ 11/14



Defocusing Gibbs measures

Hamiltonian structures for generalized FDF (with «* for k£ =odd):

@ Deep-water (J > 1, unscaled):
Hs(u) = l/uﬁgud:ﬂ—k L/uk“das
2 Jr k+1J;

= Gibbs measure: dp;s(u) = Z; " exp ( — Hs(u))du

@ Shallow-water (0 < 1, scaled):

3

k41
% Uﬁ(s’l) dx + —_— / dx

Hs(v) =

\,

— Gibbs measure: dps(v) = Z; exp (— Hg(v))dv

Q1: Fix 6 > 0. Can we construct invariant Gibbs dynamics for (scaled) gFDF?

Q2: Can we study the deep water limit (§ — oo) and shallow water limit (§ — 0)
with the Gibbs measure initial data?
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Main result

Let £ > 3 be an odd integer. Then,
(i) Deep water limit (6§ — oo):
(i.a) measure convergence: Gibbs measure ps converges to pgpo in total variation
(i.b) dynamics convergence: u; B ugpo in C(R; H™°(T))
(ii) Shallow water limit (6 — 0):
(ii.a) measure convergence: Gibbs measure p5 converges to pgrav weakly

(ii.b) dynamics convergence: v; 3 vgkav in C(R; H~5(T))

@ Whend — 0,
ps is supported on H ~*(T), while pyxay is supported on Hz~*(T)

@ global existence and convergence of solutions without uniqueness
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Ideas of proof:
@ based on a modification of the argument by Albeverio-Cruzeiro "90,
Da Prato-Debussche *02, Burq-Thomann-Tzvetkov *18, Oh-Thomann 18
e compactness argument (at the level of measures on space-time distributions)
o almost sure global existence without uniqueness
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