Convergence on the finite-depth fluid equation in the shallow water and deep water limits

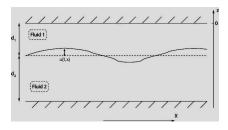
Guopeng Li

The University of Edinburgh

June 24th, 2022

Harmonic Analysis, Stochastics and PDEs in Honor of the 80th Birthday of Nicolai Krylov

Finite-depth fluid equation



Finite-depth fluid equation (FDF): on $\mathcal{M} = \mathbb{R}$ or $\mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})$

$$(FDF_{\delta})$$

$$\partial_t u - \mathcal{L}_{\delta} \circ \partial_x u + \partial_x (u^2) = 0$$

- $\delta = d_1 + d_2$ = fluid depth $(0 < \delta < \infty)$
- $\mathcal{L}_{\delta} = -\partial_x \coth(\delta \partial_x) + \frac{1}{\delta}$
- $\mathcal{L}_{\delta} \circ \partial_x = \text{dispersive}$ (not parabolic **no** smoothing at the linear level)
- Q: Study the convergence property to FDF in
 - deep water limit: $\delta \to \infty$
 - shallow water limit: $\delta \to 0$

Deep water limit: $\delta \to \infty$

(FDF)
$$\partial_t u - \mathcal{L}_\delta \partial_x u + \partial_x (u^2) = 0$$

 \mathcal{L}_{δ} in the integral form:

$$\mathcal{L}_{\delta} \partial_x u(x) = \frac{1}{2\delta} \text{ p.v.} \int_{-\infty}^{\infty} \coth\left(\frac{\pi(x-y)}{2\delta}\right) \partial_y^2 u(y) dy$$

• As
$$\delta \to \infty$$
, $\left[\frac{1}{2\delta} \coth(\frac{\pi(x-y)}{2\delta}) \longrightarrow \frac{1}{2\delta} \frac{2\delta}{\pi(x-y)} = \frac{1}{\pi(x-y)}\right]$

 \Longrightarrow by taking $\delta \to \infty$,

$$\mathcal{L}_{\delta}\partial_x u(x) \longrightarrow \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{\partial_y^2 u(y)}{x - y} dy = \mathcal{H} \partial_x^2 u(x)$$

Hence, we expect **FDF** to converge to the **Benjamin-Ono equation:**

(BO)
$$\partial_t u - \mathcal{H} \partial_x^2 u + \partial_x (u^2) = 0$$

Goal: Mathematically justify this formal convergence

Shallow water limit: $\delta \to 0$

• Scaled amplitude: $v(t,x) = \frac{3}{\delta}u(\frac{3}{\delta}t,x)$

Scaled FDF:
$$\partial_t v - \frac{3}{\delta} \mathcal{L}_{\delta} \partial_x v + \partial_x (v^2) = 0$$

• Write \mathcal{L}_{δ} as a formal power series in δ :

$$\mathcal{L}_{\delta} = -\partial_{x} \left(\underbrace{\frac{e^{\delta \partial_{x}} + e^{-\delta \partial_{x}}}{e^{\delta \partial_{x}} - e^{-\delta \partial_{x}}}}_{= \operatorname{coth}(\delta \partial_{x})} - \frac{1}{\delta} \partial_{x}^{-1} \right) = -\partial_{x} \left(\frac{\delta \partial_{x}}{3} + \frac{\delta^{3} \partial_{x}^{3}}{45} + O(\delta^{5}) \right)$$

• Take $\delta \to 0$: $-\frac{3}{\delta} \mathcal{L}_{\delta} \partial_x = \partial_x^3 - \frac{\delta^2 \partial_x^5}{15} + O(\delta^5) \longrightarrow \partial_x^3$

Hence, we expect scaled FDF to converge to the Korteweg-de Vries equation:

(KdV)
$$\partial_t v + \partial_x^3 v + \partial_x (v^2) = 0$$

Goal: Mathematically justify this formal convergence

Physical interests:

• Oceanography, atmospheric science, quantum hall effect, etc.

Lipovskiy '86, Berntson-Langmann-Lenells '20

Previous results:

- Solitary wave convergence: Joseph '77
- Soliton convergence and numerical study: Kubota-Ko-Dobbs '78
- Convergence of FDF in $C_tH_x^s$ on \mathbb{R} or \mathbb{T} (Abdelouhab-Bona-Felland-Saut '89):
 - (i) deep water limit for $s > \frac{3}{2}$
 - (ii) shallow water limit for $s \geq 2$
 - classical energy method

Part 1: Deterministic approach

- for lower values of s
- for a general nonlinearity (mathematical interest)

Part 2: Probabilistic approach

• convergence of the statistical ensemble

Part 1: Deterministic approach microscopic viewpoint

Main result

 $\mathcal{M}=\mathbb{R}$ or \mathbb{T}

Theorem 1: Li '22

- (i) **Deep water limit** ($\delta \to \infty$): Given $s \ge \frac{3}{4}$, fix $u_0 \in H^s(\mathcal{M})$. Given $\delta \gg 1$, let
 - u_{δ} be the solution to **FDF** with $u_{\delta}|_{t=0} = u_0$
 - u be the solution to **BO** with $u|_{t=0} = u_0$.

Then, u_{δ} converges to u in $C_T H_x^s$, where $T = T(\|u_0\|_{H^s})$ = local existence time

- (ii) Shallow water limit ($\delta \to 0$): Given $s \ge \frac{2}{3}$, fix $v_0 \in H^s(\mathcal{M})$. Given $\delta > 0$, let
 - v_{δ} be the solution to **scaled FDF** with $v_{\delta}|_{t=0}=v_{0}$
 - v be the solution to **KdV** with $v|_{t=0} = v_0$.

Then, v_{δ} converges to v in $C_T H_x^s$, where $T = T(\|v_0\|_{H^s}) = \text{local existence time}$

- improved regularities for FDF on $\mathcal{M} = \mathbb{R}$ and \mathbb{T}
- Our argument (robust) works for a general analytic nonlinearity f(u)
- First convergence result on \mathbb{T} for u^k , $k \geq 3$ Some previous results on \mathbb{R} for u^k , $k \geq 3$: Guo-Wang '08, Han-Wang '08

Idea of the proof: (deep-water limit on \mathbb{T})

ullet On \mathbb{T} , the problem is more difficult due to the lack of the local smoothing estimate

Main goals:

- "Uniform" local well-posedness of FDF $_{\delta}$ in $C_TH_x^s,\,\delta\gg 1$
- Convergence property of $\{u_{\delta}\}_{\delta\gg 1}$ as $\delta\to\infty$

Strategy: Write FDF $_{\delta}$ as

$$\underbrace{\partial_t u_\delta - \mathcal{H} \partial_x^2 u_\delta + \partial_x (u_\delta^2)}_{= \text{BO}} + (\mathcal{H} \partial_x - \mathcal{L}_\delta) \partial_x u_\delta = 0$$

- $\mathcal{F}\{(\mathcal{H}\partial_x \mathcal{L}_\delta)f\}(n) \approx \frac{2}{\delta}\widehat{f}(n)$
- Given $\gamma > \delta \gg 1$, let u_{γ}, u_{δ} solve FDF with the same initial data u_0 . Then, by integration by parts (= typical tool in hyperbolic quasilinear equtions),

$$\frac{d}{dt} \|u_{\delta} - u_{\gamma}\|_{H^{s-1}}^{2} \lesssim \left(\frac{1}{\delta}\right)^{2} \|u_{\delta}\|_{H^{s}}^{2} + \|u_{\delta} - u_{\gamma}\|_{H^{s-1}}^{2}$$

Proposition:

(i) A priori bound:

$$\|u_{\delta}\|_{L_{T}^{\infty}H_{x}^{s}} \leq \|u_{0}\|_{H^{s}} + T^{\theta}C(\|u_{\delta}\|_{L_{T}^{\infty}H_{x}^{s}})\|u_{\delta}\|_{L_{T}^{\infty}H_{x}^{s}}$$

(ii) Difference estimate:

$$\begin{aligned} \|u_{\delta}^{(1)} - u_{\gamma}^{(2)}\|_{L_{T}^{\infty} H_{x}^{s-1}} &\leq \|u_{0}^{(1)} - u_{0}^{(2)}\|_{H^{s-1}} \\ &+ T^{\theta} C(\|u_{0}^{(1)}\|_{H^{s}}, \|u_{0}^{(2)}\|_{H^{s}}) \|u_{\delta}^{(1)} - u_{\gamma}^{(2)}\|_{L_{T}^{\infty} H_{x}^{s-1}} \end{aligned}$$

Difficulty on \mathbb{T} : *No* local smoothing estimate (which is available on \mathbb{R})

Main tools:

- Fourier restriction norm method: Bourgain '93
 - $X^{s,b}$ -spaces: $||u||_{X^{s,b}} = ||\langle n \rangle^s \langle \tau h_\delta(n) \rangle^b \widehat{u}(\tau,n)||_{\ell_n^2 L_\tau^2}$ \Leftarrow space-time Sobolev space adapted to dispersive equations
- As for (i), multiply FDF $_{\delta}$ by u_{δ} and integrate in t
 - ⇒ Littlewood-Paley decomposition & separately estimate **resonant** and **non-resonant** interactions

(a) Resonant interaction:

- short-time Strichartz estimate: Koch-Tzvetkov '03
 - \leftarrow over time intervals of length $\sim N^{-\theta}$, N = size of spatial freq.
- new ingredient: *uniform in* $\delta \gg 1$

$$cn^2 \leq \big(\coth(\delta n) - \frac{1}{\delta n}\big)n^2 \leq Cn^2$$

(b) Non-resonant interaction:

- Gain of derivative from "multilinear dispersion"
 - manifested in multilinear analysis via the Fourier restriction norm method

Part 2: Probabilistic approach macroscopic viewpoint

Defocusing Gibbs measures

Hamiltonian structures for generalized FDF (with u^k for k = odd):

• Deep-water ($\delta \gg 1$, unscaled):

$$H_{\delta}(u) = \frac{1}{2} \int_{\mathbb{T}} u \mathcal{L}_{\delta} u \, dx + \frac{1}{k+1} \int_{\mathbb{T}} u^{k+1} dx$$

- \Longrightarrow Gibbs measure: $d\rho_{\delta}(u) = Z_{\delta}^{-1} \exp(-H_{\delta}(u)) du$
- Shallow-water ($\delta \ll 1$, scaled):

$$\widetilde{H}_{\delta}(v) := \frac{3}{2\delta} \int_{\mathbb{T}} v \mathcal{L}_{\delta} v \, dx + \frac{1}{k+1} \int_{\mathbb{T}} v^{k+1} dx$$

- \Longrightarrow Gibbs measure: $d\widetilde{
 ho}_{\delta}(v) = \widetilde{Z}_{\delta}^{-1} \exp \left(-\widetilde{H}_{\delta}(v) \right) dv$
- **Q1:** Fix $\delta > 0$. Can we construct invariant Gibbs dynamics for (scaled) gFDF?
- **Q2:** Can we study the deep water limit $(\delta \to \infty)$ and shallow water limit $(\delta \to 0)$ with the Gibbs measure initial data?

Main result

Theorem 2: Li-Oh-Zheng '22

Let $k \geq 3$ be an odd integer. Then,

- (i) Deep water limit ($\delta \to \infty$):
 - (i.a) **measure convergence:** Gibbs measure ρ_{δ} converges to ρ_{gBO} in total variation
 - (i.b) dynamics convergence: $u_{\delta} \stackrel{\mathcal{D}}{\to} u_{\text{gBO}}$ in $C(\mathbb{R}; H^{-\varepsilon}(\mathbb{T}))$
- (ii) Shallow water limit ($\delta \rightarrow 0$):
 - (ii.a) **measure convergence:** Gibbs measure $\widetilde{\rho_{\delta}}$ converges to ρ_{gKdV} weakly
 - (ii.b) dynamics convergence: $v_{\delta} \stackrel{\mathcal{D}}{\to} v_{gKdV}$ in $C(\mathbb{R}; H^{-\varepsilon}(\mathbb{T}))$
 - When $\delta \to 0$, $\widetilde{\rho}_{\delta}$ is supported on $H^{-\varepsilon}(\mathbb{T})$, while ρ_{gKdV} is supported on $H^{\frac{1}{2}-\varepsilon}(\mathbb{T})$
 - global existence and convergence of solutions without uniqueness

Ideas of proof:

- based on a modification of the argument by Albeverio-Cruzeiro '90,
 Da Prato-Debussche '02, Burq-Thomann-Tzvetkov '18, Oh-Thomann '18
 - compactness argument (at the level of measures on space-time distributions)
 - almost sure global existence without uniqueness