Motion groupoids

arXiv:2103.10377, with Paul Martin, João Faria Martins

Fiona Torzewska

University of Bristol

Brief overview

Brief overview

(I) Construction of the motion groupoid $\operatorname{Mot}_{\underline{M}}$ of a pair $\underline{M}=(M, A)$.

Morphisms are equivalence classes of continuous flows of ambient space M which fix A, acting on $\mathcal{P M}$. Recover classical definition of the motion group associated to a manifold M and a submanifold $N \in \mathcal{P} M$, by looking at the morphism group at N. Obtain groups isomorphic to braid groups, loop braid groups.
(I) Construction of the motion groupoid $\operatorname{Mot}_{\underline{M}}$ of a pair $\underline{M}=(M, A)$. Morphisms are equivalence classes of continuous flows of ambient space M which fix A, acting on $\mathcal{P} M$. Recover classical definition of the motion group associated to a manifold M and a submanifold $N \in \mathcal{P} M$, by looking at the morphism group at N. Obtain groups isomorphic to braid groups, loop braid groups.
(II) Construction of mapping class groupoid $\mathrm{MCG}_{\underline{M}}$.

Morphisms are now equivalence classes of homeomorphisms of M, fixing A. The object set is again $\mathcal{P M}$. Again obtain groups isomorphic to braid groups, loop braid groups.

Brief overview

(I) Construction of the motion groupoid $\operatorname{Mot}_{\underline{M}}$ of a pair $\underline{M}=(M, A)$.

Morphisms are equivalence classes of continuous flows of ambient space M which fix A, acting on $\mathcal{P M}$. Recover classical definition of the motion group associated to a manifold M and a submanifold $N \in \mathcal{P} M$, by looking at the morphism group at N. Obtain groups isomorphic to braid groups, loop braid groups.
(II) Construction of mapping class groupoid $\mathrm{MCG}_{\underline{M}}$.

Morphisms are now equivalence classes of homeomorphisms of M, fixing A.
The object set is again $\mathcal{P} M$. Again obtain groups isomorphic to braid groups, loop braid groups.
(III) Construction of functor $\mathrm{F}: \mathrm{Mot}_{\underline{M}} \rightarrow \mathrm{MCG}_{\underline{M}}$.

We prove that this is an isomorphism when π_{0} and π_{1} of space of homeomorphisms of M fixing A are trivial (with compact open topology). E.g. $\underline{M}=\left([0,1]^{n}, \partial[0,1]^{n}\right)$.

Motivation

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

Motivation

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.

Motivation

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.

Motivation

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.

Motivation

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.
- Facilitates passage between motions and generalised tangles/ defect TQFT

Motivation

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.
- Facilitates passage between motions and generalised tangles/ defect TQFT
- Morphisms which do not start and end in the same configuration allowed.

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.
- Facilitates passage between motions and generalised tangles/defect TQFT
- Morphisms which do not start and end in the same configuration allowed.
- Expect interesting new algebraic structures

Motion Groupoid

Space of self-homeomorphisms of a manifold M

Let Top denote the category of topological spaces and continuous maps.
$\operatorname{Top}(X, X) \quad$ Set of continuous maps from X to X
$\operatorname{Top}^{h}(X, X) \quad$ Subset of $\operatorname{Top}(X, X)$ of self-homeomorphisms. Note this is a group.
TOP $^{h}(X, X)$ Set $\operatorname{Top}^{h}(X, X)$ equipped with the compact open topology

Space of self-homeomorphisms of a manifold M

Let Top denote the category of topological spaces and continuous maps.
$\operatorname{Top}(X, X) \quad$ Set of continuous maps from X to X
$\operatorname{Top}^{h}(X, X) \quad$ Subset of $\operatorname{Top}(X, X)$ of self-homeomorphisms. Note this is a group.
$\operatorname{TOP}^{h}(X, X)$ Set $\operatorname{Top}^{h}(X, X)$ equipped with the compact open topology

Lemma

(Hatcher) Let X be a compact space and Y a metric topological space with metric d. Then
(i) the function

$$
d^{\prime}(f, g):=\sup _{x \in X} d(f(x), g(x))
$$

is a metric on $\boldsymbol{\operatorname { T o p }}(X, Y)$; and
(ii) the compact open topology on $\operatorname{Top}(X, Y)$ is the same as the one defined by the metric d^{\prime}.

Space of self-homeomorphisms of a manifold M

Let Top denote the category of topological spaces and continuous maps.
$\operatorname{Top}(X, X) \quad$ Set of continuous maps from X to X
$\operatorname{Top}^{h}(X, X) \quad$ Subset of $\operatorname{Top}(X, X)$ of self-homeomorphisms. Note this is a group.
$\operatorname{TOP}^{h}(X, X)$ Set $\operatorname{Top}^{h}(X, X)$ equipped with the compact open topology

Lemma

(Hatcher) Let X be a compact space and Y a metric topological space with metric d. Then
(i) the function

$$
d^{\prime}(f, g):=\sup _{x \in X} d(f(x), g(x))
$$

is a metric on $\operatorname{Top}(X, Y)$; and
(ii) the compact open topology on $\operatorname{Top}(X, Y)$ is the same as the one defined by the metric d^{\prime}.
$\mathbf{T o p}_{A}^{h}(M, M), \mathbf{T O P}_{A}^{h}(M, M)$ versions with subset $A \subset M$ fixed pointwise

Flows

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \operatorname{Top}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

Flows

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \operatorname{Top}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

Example

For any manifold M the path $f_{t}=\operatorname{id}_{M}$ for all t, is a flow. We will denote this flow Id_{M}.

Flows

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \boldsymbol{T o p}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \mathbf{T O P}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

Example

For any manifold M the path $f_{t}=\operatorname{id}_{M}$ for all t, is a flow. We will denote this flow Id_{M}.

Example

For $M=S^{1}$ (the unit circle) we may parameterise by $\theta \in \mathbb{R} / 2 \pi$ in the usual way. Consider the functions $\tau_{\phi}: S^{1} \rightarrow S^{1}(\phi \in \mathbb{R})$ given by $\theta \mapsto \theta+\phi$, and note that these are homeomorphisms. Then consider the path $f_{t}=\tau_{t \pi}$ ('half-twist'). This is a flow.

Example $M=D^{2}$

Obtaining new flows from old

Lemma

Let M be a manifold. For any flow f in $\underline{M}=(M, A)$, then $\left(f^{-1}\right)_{t}=f_{t}^{-1}$ is a flow.

Obtaining new flows from old

Lemma

Let M be a manifold. For any flow f in $\underline{M}=(M, A)$, then $\left(f^{-1}\right)_{t}=f_{t}^{-1}$ is a flow. NOTE: Proof uses that $\operatorname{TOP}^{h}(M, M)$ is a topological group when M is locally compact and locally connected (Arens). This means the product map and inverse map are continuous.

Obtaining new flows from old

Lemma

Let M be a manifold. For any flow f in $\underline{M}=(M, A)$, then $\left(f^{-1}\right)_{t}=f_{t}^{-1}$ is a flow. NOTE: Proof uses that $\mathbf{T O P}^{h}(M, M)$ is a topological group when M is locally compact and locally connected (Arens). This means the product map and inverse map are continuous.

Lemma

Let M be a manifold. There exists a set map

$$
\begin{aligned}
-:^{\text {Flow }_{\underline{M}}} & \rightarrow \text { Flow }_{\underline{M}} \\
f & \mapsto \bar{f}
\end{aligned}
$$

with

$$
\begin{equation*}
\bar{f}_{t}=f_{(1-t)} \circ f_{1}^{-1} \tag{1}
\end{equation*}
$$

Obtaining new flows from old

Proposition

Let M be a manifold. There exists a composition

$$
\begin{aligned}
* \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g * f
\end{aligned}
$$

where

$$
(g * f)_{t}= \begin{cases}f_{2 t} & 0 \leq t \leq 1 / 2, \tag{2}\\ g_{2(t-1 / 2)} \circ f_{1} & 1 / 2 \leq t \leq 1 .\end{cases}
$$

Obtaining new flows from old

Proposition

Let M be a manifold. There exists a composition

$$
\begin{aligned}
* \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g * f
\end{aligned}
$$

where

$$
(g * f)_{t}= \begin{cases}f_{2 t} & 0 \leq t \leq 1 / 2, \tag{2}\\ g_{2(t-1 / 2)} \circ f_{1} & 1 / 2 \leq t \leq 1 .\end{cases}
$$

For a pair $\underline{M}=(M, A),\left(\operatorname{Flow}_{\underline{M}}, *\right)$ is a magma.

Obtaining new pre-motions from old

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
\therefore \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.

Obtaining new pre-motions from old

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
\therefore \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.
NOTE: Again proof uses that $\mathbf{T O P}^{h}(M, M)$ is a topological group.

Obtaining new pre-motions from old

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
\therefore \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.
NOTE: Again proof uses that $\operatorname{TOP}^{h}(M, M)$ is a topological group.
Lemma
For a manifold $M,\left(\operatorname{Flow}_{\underline{M}}, \cdot\right)$ is a group, with identity Id_{M} and inverse map $\left(f^{-1}\right)_{t}=\left(f_{t}\right)^{-1}$.

Obtaining new pre-motions from old

Proposition

Let M be a manifold. There is an associative composition

$$
\begin{aligned}
\therefore \text { Flow }_{\underline{M}} \times \text { Flow }_{\underline{M}} & \rightarrow \text { Flow }_{\underline{M}} \\
(f, g) & \mapsto g \cdot f
\end{aligned}
$$

where $(g \cdot f)_{t}=g_{t} \circ f_{t}$.
NOTE: Again proof uses that $\mathbf{T O P}^{h}(M, M)$ is a topological group.
Lemma
For a manifold $M,\left(\operatorname{Flow}_{\underline{M}}, \cdot\right)$ is a group, with identity Id_{M} and inverse map $\left(f^{-1}\right)_{t}=\left(f_{t}\right)^{-1}$.

Lemma

For $f, g \in \operatorname{Flow}_{\underline{M}}, f^{-1} \underset{\sim}{p} \bar{f}$ and $g \cdot f \stackrel{p}{\sim} g * f$.

Motions

Definition

Fix a $\underline{M}=(M, A)$. A motion in M is a triple $\left(f, N, f_{1}(N)\right)$ consisting of a flow $f \in$ Flow $_{M}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_{1}(N)$.

Motions

Definition

Fix a $\underline{M}=(M, A)$. A motion in M is a triple $\left(f, N, f_{1}(N)\right)$ consisting of a flow $f \in$ Flow $_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_{1}(N)$.

We will denote such a triple by $f: N \backsim N^{\prime}$ where $f_{1}(N)=N^{\prime}$, and say it is a motion from N to N^{\prime}.

Motions

Definition

Fix a $\underline{M}=(M, A)$. A motion in M is a triple $\left(f, N, f_{1}(N)\right)$ consisting of a flow $f \in$ Flow $_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_{1}(N)$.

We will denote such a triple by $f: N \backsim N^{\prime}$ where $f_{1}(N)=N^{\prime}$, and say it is a motion from N to N^{\prime}.

$$
M t_{M}\left(N, N^{\prime}\right)=\left\{\text { motions } f: N \backsim N^{\prime}\right\}
$$

Motions

Motions

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

Motions

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

Lemma

There is a group action of $\left(\operatorname{Flow}_{\underline{M}}, \cdot\right)$ on $\mathcal{P} M$, thus there is an action groupoid

$$
\mathrm{Mt}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right), \cdot, \operatorname{Id}_{M}, f^{-1}\right) .
$$

Motions

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

Lemma

There is a group action of $\left(\operatorname{Flow}_{\underline{M}}, \cdot\right)$ on $\mathcal{P} M$, thus there is an action groupoid

$$
\mathrm{Mt}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right), \cdot, \operatorname{Id}_{M}, f^{-1}\right) .
$$

Similarly $g * f: N \backsim N^{\prime \prime}$ is a motion.

Motions

For any $N \subset M, I d_{M}: N \backsim N$ is a motion. Let $f: N \backsim N^{\prime}$ and $g: N^{\prime} \backsim N^{\prime \prime}$ be motions in M, then $g \cdot f: N \backsim N^{\prime \prime}\left((g \cdot f)_{t}=g_{t} \circ f_{t}\right)$ is a motion.

Lemma

There is a group action of $\left(\operatorname{Flow}_{\underline{M}}, \cdot\right)$ on $\mathcal{P} M$, thus there is an action groupoid

$$
\mathrm{Mt}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right), \cdot, \operatorname{Id}_{M}, f^{-1}\right) .
$$

Similarly $g * f: N \backsim N^{\prime \prime}$ is a motion.

Lemma

There is a magma action of $\left(\operatorname{Flow}_{\underline{M}}, *\right)$ on $\mathcal{P M}$ we obtain an action magmoid

$$
\mathrm{Mt}_{\underline{M}}^{*}=\left(\mathcal{P} M, \mathrm{Mt}_{\underline{M}}\left(N, N^{\prime}\right), *\right) .
$$

Motions as maps $M \times \mathbb{I} \rightarrow M \times \mathbb{I}$

Definition

Let $\underline{M}=(M, A)$ be a manifold and $N, N^{\prime} \subset M$. Let

$$
\operatorname{Mt}_{\underline{M}}^{h o m}\left(N, N^{\prime}\right) \subset \operatorname{Top}_{A \times \mathbb{I}}^{h}(M \times \mathbb{I}, M \times \mathbb{I})
$$

denote the subset of homeomorphisms $g \in \operatorname{Top}_{A \times \mathbb{I}}^{h}(M \times \mathbb{I}, M \times \mathbb{I})$ such that
(I) $g(m, 0)=(m, 0)$ for all $m \in M$,
(II) $g(M \times\{t\})=M \times\{t\}$ for all $t \in \mathbb{I}$, and
(III) $g(N \times\{1\})=N^{\prime} \times\{1\}$.

Motions as maps $M \times \mathbb{I} \rightarrow M \times \mathbb{I}$

Definition
Let $\underline{M}=(M, A)$ be a manifold and $N, N^{\prime} \subset M$. Let

$$
\mathrm{Mt}_{\underline{M}}^{h o m}\left(N, N^{\prime}\right) \subset \operatorname{Top}_{A \times \mathbb{I}}^{h}(M \times \mathbb{I}, M \times \mathbb{I})
$$

denote the subset of homeomorphisms $g \in \operatorname{Top}_{A \times \mathbb{I}}^{h}(M \times \mathbb{I}, M \times \mathbb{I})$ such that
(I) $g(m, 0)=(m, 0)$ for all $m \in M$,
(II) $g(M \times\{t\})=M \times\{t\}$ for all $t \in \mathbb{I}$, and
(III) $g(N \times\{1\})=N^{\prime} \times\{1\}$.

Theorem (T., Faria Martins, Martin)

Let M be a manifold and $N, N^{\prime} \subset M$. There is a bijection

$$
\begin{aligned}
\Theta: \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) & \rightarrow \mathrm{Mt}_{\underline{M}}^{\text {hom }}\left(N, N^{\prime}\right), \\
f & \mapsto\left((m, t) \mapsto\left(f_{t}(m), t\right)\right) .
\end{aligned}
$$

Motions as maps $M \times \mathbb{I} \rightarrow M \times \mathbb{I}$

Theorem (T., Faria Martins, Martin)
Let M be a manifold and $N, N^{\prime} \subseteq M$. There is a bijection

$$
\begin{aligned}
\Theta: \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) & \rightarrow \mathrm{Mt}_{\underline{M}}^{\text {hom }}\left(N, N^{\prime}\right), \\
f & \mapsto\left((m, t) \mapsto\left(f_{t}(m), t\right)\right) .
\end{aligned}
$$

Theorem (T., Faria Martins, Martin)

Let M be a manifold and $N, N^{\prime} \subseteq M$. There is a bijection

$$
\begin{aligned}
\Theta: \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) & \rightarrow \operatorname{Mt}_{\underline{M}}^{h o m}\left(N, N^{\prime}\right), \\
f & \mapsto\left((m, t) \mapsto\left(f_{t}(m), t\right)\right) .
\end{aligned}
$$

Idea of proof
(e.g. Hatcher) As M is locally compact, Hausdorff, there is a bijection

$$
\Phi: \operatorname{Top}(\mathbb{I}, \mathbf{T O P}(M, M)) \rightarrow \boldsymbol{T o p}(M \times \mathbb{I}, M)
$$

(Coming from an adjunction between the product functor $M \times-$ and the hom functor $\mathbf{T O P}(M,-))$. It follows that the image is continuous. To show that the image is a homeomorphism we need that $\mathbf{T O P}^{h}(M, M)$ is a topological group.

$M=S^{1}$

Congruence by set-stationary motions

Definition

Let $\underline{M}=(M, A)$ be a manifold, subset pair and $N \subset M$ a subset. A motion

$$
\operatorname{SetStat}_{\underline{M}}^{N}=\left\{f: N \backsim N \in \operatorname{Mt}_{\underline{M}}(N, N) \mid f_{t}(N)=N \text { for all } t \in \mathbb{I}\right\} .
$$

Congruence by set-stationary motions

Definition

Let $\underline{M}=(M, A)$ be a manifold, subset pair and $N \subset M$ a subset. A motion

$$
\operatorname{SetStat}_{\underline{M}}^{N}=\left\{f: N \backsim N \in \operatorname{Mt}_{\underline{M}}(N, N) \mid f_{t}(N)=N \text { for all } t \in \mathbb{I}\right\} .
$$

Example

Let $M=D^{2}$ and let $\tau_{2 \pi}$ denote a flow such that $\left(\tau_{2 \pi}\right)_{t}$ is a $2 \pi t$ rotation of the disk. Now let N be a circle centred on the centre of the disk. Then $\tau_{2 \pi}: N \backsim N$ is N -stationary.

Congruence by set-stationary motions

Definition

Let $\underline{M}=(M, A)$ be a manifold, subset pair and $N \subset M$ a subset. A motion

$$
\operatorname{SetStat}_{\underline{M}}^{N}=\left\{f: N \backsim N \in \operatorname{Mt}_{\underline{M}}(N, N) \mid f_{t}(N)=N \text { for all } t \in \mathbb{I}\right\} .
$$

Example

Let $M=D^{2}$ and let $\tau_{2 \pi}$ denote a flow such that $\left(\tau_{2 \pi}\right)_{t}$ is a $2 \pi t$ rotation of the disk. Now let N be a circle centred on the centre of the disk. Then $\tau_{2 \pi}: N \backsim N$ is N -stationary.

Example

Let $M=D^{2}$, the 2-disk and let $N \subset M$ be a finite set of points. Then a motion $f: N \backsim N$ is N-stationary if and only if $f_{t}(x)=x$ for all $x \in N$ and $t \in \mathbb{I}$. More generally this holds if N is a totally disconnected subspace of M, e.g. \mathbb{Q} in \mathbb{R}.

Congruence by set-stationary motions

Congruence by set-stationary motions

Lemma

For $N, N^{\prime} \subset M$, denote by $\stackrel{m}{\sim}$ the relation

$$
f: N \backsim N^{\prime} \stackrel{m}{\sim} g: N \backsim N^{\prime} \text { if } \bar{g} * f \in\left[\operatorname{SetStat}_{\underline{M}}^{N}\right]_{p}
$$

on $\operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right)$. This is an equivalence relation.
We call this motion-equivalence and denote by $\left[f: N \backsim N^{\prime}\right]_{m}$ the motion-equivalence class of $f: N \backsim N^{\prime}$.

Congruence by set-stationary motions

Lemma

For $N, N^{\prime} \subset M$, denote by $\stackrel{m}{\sim}$ the relation

$$
f: N \backsim N^{\prime} \stackrel{m}{\sim} g: N \backsim N^{\prime} \text { if } \bar{g} * f \in\left[\operatorname{SetStat}_{\underline{M}}^{N}\right]_{\rho}
$$

on $\operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right)$. This is an equivalence relation.
We call this motion-equivalence and denote by $\left[f: N \backsim N^{\prime}\right]_{m}$ the motion-equivalence class of $f: N \backsim N^{\prime}$.

Idea of proof

Quotient first by path-homotopy. Then classes which intersect $\operatorname{SetStat}_{\underline{M}}^{N}(N, N)$ form a totally disconnected normal subgroupoid. Can be proved in general that for any totally disconnected, normal subgroupoid \mathcal{H} of a groupoid \mathcal{G} there is a congruence given by the relation $g_{1} \sim g_{2}$ if $g_{2}^{-1}{ }^{\mathcal{G}} g_{1} \in \mathcal{H}$. This leads to an equivalent relation to the given relation.

Motion groupoid

Theorem

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, \star,\left[\operatorname{Id}_{M}\right]_{m},[f]_{m} \mapsto[\bar{f}]_{m}\right)
$$

where
(I) objects are subsets of M;
(II) morphisms between subsets N, N^{\prime} are motion-equivalence classes $\left[f: N \backsim N^{\prime}\right]_{m}$ of motions;
(III) composition of morphisms is given by

$$
\left[g: N^{\prime} \backsim N^{\prime \prime}\right]_{m} *\left[f: N \backsim N^{\prime}\right]_{m}=\left[g * f: N \backsim N^{\prime \prime}\right]_{m} .
$$

(IV) the identity at each object N is the motion-equivalence class of $\operatorname{Id}_{M}: N \backsim N$, $\left(\operatorname{Id}_{M}\right)_{t}(m)=m$ for all $m \in M ;$
(V) the inverse for each morphism $\left[f: N \backsim N^{\prime}\right]_{m}$ is the motion-equivalence class of $\bar{f}: N^{\prime} \backsim N$ where $\bar{f}_{t}=f_{(1-t)} \circ f_{1}^{-1}$.

Motion groupoid

Proposition

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset, then

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, \cdot,\left[\operatorname{Id}_{M}\right]_{m},[f]_{m} \mapsto\left[f^{-1}\right]_{m}\right) .
$$

Proof

It is sufficient to observe that motions which are path equivalent are motion equivalent. Let g, f be flows satisfying $f \stackrel{D}{\sim} g$, then $\bar{g} * f \stackrel{\mathcal{D}}{\sim} g^{-1} \cdot f \stackrel{D}{\sim} g^{-1} \cdot g$, using that $\bar{g} \stackrel{p}{\sim} g^{-1}$, and $g * f \stackrel{p}{\sim} g \cdot f$. Then for all $t \in \mathbb{I},\left(g^{-1} \cdot g\right)_{t}(N)=N$, hence it is stationary.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.
We can assign a word in $\{a, b\}$ to N by representing each point in N by a and each interval by b, ordered in the obvious way using the natural ordering on \mathbb{I}.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.
We can assign a word in $\{a, b\}$ to N by representing each point in N by a and each interval by b, ordered in the obvious way using the natural ordering on \mathbb{I}. Let $N^{\prime} \subset \mathbb{I} \backslash\{0,1\}$ be another subset defined in the same way. If the word assigned to N and N^{\prime} is the same, $\left|\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)\right|=1$. Otherwise $\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)=\varnothing$.

Suppose $N \subset \mathbb{I} \backslash\{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.
We can assign a word in $\{a, b\}$ to N by representing each point in N by a and each interval by b, ordered in the obvious way using the natural ordering on \mathbb{I}. Let $N^{\prime} \subset \mathbb{I} \backslash\{0,1\}$ be another subset defined in the same way. If the word assigned to N and N^{\prime} is the same, $\left|\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)\right|=1$. Otherwise $\operatorname{Mot}_{\mathbb{I}}\left(N, N^{\prime}\right)=\varnothing$.

Let $N=\mathbb{I} \cap \mathbb{Q}$, then $\operatorname{Mot}_{\mathbb{I}}(N, N)$ is uncountably infinite.

Braid groups and loop braid groups

Theorem (T., Faria Martins, Martin)

Let n be a positive integer. Consider $M=D^{2}$. Given any finite subset K, with n elements, in the interior of D^{2}, then $\operatorname{Mot}_{D^{2}}(K, K)$ is isomorphic to the braid group in n strands (as in 'Theory of Braids', Artin). In particular the image of the class of a motion which moves points as below is an elementary braid on two strands.

Also if $\underline{D^{3}}=\left(D^{3}, \partial D^{3}\right)$ and $L \subset D^{3}$ is an unlink in the interior with n components, then $\operatorname{Mot}_{D^{3}}(L, L)$ is isomorphic to the extended loop braid group (as in 'A journey through loop braid groups', Damiani).

Relating motion groupoids

Lemma

Let (M, A) and $\left(M^{\prime}, A^{\prime}\right)$ be pairs such that there exists a homeomorphism $\psi: M \rightarrow M^{\prime}$ satisfying $\psi(A)=A^{\prime}$. Then there is a isomorphism of categories

$$
\Psi: \operatorname{Mot}_{\underline{M}} \rightarrow \operatorname{Mot}_{\underline{M^{\prime}}}
$$

defined as follows. On objects $N \subset M, \Psi(N)=\psi(N)$. For a motion $f: N \backsim N^{\prime}$ in M, let $\left(\psi \circ f \circ \psi^{-1}\right)_{t}=\psi \circ f_{t} \circ \psi^{-1}$. Then ψ sends the equivalence class $\left[f: N \backsim N^{\prime}\right]_{m}$ to the equivalence class $\left[\psi \circ f \circ \psi^{-1}: \psi(N) \rightarrow \psi\left(N^{\prime}\right)\right]_{m}$.

Relating automorphism groups

Proposition

For any pair (M, A) and subset $N \subseteq M$ there is an involutive endofunctor on $\operatorname{Mot}_{\underline{M}}$ defined by

$$
\begin{aligned}
\operatorname{Mot}_{\underline{M}}(N, N) & \cong \operatorname{Mot}_{\underline{M}}(M \backslash N, M \backslash N), \\
f: N G N^{\prime} & \mapsto f: M \backslash N \backsim M \backslash N^{\prime} .
\end{aligned}
$$

Relating automorphism groups

Proposition

For any pair (M, A) and subset $N \subseteq M$ there is an involutive endofunctor on $\operatorname{Mot}_{\underline{M}}$ defined by

$$
\begin{aligned}
\operatorname{Mot}_{\underline{M}}(N, N) & \cong \operatorname{Mot}_{\underline{M}}(M \backslash N, M \backslash N), \\
f: N G N^{\prime} & \mapsto f: M \backslash N G M \backslash N^{\prime} .
\end{aligned}
$$

Notice that generally these automorphism groups are not connected in the motion groupoid - this would imply N homeomorphic to $M \backslash N$.

Alternative equivalence relations on the motion groupoid

Worldlines of motions

Worldlines of motions

Definition

The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
\mathbf{W}\left(f: N \backsim N^{\prime}\right):=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

Worldlines of motions

Definition

The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
\mathbf{W}\left(f: N \backsim N^{\prime}\right):=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

Proposition

Let $f, g: N \backsim N^{\prime}$ be motions with the same worldline, so we have

$$
\mathbf{W}\left(f: N \backsim N^{\prime}\right)=\mathbf{W}\left(g: N \backsim N^{\prime}\right) .
$$

Then $f: N \backsim N^{\prime}$ and $g: N \backsim N^{\prime}$ are motion equivalent.

Worldlines of motions

Definition

The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
\mathbf{W}\left(f: N \backsim N^{\prime}\right):=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

Proposition

Let $f, g: N \backsim N^{\prime}$ be motions with the same worldline, so we have

$$
\mathbf{W}\left(f: N \backsim N^{\prime}\right)=\mathbf{W}\left(g: N \backsim N^{\prime}\right) .
$$

Then $f: N \backsim N^{\prime}$ and $g: N \backsim N^{\prime}$ are motion equivalent.
Proof
For all $t \in \mathbb{I},\left(g^{-1} \cdot f\right)_{t}(N)=g_{t}^{-1} \circ g_{t}(N)=N$. Thus $g^{-1} \cdot f$ is N-stationary, and hence $\bar{g} * f$ path-homotopic to a stationary motion.

Worldlines of motions

Worldlines of motions

Theorem (T., Faria Martins, Martin)
Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. Two motions $f, f^{\prime}: N \backsim N^{\prime}$ in $\mathrm{Mt}_{\underline{M}}$ are motion equivalent if, and only if, their worldlines are level preserving ambient isotopic, relative to $(M \times(\{0,1\})) \cup(A \times \mathbb{I})$, pointwise.

Groupoids of self homeomorphisms

Let M be a manifold and $A \subseteq M$ a subset.
Lemma
There is a (left) group action

$$
\begin{aligned}
\sigma^{A}: \boldsymbol{T o p}_{A}^{h}(M, M) \times \mathcal{P} M & \rightarrow \mathcal{P} M \\
(\mathfrak{f}, N) & \mapsto \mathfrak{f}(N) .
\end{aligned}
$$

Groupoids of self homeomorphisms

Let M be a manifold and $A \subseteq M$ a subset.

Proposition

There is an action groupoid Homeo $_{M}$ with objects $\mathcal{P} M$. Explicitly the morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples $(\mathfrak{f}, N, \mathfrak{f}(N))$ where

- $\mathrm{f}: M \rightarrow M$ is a homeomorphism,
- $\mathfrak{f}(N)=N^{\prime}$,
- \mathfrak{f} fixes A pointwise.

Groupoids of self homeomorphisms

Let M be a manifold and $A \subseteq M$ a subset.

Proposition

There is an action groupoid Homeo $_{M}$ with objects $\mathcal{P} M$. Explicitly the morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples $(\mathfrak{f}, N, \mathfrak{f}(N))$ where

- $\mathrm{f}: M \rightarrow M$ is a homeomorphism,
- $\mathfrak{f}(N)=N^{\prime}$,
- \mathfrak{f} fixes A pointwise.

We will denote triples $(\mathfrak{f}, N, \mathfrak{f}(N)) \in \operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ as $\mathfrak{f}: N \sim N^{\prime}$. Identity: $\operatorname{id}_{M}: N \sim N$ Inverse: $\mathfrak{f}: N \sim N^{\prime} \mapsto \mathfrak{f}^{-1}: N^{\prime} \sim N$.

Groupoids of self homeomorphisms

Let M be a manifold and $A \subseteq M$ a subset.

Proposition

There is an action groupoid Homeo $_{M}$ with objects $\mathcal{P} M$. Explicitly the morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples $(\mathfrak{f}, N, f(N))$ where

- $\mathrm{f}: M \rightarrow M$ is a homeomorphism,
- $\mathfrak{f}(N)=N^{\prime}$,
- ffixes A pointwise.

We will denote triples $(\mathfrak{f}, N, \mathfrak{f}(N)) \in \operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ as $\mathfrak{f}: N \sim N^{\prime}$. Identity: $\operatorname{id}_{M}: N \sim N$ Inverse: $\mathfrak{f}: N \sim N^{\prime} \mapsto \mathfrak{f}^{-1}: N^{\prime} \sim N$.
We will also sometimes consider $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ as the projection to the first element of the triple. Then can equip morphism sets with a topology and $\mathbf{T O P}_{A}^{h}(M, M)=\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing)=\operatorname{Homeo}_{\underline{M}}(M, M)$ and every $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right) \subseteq \operatorname{TOP}_{A}^{h}(M, M)$. Notice each self-homeomorphism \mathfrak{f} of M will belong to many such $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$.

Relative path-equivalence

Definition

Fix a pair (M, A). Define a relation on $\operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right)$ as follows. Let $f: N \backsim N^{\prime} \stackrel{\leftarrow p}{\sim} g: N \backsim N^{\prime}$ if the motions $f: N \backsim N^{\prime}$ and $g: N \backsim N^{\prime}$ are relative path-homotopic. This means there exists a continuous map

$$
H: \mathbb{I} \times \mathbb{I} \rightarrow \mathbf{T O P}_{A}^{h}(M, M)
$$

such that

- for any fixed $s \in \mathbb{I}, t \mapsto H(t, s)$ is a motion from N to N^{\prime},
- for all $t \in \mathbb{I}, H(t, 0)=f_{t}$, and
- for all $t \in \mathbb{I}, H(t, 1)=g_{t}$.

We call such a homotopy a relative path-homotopy.

Relative path-equivalence

Relative path-equivalence

Theorem (T. , Faria Martins, Martin)
For a pair $\underline{M}=(M, A)$ and a motion $f: N \backsim N^{\prime}$ in \underline{M} we have

$$
\left[f: N \backsim N^{\prime}\right]_{\mathrm{r}}=\left[f: N \backsim N^{\prime}\right]_{\mathrm{m}} .
$$

Key ingredients of proof
Direct construction of appropriate homotopies. Uses normality of stationary motions.

Relative path-equivalence

Theorem (T. , Faria Martins, Martin)
For a pair $\underline{M}=(M, A)$ and a motion $f: N \backsim N^{\prime}$ in \underline{M} we have

$$
\left[f: N \backsim N^{\prime}\right]_{\mathrm{p}}=\left[f: N \backsim N^{\prime}\right]_{\mathrm{m}} .
$$

Key ingredients of proof

Direct construction of appropriate homotopies. Uses normality of stationary motions.

Relative path equivalence is precisely the equivalence relation in the relative fundamental group, hence

$$
\operatorname{Mot}_{\underline{M}}(N, N)=\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)
$$

We will need this later!

Mapping class groupoids

Mapping class groupoid

Recall that for a pair $\underline{M}=(M, A)$ and for subsets $N, N^{\prime} \subset M$, morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples denoted $\mathfrak{f}: N \sim N^{\prime}$ where $\mathfrak{f} \in \operatorname{Top}_{A}^{h}(M, M)$ and $\mathfrak{f}(N)=N^{\prime}$. We also think of the elements of $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ as the projection to the first coordinate of each triple i.e. $\mathfrak{f} \in \boldsymbol{T o p}_{A}^{h}(M, M)$ such that $\mathfrak{f}(N)=N^{\prime}$.

Mapping class groupoid

Recall that for a pair $\underline{M}=(M, A)$ and for subsets $N, N^{\prime} \subset M$, morphisms in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ are triples denoted $\mathfrak{f}: N \sim N^{\prime}$ where $\mathfrak{f} \in \operatorname{Top}_{A}^{h}(M, M)$ and $\mathfrak{f}(N)=N^{\prime}$. We also think of the elements of $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$ as the projection to the first coordinate of each triple i.e. $\mathfrak{f} \in \operatorname{Top}_{A}^{h}(M, M)$ such that $\mathfrak{f}(N)=N^{\prime}$.

Definition

Let $N, N^{\prime} \subset M$. For any $\mathfrak{f}: N \sim N^{\prime}$ and $\mathfrak{g}: N \sim N^{\prime}$ in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right), \mathfrak{f}: N \sim N^{\prime}$ is
said to be isotopic to $\mathfrak{g}: N \sim N^{\prime}$, denoted by $\stackrel{i}{\sim}$, if there exists a continuous map

$$
H: M \times \mathbb{I} \rightarrow M
$$

such that

- for all fixed $s \in \mathbb{I}$, the map $m \mapsto H(m, s)$ is in $\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)$,
- for all $m \in M, H(m, 0)=f(m)$, and
- for all $m \in M, H(m, 1)=\mathfrak{g}(m)$.

We call such a map an isotopy from $\mathfrak{f}: N \sim N^{\prime}$ to $\mathfrak{g}: N \sim N^{\prime}$.

Mapping class groupoids

Lemma

The family of relations (Homeo $\left.\underline{M}\left(N, N^{\prime}\right), \stackrel{i}{\sim}\right)$ for all pairs $N, N^{\prime} \subseteq M$ are a congruence on $\mathrm{Homeom}_{\text {м }}$.

Theorem (T., Faria Martins, Martin)
Let $\underline{M}=(M, A)$ be a manifold submanifold pair. There is a groupoid

$$
\operatorname{MCG}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right) / \stackrel{i}{\sim}, o,\left[\mathrm{id}_{M}\right]_{j},[\mathfrak{f}]_{\mathrm{i}} \mapsto\left[\mathfrak{f}^{-1}\right]_{\mathrm{i}}\right) .
$$

We call this the mapping class groupoid of M.

Mapping class groupoids

Using bijection

$$
\Phi: \operatorname{Top}(\mathbb{I}, \mathbf{T O P}(M, M)) \rightarrow \boldsymbol{\operatorname { T o p }}(M \times \mathbb{I}, M),
$$

a continuous map $M \times \mathbb{I} \rightarrow M$ which is an isotopy corresponds to a path $\mathbb{I} \rightarrow \operatorname{Homeo}_{M}\left(N, N^{\prime}\right)$ from \mathfrak{f} to \mathfrak{g}. Hence

Lemma

Let M be a manifold. We have that as sets

$$
\operatorname{MCG}_{\underline{M}}\left(N, N^{\prime}\right)=\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}\left(N, N^{\prime}\right)\right) .
$$

Mapping class groupoids

Example

If $\underline{S^{1}}=\left(S^{1}, \varnothing\right)$, we have

$$
\mathrm{MCG}_{\underline{\underline{S}^{1}}}(\varnothing, \varnothing)=\mathbb{Z} / 2 \mathbb{Z} .
$$

$\mathbf{T O P}^{h}\left(S^{1}, S^{1}\right)$ has two path-components, containing respectively the orientation preserving and the orientation reversing homeomorphisms from S^{1} to itself. Each is homotopic to S^{1} (Hamstrom). Therefore the homomorphism $\pi_{0}\left(\operatorname{Homeo}_{\underline{s^{1}}}(\varnothing, \varnothing)\right) \rightarrow\{ \pm 1\} \cong \mathbb{Z} / 2 \mathbb{Z}$ induced by the degree homomorphism deg: $\boldsymbol{T o p}^{h}\left(S^{1}, S^{1}\right)=$ Homeo $_{\underline{s^{1}}}(\varnothing, \varnothing) \rightarrow\{ \pm 1\}$ is an isomorphism.

Example

Proposition

Let $\underline{D^{2}}=\left(D^{2}, \partial D^{2}\right)$. The morphism group $\operatorname{MCG}_{\underline{D^{2}}}(\varnothing, \varnothing)$ is trivial.

Example

Proposition

Let $\underline{D^{2}}=\left(D^{2}, \partial D^{2}\right)$. The morphism group $\mathrm{MCG}_{\underline{D^{2}}}(\varnothing, \varnothing)$ is trivial.

Proof

(This follows from the Alexander trick.) Suppose we have $\mathfrak{f}: \varnothing \sim \varnothing$ in $\underline{D^{2}}$. Define

$$
f_{t}(x)= \begin{cases}t \mathfrak{f}(x / t) & 0 \leq|x| \leq t \\ x & t \leq|x| \leq 1\end{cases}
$$

Notice that $f_{0}=\operatorname{id}_{D^{2}}$ and $f_{1}=\mathfrak{f}$ and each f_{t} is continuous. Moreover:

$$
\begin{aligned}
H: D^{2} \times \mathbb{I} & \rightarrow D^{2}, \\
(x, t) & \mapsto f_{t}(x)
\end{aligned}
$$

is a continuous map. So we have constructed an isotopy from any boundary preserving self-homeomorphism of D^{2} to $i d_{D^{2}}$.

Functor from the motion groupoid to the mapping class groupoid

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Theorem (T., Faria Martins, Martin)
Let $\underline{M}=(M, A)$. There is a functor

$$
\mathrm{F}: \operatorname{Mot}_{\underline{M}} \rightarrow \mathrm{MCG}_{\underline{M}}
$$

which is the identity on objects and on morphisms we have

$$
\mathrm{F}\left(\left[f: N \backsim N^{\prime}\right]_{m}\right)=\left[f_{1}: N \sim N^{\prime}\right] .
$$

Well definedness of F

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \operatorname{MCG}_{M}$

Lemma

The functor

$$
\mathrm{F}: \operatorname{Mot}_{\underline{M}} \rightarrow \mathrm{MCG}_{\underline{M}}
$$

is full if and only if $\pi_{0}\left(\mathbf{T O P}_{A}^{h}(M, M), \mathrm{id}_{M}\right)$ is trivial.

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \operatorname{MCG}_{M}$

(Hatcher) Let X be a space, $Y \subset X$ a subspace and $x_{0} \in Y$ a basepoint. There is a long exact sequence:

$$
\begin{aligned}
&\left.\ldots \rightarrow \pi_{n}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i_{*}^{n}} \pi_{n}\left(X,\left\{x_{0}\right\}\right)\right) \xrightarrow{j_{*}^{n}} \pi_{n}\left(X, Y,\left\{x_{0}\right\}\right) \\
& \xrightarrow{\partial^{n}} \pi_{n-1}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i_{*}^{n-1}} \ldots \xrightarrow{i_{*}^{0}} \pi_{0}\left(X,\left\{x_{0}\right\}\right) .
\end{aligned}
$$

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

(Hatcher) Let X be a space, $Y \subset X$ a subspace and $x_{0} \in Y$ a basepoint. There is a long exact sequence:

$$
\begin{aligned}
&\left.\ldots \rightarrow \pi_{n}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i^{n}} \pi_{n}\left(X,\left\{x_{0}\right\}\right)\right) \xrightarrow{j_{*}^{n}} \pi_{n}\left(X, Y,\left\{x_{0}\right\}\right) \\
& \xrightarrow{\partial^{n}} \pi_{n-1}\left(Y,\left\{x_{0}\right\}\right) \xrightarrow{i_{*}^{n-1}} \ldots \xrightarrow{i_{*}^{0}} \pi_{0}\left(X,\left\{x_{0}\right\}\right) .
\end{aligned}
$$

Maps i and j are inclusions. Maps ∂ are restrictions to single face, in particular

$$
\begin{aligned}
\partial^{1}: \pi_{1}\left(X, A,\left\{x_{0}\right\}\right) & \rightarrow \pi_{0}\left(A,\left\{x_{0}\right\}\right), \\
{[\gamma]_{\mathrm{p}} } & \mapsto[\gamma(1)]_{\mathrm{p}} .
\end{aligned}
$$

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \operatorname{MCG}_{M}$

Recall $\operatorname{Mot}_{\underline{M}}(N, N)=\pi_{1}\left(\operatorname{Homeo}_{M}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$ and $\operatorname{MCG}_{\underline{M}}(N, N)=\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$.

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Recall $\operatorname{Mot}_{\underline{M}}(N, N)=\pi_{1}\left(\operatorname{Homeo}_{M}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$ and $\operatorname{MCG}_{\underline{M}}(N, N)=\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right)$.

Lemma

Let $\underline{M}=(M, A)$ be a manifold, subset pair, and fix a subset $N \subset M$. Then we have a long exact sequence

$$
\ldots \rightarrow \pi_{n}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right) \xrightarrow{i_{n}^{n}} \pi_{n}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \operatorname{id}_{M}\right) \xrightarrow{\dot{j}_{*}^{n}}
$$

$$
\pi_{n}\left(\operatorname{Homeo}_{M}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right) \xrightarrow{\partial^{n}} \pi_{n-1}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right) \xrightarrow{i_{*}^{n-1}}
$$

$$
\ldots \xrightarrow{\partial^{2}} \pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{M}\right) \xrightarrow{i_{*}^{1}} \pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \operatorname{id}_{M}\right)
$$

$$
\xrightarrow{j_{*}^{1}} \operatorname{Mot}_{\underline{M}}(N, N) \xrightarrow{F} \operatorname{MCG}_{\underline{M}}(N, N) \xrightarrow{i_{0}^{0}} \pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \operatorname{id}_{M}\right)
$$

where all maps are group maps and F is the appropriate restriction of the functor $\mathrm{F}: \mathrm{Mot}_{\underline{M}} \rightarrow \mathrm{MCG}_{\underline{\underline{M}}}$.

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Lemma

Suppose

- $\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial, and
- $\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial.

Then there is a group isomorphism

$$
\mathrm{F}: \operatorname{Mot}_{\underline{M}}(N, N) \xrightarrow{\sim} \mathrm{MCG}_{\underline{M}}(N, N) .
$$

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Theorem (T., Faria Martins, Martin)
Let M be a manifold. If

- $\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial, and
- $\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial,
the functor

$$
\mathrm{F}: \operatorname{Mot}_{\underline{M}} \rightarrow \mathrm{MCG}_{\underline{M}},
$$

is an isomorphism of categories.

Functor $\mathrm{F}: \operatorname{Mot}_{M} \rightarrow \mathrm{MCG}_{M}$

Proof

Suppose $\pi_{1}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ and $\pi_{0}\left(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ are trivial.
Already proved F is full. We check F is faithful. Let $\left[f: N \backsim N^{\prime}\right]_{\mathrm{m}}$ and $\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}$ be in $\operatorname{Mot}_{\underline{M}}\left(N, N^{\prime}\right)$. If $\mathrm{F}\left(\left[f: N \backsim N^{\prime}\right]_{m}\right)=\mathrm{F}\left(\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}\right)$, then

$$
\begin{aligned}
{\left[\operatorname{id}_{M}: N \sim N\right]_{\mathrm{i}} } & =\mathrm{F}\left(\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}\right)^{-1} \circ \mathrm{~F}\left(\left[f: N \backsim N^{\prime}\right]_{m}\right) \\
& =\mathrm{F}\left(\left[f^{\prime}: N \backsim N^{\prime}\right]_{m}^{-1} *\left[f: N \backsim N^{\prime}\right]_{m}\right) \\
& =\mathrm{F}\left(\left[\bar{f}^{\prime} * f: N \backsim N\right]_{m}\right) .
\end{aligned}
$$

By group isomorphism this is true if and only if

$$
\left[\bar{f}^{\prime} * f: N \backsim N\right]_{m}=\left[\operatorname{Id}_{M}: N \backsim N\right]_{m}
$$

which is equivalent to saying $\operatorname{Id}_{M} *\left(\bar{f}^{\prime} * f\right)$ is path-equivalent to a stationary motion, and hence that $\bar{f}^{\prime} * f$ is path-equivalent to the stationary motion (since $\left.I d_{M} *\left(\bar{f}^{\prime} * f\right) \stackrel{\mathcal{D}}{\sim} \bar{f}^{\prime} * f\right)$. So we have $\left[f: N \backsim N^{\prime}\right]_{\mathrm{m}}=\left[f^{\prime}: N \backsim N^{\prime}\right]_{\mathrm{m}}$.

Examples: $M=D^{n}$

Proposition

Let D^{n} be the n-disk, and $\underline{D}^{n}=\left(D^{n}, \partial D^{n}\right)$. Then we have an isomorphism

$$
\mathrm{F}: \mathrm{Mot}_{\underline{D^{n}}} \rightarrow \mathrm{MCG}_{\underline{\underline{D}^{n}}} .
$$

Examples: $M=D^{n}$

Proposition

Let D^{n} be the n-disk, and $\underline{D}^{n}=\left(D^{n}, \partial D^{n}\right)$. Then we have an isomorphism

$$
\mathrm{F}: \mathrm{Mot}_{\underline{D^{n}}} \rightarrow \mathrm{MCG}_{\underline{\underline{D}^{n}}} .
$$

Proposition

Let D^{n} be the n-disk, and $\underline{D}^{n}=\left(D^{n}, \partial D^{n}\right)$. Then we have an isomorphism

$$
\mathrm{F}: \operatorname{Mot}_{\underline{D^{n}}} \rightarrow \mathrm{MCG}_{\underline{D^{n}}} .
$$

Idea of proof

We proved that $\operatorname{MCG}_{\underline{D^{2}}}(\varnothing, \varnothing)=\pi_{0}\left(\operatorname{Homeo}_{\underline{D^{2}}}(\varnothing, \varnothing), \mathrm{id}_{M}\right)$ is trivial. Alexander trick gives same result for all n. Also $\operatorname{Homeo}_{\underline{D^{n}}}(\varnothing, \varnothing)$ is contractible (Hamstrom).

Examples: $M=D^{2}$

Suppose we don't fix the boundary.

Examples: $M=D^{2}$

Suppose we don't fix the boundary. Let $P_{2} \subset D^{2}$ be a subset consisting of two points equidistant from the centre of the disk. Let τ_{π} be the path in $\mathbf{T O P}^{h}\left(D^{2}, D^{2}\right)$ such that $\tau_{\pi t}$ is a πt rotation of the disk.

Examples: $M=D^{2}$

Suppose we don't fix the boundary. Let $P_{2} \subset D^{2}$ be a subset consisting of two points equidistant from the centre of the disk. Let τ_{π} be the path in TOP $^{h}\left(D^{2}, D^{2}\right)$ such that $\tau_{\pi t}$ is a πt rotation of the disk.
The motion $\tau_{\pi}: P_{2} \backsim P_{2}$ represents a non-trivial equivalence class in $\operatorname{Mot}_{D^{2}}$, and its end point also represents a non trivial element of $\mathrm{MCG}_{D^{2}}$. Now consider the motion $\tau_{\pi} * \tau_{\pi}: P_{2} \backsim P_{2}$.

In fact, the map $\mathrm{F}: \mathrm{Mot}_{D^{2}} \rightarrow \mathrm{MCG}_{D^{2}}$ is neither full nor faithful. The space Homeo $_{D^{2}}$ is homotopy equivalent to $S^{1} \sqcup S^{1}$, where the first connected component corresponds to orientation preserving homeomorphisms and the second orientation reversing (Hamstrom). Hence we have that $\pi_{1}\left(\operatorname{Homeo}_{D^{2}}(\varnothing, \varnothing), \mathrm{id}_{D^{2}}\right)=\mathbb{Z}$ where the single generating element corresponds to the 2π rotation. And $\pi_{0}\left(\operatorname{Homeo}_{D^{2}}(\varnothing, \varnothing), \mathrm{id}_{D^{2}}\right)=\mathbb{Z} / 2 \mathbb{Z}$. So we have an exact sequence:
$\ldots \rightarrow \pi_{1}\left(\operatorname{Homeo}_{D^{2}}(N, N), \operatorname{id}_{D^{2}}\right) \xrightarrow{i_{*}^{1}} \mathbb{Z} \rightarrow \operatorname{Mot}_{D^{2}}(N, N) \rightarrow \operatorname{MCG}_{D^{2}}(N, N) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.

Examples: $M=S^{1}$

Let $P \subset S^{1}$ be a subset containing a single point in S^{1}. Similarly to the disk, there is a non-trivial morphism in $\operatorname{Mot}_{\underline{S^{1}}}(P, P)$ represented by a 2π rotation of the circle.

Note that the connected component containing $\operatorname{id}_{S^{1}}$ of $\operatorname{Homeo}_{S^{1}}(P, P)$ is contractible, (Hamstrom). In particular $\pi_{1}\left(\operatorname{Homeo}_{S^{1}}(P, P), \mathrm{id}_{S^{1}}\right)$ is trivial. We also have that $S^{1} \sqcup S^{1}$ is a strong deformation retract of $\operatorname{Homeo}_{S^{1}}(\varnothing, \varnothing)$, with the first copy of S^{1} corresponding to orientation preserving homeomorphisms and the second to orientation reversing. Hence the sequence becomes

$$
\ldots \rightarrow\{1\} \rightarrow \mathbb{Z} \rightarrow \operatorname{Mot}_{S^{1}}(P, P) \rightarrow \operatorname{MCG}_{S^{1}}(P, P) \rightarrow \mathbb{Z} / 2 \mathbb{Z}
$$

The exact sequence gives an injective map $\mathbb{Z} \cong \pi_{1}\left(\right.$ Homeos $\left._{\underline{S^{1}}}(\varnothing, \varnothing), \operatorname{id}_{S^{1}}\right) \rightarrow \operatorname{Mot}_{s^{1}}(P, P)$, sending $n \in \mathbb{Z}$ to the equivalence class of the flow tracing a $2 n \pi$ rotation of the circle S^{1}. The space $\operatorname{Homeo}_{\underline{S^{1}}}(P, P)$ only has two connected components, consisting of orientations preserving and orientation reversing homeomorphisms of S^{1} fixing P. Hence the exact sequence becomes:

$$
\ldots \rightarrow\{1\} \rightarrow \mathbb{Z} \stackrel{\cong}{\rightrightarrows} \operatorname{Mot}_{S^{1}}(P, P) \xrightarrow{0} \operatorname{MCG}_{S^{1}}(P, P) \stackrel{\cong}{\rightrightarrows} \mathbb{Z} / 2 \mathbb{Z}
$$

Motion groupoids

arXiv:2103.10377, with Paul Martin, João Faria Martins

Fiona Torzewska

University of Bristol

The loop braid category L

For each $n \in \mathbb{N}$, n evenly spaced circles in a plane in $[0,1]^{3}$.
For example for $n=4$:

Morphisms in L - equivalence class of the swap motion ϱ_{i}

Composition in L

Category composition is given by performing one motion followed by the next.

Composition in L

Category composition is given by performing one motion followed by the next.

Composition in L

Category composition is given by performing one motion followed by the next. There is a function $\mathbb{I}^{3} \sqcup \mathbb{I}^{3}$ to \mathbb{I}^{3} that takes the corresponding $I_{n} \sqcup I_{m}$ to I_{n+m} :

This extends to morphisms to give monoidal composition.

Combinatorial category L'

The category L^{\prime} is the strict monoidal (diagonal) groupoid with object monoid the natural numbers, and two generating morphisms (and inverses) both in $\mathrm{L}^{\prime}(2,2)$, call them σ and s, obeying

$$
s^{2}=1 \otimes 1
$$

where (as a morphism) 1 denotes the unit morphism in rank one;

$$
\begin{equation*}
s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \tag{3}
\end{equation*}
$$

where $s_{1}=s \otimes 1$ and $s_{2}=1 \otimes s$,
(I) $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$,
(II) $\sigma_{1} \sigma_{2} s_{1}=s_{2} \sigma_{1} \sigma_{2}$,
(III) $\sigma_{1} s_{2} s_{1}=s_{2} s_{1} \sigma_{2}$.

Combinatorial category L'

The category L^{\prime} is the strict monoidal (diagonal) groupoid with object monoid the natural numbers, and two generating morphisms (and inverses) both in $\mathrm{L}^{\prime}(2,2)$, call them σ and s, obeying

$$
s^{2}=1 \otimes 1
$$

where (as a morphism) 1 denotes the unit morphism in rank one;

$$
\begin{equation*}
s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \tag{3}
\end{equation*}
$$

where $s_{1}=s \otimes 1$ and $s_{2}=1 \otimes s$,
(I) $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$,
(II) $\sigma_{1} \sigma_{2} s_{1}=s_{2} \sigma_{1} \sigma_{2}$,
(III) $\sigma_{1} s_{2} s_{1}=s_{2} s_{1} \sigma_{2}$.

Proposition

The map on generators $s: 2 \rightarrow 2 \mapsto \varrho: 2 \rightarrow 2$ and $\sigma: 2 \rightarrow 2 \mapsto \varsigma: 2 \rightarrow 2$ is an isomorphism $L^{\prime} \cong L$.

Definition

A monoidal loop braid representation is given by a monoidal functor

$$
F: L \rightarrow \mathcal{C}
$$

where \mathcal{C} is a monoidal category.

Match ${ }^{N}$ categories

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots

Label the rows/columns of a matrix in $\operatorname{Mat}^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots

Label the rows/columns of a matrix in $\operatorname{Mat}^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$ and then the rows/columns in matrices in $\operatorname{Mat}^{N}(N \otimes N, N \otimes N)=\operatorname{Mat}^{N}\left(N^{2}, N^{2}\right)$ are labelled by pairs $|i j\rangle$ with $i, j \in\{1, \ldots, N\}$, and in $\operatorname{Mat}^{N}\left(N^{3}, N^{3}\right)|i j k\rangle \ldots$

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots

Label the rows/columns of a matrix in $\mathrm{Mat}^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$ and then the rows/columns in matrices in $\mathrm{Mat}^{N}(N \otimes N, N \otimes N)=\operatorname{Mat}^{N}\left(N^{2}, N^{2}\right)$ are labelled by pairs $|i j\rangle$ with $i, j \in\{1, \ldots, N\}$, and in $\operatorname{Mat}^{N}\left(N^{3}, N^{3}\right)|i j k\rangle \ldots$

Can relabel object N by $1, N^{2}$ by 2 etc., so set of objects is \mathbb{N}, and we have $n \otimes m=n+m$.

Let Mat denote the category with objects $n \in \mathbb{N}$ and morphisms $f: i \rightarrow j$ are $j \times i$ matrices.
Mat becomes a monoidal category with the Kronecker product of matrices, and object monoid (\mathbb{N}, \times).

Let Mat ${ }^{N} \subset$ Mat denote the full subcategory with object monoid generated by N, i.e. matrices with dimensions N, N^{2}, N^{3}, \ldots

Label the rows/columns of a matrix in $\mathrm{Mat}^{N}(N, N)$ by $|1\rangle,|2\rangle, \ldots|N\rangle$ and then the rows/columns in matrices in $\mathrm{Mat}^{N}(N \otimes N, N \otimes N)=\operatorname{Mat}^{N}\left(N^{2}, N^{2}\right)$ are labelled by pairs $|i j\rangle$ with $i, j \in\{1, \ldots, N\}$, and in $\operatorname{Mat}^{N}\left(N^{3}, N^{3}\right)|i j k\rangle \ldots$

Can relabel object N by $1, N^{2}$ by 2 etc., so set of objects is \mathbb{N}, and we have $n \otimes m=n+m$. So Mat ${ }^{N}$ is a monoidal category with object monoid $\left(N^{\mathbb{N}}, x\right) \cong(\mathbb{N},+)$.

Matrix in $\operatorname{Mat}^{5}(4,4)$ has rows and columns labelled by $|i j k /\rangle$ where $i, j, k, l \in\{1,2,3,4,5\}$.

Match ${ }^{N}$ categories

Matrix in $\operatorname{Mat}^{5}(4,4)$ has rows and columns labelled by $\left.|i j k|\right\rangle$ where $i, j, k, I \in\{1,2,3,4,5\}$.

Definition

A matrix $M \in \operatorname{Mat}^{N}(n, n)$ is charge conserving if $M_{w, w^{\prime}}=\langle w| M\left|w^{\prime}\right\rangle \neq 0$ implies that w is a perm of w^{\prime}. That is $w=\sigma w^{\prime}$ for some $\sigma \in \Sigma_{n}$, where symmetric group Σ_{n} acts by place permutation.

Example in $\operatorname{Mat}^{2}(2,2)$
$|11\rangle$
$|21\rangle$
$|12\rangle$
$|22\rangle$
$\mid 22$$\left(\begin{array}{cccc}a_{1} & 0 & 0 & |12\rangle \\ 0 & a & b & 0 \\ 0 & c & d & 0 \\ 0 & 0 & 0 & a_{2}\end{array}\right)$

Matrix in $\operatorname{Mat}^{5}(4,4)$ has rows and columns labelled by $\left.|i j k|\right\rangle$ where $i, j, k, I \in\{1,2,3,4,5\}$.

Definition

A matrix $M \in \operatorname{Mat}^{N}(n, n)$ is charge conserving if $M_{w, w^{\prime}}=\langle w| M\left|w^{\prime}\right\rangle \neq 0$ implies that w is a perm of w^{\prime}. That is $w=\sigma w^{\prime}$ for some $\sigma \in \Sigma_{n}$, where symmetric group Σ_{n} acts by place permutation.

Example in $\operatorname{Mat}^{2}(2,2)$
$|11\rangle$
$|21\rangle$
$|12\rangle$
$|22\rangle$
$|22\rangle$$\left(\begin{array}{cccc}a_{1} & 0 & 0 & |12\rangle \\ 0 & a & b & 0 \\ 0 & c & d & 0 \\ 0 & 0 & 0 & a_{2}\end{array}\right)$

Charge conserving matrices form a monoidal subcategory of Mat ${ }^{N}$ - denote this Match ${ }^{N}$.

Charge conserving loop braid representations

Definition

A charge conserving monoidal loop braid representation is given by a strict monoidal functor

$$
\text { F:L } \rightarrow \text { Match }^{N}
$$

such that $\mathrm{F}(1)=1$.

Charge conserving loop braid representations

Definition

A charge conserving monoidal loop braid representation is given by a strict monoidal functor

$$
\text { F:L } \rightarrow \text { Match }^{N}
$$

such that $\mathrm{F}(1)=1$.
Since $L \cong L^{\prime}$, such functors are given by giving the images of the generators of L^{\prime} :

$$
F_{*}=(F(s), F(\sigma))=(S, R)
$$

such that $S, R \in \operatorname{Match}^{N}(2,2)$, and

$$
\begin{aligned}
S^{2} & =1, \\
S_{1} S_{2} S_{1} & =S_{2} S_{1} S_{2}
\end{aligned}
$$

where $S_{1}=S \otimes 1$ and $S_{2}=1 \otimes S$ (where \otimes is Kronecker product),
(I) $R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2}$,
(II) $R_{1} R_{2} S_{1}=S_{2} R_{1} R_{2}$,
(III) $R_{1} S_{2} S_{1}=S_{2} S_{1} R_{2}$.

Signed multisets

Let $J_{N}^{ \pm}$be the set of signed multisets of compositions with at most two parts, of total rank N.

Example

$$
J_{2}^{ \pm}=\left\{\left(\square^{2},\right),\left(\square^{1},\right),\left(\square^{1},\right),\left(\square^{1}, \square^{1}\right),\left(, \square^{2}\right),\left(, \square^{1}\right),\left(, \square^{1}\right)\right\}
$$

Example

is in $J_{26}^{ \pm}$.

Theorem (Martin, Rowell, T.)

The set of all varieties of charge-conserving loop braid representations from the loop braid category L to the category Match ${ }^{N}$ of charge conserving matrices

$$
\text { F:L } \rightarrow \text { Match }^{N}
$$

may be indexed by $J_{N}^{ \pm}$.

Motion groupoids

arXiv:2103.10377, with Paul Martin, João Faria Martins

Fiona Torzewska

University of Bristol

