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Given a PDE system Σ, for every solution of Σ the corresponding characteristic

variety defines some ‘geometry’ such as Einstein-Weyl geometry, self-dual

geometry, involutive scroll geometry, etc.

Master-equations are PDE systems Σ whose solutions parametrise ‘generic’

geometries of the above type.

• Self-dual Ricci-flat geometry in 4D

– Self-dual Ricci-flat metrics via the Plebansky heavenly equation

• Einstein-Weyl geometry in 3D

– Einstein-Weyl structures via the Manakov-Santini system

• Self-dual geometry in 4D

– Self-dual structures via conformal self-duality equations

• Involutive scroll geometry

– Involutive scroll structures via the hierarchy of conformal self-duality

equations

E.V. Ferapontov, B. Kruglikov, Involutive scroll structures on solutions of

dispersionless integrable hierarchies, arXiv:2503.10897.
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Self-dual Ricci-flat geometry in 4D

The Plebanski first heavenly equation (Plebanski, 1975) is

u13u24 − u14u23 = 1.

Characteristic variety (collection of characteristic covectors pidx
i) is a quadric:

gijpipj = u13p2p4 + u24p1p3 − u14p2p3 − u23p1p4 = 0.

Solutions give rise to metrics

g = gijdx
idxj = u13dx1dx3 + u14dx1dx4 + u23dx2dx3 + u24dx2dx4

that are self-dual and Ricci-flat. All self-dual Ricci-flat metrics arise in this way!

Thus, Plebanski’s equation is a master-equation governing self-dual Ricci-flat

geometry. Lax pair [X,Y ] = 0:

X = u13∂4 − u14∂3 + λ∂1, Y = −u23∂4 + u24∂3 − λ∂2.

Integral surfaces of the distribution 〈X,Y 〉 provide Penrose’s three-parameter

family of totally null surfaces, that is, g(X,X) = g(X,Y ) = g(Y, Y ) = 0, thus

confirming self-duality of g.

Alternative master-equation: u13 + u24 + u11u22 − u212 = 0 (second heavenly).

3



Einstein-Weyl geometry in 3D

Einstein-Weyl geometry is a triple (D, g, ω) where D is a symmetric connection,

g is a conformal structure and ω is a covector such that

Dkgij = ωkgij , R(ij) = Λgij .

Here R(ij) is the symmetrised Ricci tensor of D and Λ is some function (the first

set of equations defines D uniquely in terms of g and ω).

Conformal invariance: D→ D, g → λg, ω → ω + d lnλ.

Theorem (Cartan, 1941): In 3D, the triple (D, g, ω) satisfies the Einstein-Weyl

equations if and only if there exists a two-parameter family of surfaces that

are totally geodesic with respect to D and null with respect to g.

Generic Einstein-Weyl structures depend on four arbitrary functions of two

variables.

3D Einstein-Weyl equations are integrable (Hitchin, 1980).
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Einstein-Weyl structures via the Manakov-Santini system

The Manakov-Santini system (2006) is

P (u) + u2x = 0, P (v) = 0, P = ∂x∂t − ∂2y + u∂2x + vx∂x∂y − vy∂2x.

Characteristic variety is a double quadric:

pxpt − p2y + up2x + vxpxpy − vyp2x = 0.

Solutions give rise to Einstein-Weyl structures (Dunajski, 2008):

g = (dy − vxdt)2 − 4(dx− (u− vy)dt)dt,

ω = −vxxdy + (4ux − 2vxy + vxvxx)dt.

All 3D Einstein-Weyl structures arise in this way! Lax pair [X,Y ] = 0:

X = ∂y + (λ− vx)∂x + ux∂λ, Y = ∂t − (λ2 − λvx + vy − u)∂x − (λux − uy)∂λ.

Projecting integral surfaces of the distribution spanned by X,Y from

(x, y, t, λ)-space to (x, y, t)-space one obtains Cartan’s two-parameter family

of totally geodesic null surfaces.

M. Dunajski, E.V. Ferapontov and B. Kruglikov, On the Einstein-Weyl and

conformal self-duality equations, J. Math. Phys. 56, 083501 (2015).
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Self-dual geometry in 4D

Let g be a conformal structure in 4D and let W be its Weyl tensor. Consider

self-dual and anti-self-dual parts, W± = 1
2

(W ± ∗W ), where ∗ is the Hodge star

operator defined as

∗W i
jkl =

1

2

√
det g giagbcεajbdW

d
ckl.

A conformal structure is said to be self-dual/anti-self-dual if either W− or W+

vanishes.

Theorem (Penrose, 1976): self-duality of g is equivalent to the existence of a

three-parameter family of totally null surfaces.

It was shown by Grossman (2000) that self-dual structures locally depend on six

arbitrary functions of three variables.
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Self-dual structures via conformal self-duality equations

Conformal self-duality equations have the form

R(u) = u1w2 − u2w1, R(v) = v1w2 − v2w1, R(w) = 0,

where R is the second-order operator

R = u1∂2∂3 + v1∂2∂4 − u2∂1∂3 − v2∂1∂4.

Characteristic variety is a triple quadric:

u1p2p3 + v1p2p4 − u2p1p3 − v2p1p4 = 0.

Solutions give rise to self-dual conformal structures:

g = (u1dx
1 + u2dx

2)dx4 − (v1dx
1 + v2dx

2)dx3.

All self-dual structures in 4D arise in this way! Lax pair [X,Y ] ∈ span〈X,Y 〉:

X = λ∂1 − u1∂3 − v1∂4 + λw1∂λ, Y = λ∂2 − u2∂3 − v2∂4 + λw2∂λ.

Projecting integral surfaces of the distribution spanned by X,Y from

(x1, . . . , x4, λ)-space to (x1, . . . , x4)-space one obtains Penrose’s

three-parameter family of totally null surfaces.
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Involutive scroll geometry

In projective space Pn choose two complementary Pk and Pl, n = k + l + 1. Choose

two rational normal curves of degrees k and l in these subspaces, let φ be an

isomorphism between them. The rational normal scroll Sk,l is a smooth ruled surface

of degree n− 1 consisting of all lines joining the corresponding points x and φ(x).

If k < l then the rational normal curve of degree k is uniquely determined by the scroll

and is called its directrix. Del Pezzo’s theorem implies that scrolls Sk,l are the only

irreducible smooth ruled surfaces of degree deg(Sk,l) = k + l = n− 1 spanning Pn.

Given an (n+ 1)-dimensional manifold M , a (rational normal) scroll structure is a

distribution of rational normal scrolls Sk,l in the projectivised cotangent bundle

Pn = PT∗M . Explicitly, a scroll structure can be parametrised as αω(λ) + β φ(λ)

where α and β are some functions and

ω(λ) = ω0 + λω1 + · · ·+ λ
k
ωk, φ(λ) = φ0 + λφ1 + · · ·+ λ

l
φl.

For every x ∈M , the equations ω(λ) = φ(λ) = 0 define a one-parameter family of

α-subspaces of codimension two in TxM parametrised by λ. A codimension two

submanifold of M is said to be an α-manifold if all its tangent spaces are α-subspaces.

Definition. A scroll structure is said to be involutive if every α-subspace is tangential

to some α-manifold.
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Involutive S1,2 scroll structures via heavenly hierarchy

The first three equations in the heavenly hierarchy are as follows:

u15 − u13u44 + u14u34 = 0, u14u23 − u13u24 = 1, u25 − u23u44 + u24u34 = 0.

The characteristic variety is the intersection of quadrics,

p1p5 − u13p24 − u44p1p3 + u14p3p4 + u34p1p4 = 0,

u14p2p3 + u23p1p4 − u13p2p4 − u24p1p3 = 0,

p2p5 − u23p24 − u44p2p3 + u24p3p4 + u34p2p4 = 0,

which specify a scroll S1,2 parametrised as pidx
i = αω(λ) + β φ(λ), where

ω(λ) = −u14dx1 − u24dx2 + λ(dx3 + u44dx5),

φ(λ) = u13dx1 + u23dx2 + λ(dx4 − u34dx5) + λ2dx5.

As ω(λ) is linear in λ, it plays the role of directrix of the scroll. The equations

ω(λ) = φ(λ) = 0 define a 3-dimensional integrable distribution

〈λ∂1 + u14∂3 − u13∂4, λ∂2 + u24∂3 − u23∂4, ∂5 − u44∂3 + (u34 − λ)∂4〉,

whose integral manifolds are α-manifolds. Thus, this S1,2 scroll structure is

involutive.
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Involutive S1,2 scroll structures in 5D

The first few flows of the hierarchy of conformal self-duality equations (Bogdanov,

2016) come from the requirement of involutivity of the distribution

D = span{X,Y, Z} where

X = λ∂1 − u1∂3 − v1∂4 + λw1∂λ,

Y = λ∂2 − u2∂3 − v2∂4 + λw2∂λ,

Z = ∂5 + u4∂3 + (v4 + w − λ)∂4 − λw4∂λ.

(9 second-order PDEs for u, v, w). Characteristic variety, which is a triple scroll

S1,2, can be parametrised as pidx
i = αω(λ) + β φ(λ) where α, β are arbitrary

functions and

ω(λ) = u1dx1 + u2dx2 + λ(dx3 − u4dx5),

φ(λ) = v1dx1 + v2dx2 + λ(dx4 − (v4 + w)dx5) + λ2dx5.

All involutive S1,2 scroll structures in 5D arise in this way! Projecting integral

manifolds of the distribution D from (x1, . . . , x5, λ)-space to (x1, . . . , x5)-space

one obtains three-parameter family of α-manifolds.

Generic involutive S1,2 scroll structures locally depend on 9 arbitrary

functions of 3 variables.
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Involutive S2,2 scroll structures in 6D

The next few flows of the hierarchy of conformal self-duality equations come from

the requirement of involutivity of the distribution D = span{X,Y, Z,W} where

X = λ∂1 − u1∂3 − v1∂4 + λw1∂λ,

Y = λ∂2 − u2∂3 − v2∂4 + λw2∂λ,

Z = ∂5 + u4∂3 + (v4 + w − λ)∂4 − λw4∂λ,

W = ∂6 + (u3 + w − λ)∂3 + v3∂4 − λw3∂λ.

(18 second-order PDEs for u, v, w). Characteristic variety, which is a triple scroll

S2,2, can be parametrised as pidx
i = αω(λ) + β φ(λ) where α, β are arbitrary

functions and
ω(λ) = u1dx1 + u2dx2 + λ(dx3 − u4dx5 − (u3 + w)dx6) + λ2dx6,

φ(λ) = v1dx1 + v2dx2 + λ(dx4 − (v4 + w)dx5 − v3dx6) + λ2dx5.

All involutive S2,2 scroll structures in 6D arise in this way! Projecting integral

manifolds of the distribution D from (x1, . . . , x6, λ)-space to (x1, . . . , x6)-space

one obtains three-parameter family of α-manifolds.

Generic involutive S2,2 scroll structures locally depend on 12 arbitrary

functions of 3 variables.
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Involutive scroll structures via the general heavenly

hierarchy

The general heavenly hierarchy (Bogdanov, 2015) is a collection of PDEs

(ak − aj)(al − ai)ujkuil + (ai − ak)(al − aj)uikujl + (aj − ai)(al − ak)uijukl = 0,

one equation for every quadruple of distinct indices i, j, k, l ∈ {1, . . . , n+ 1}. The

characteristic variety is the intersection of quadrics,

(ak − aj)(al − ai)(ujkpipl + uilpjpk) + (ai − ak)(al − aj)(uikpjpl + ujlpipk)

+ (aj − ai)(al − ak)(uijpkpl + uklpipj) = 0.

For n = 3 we obtain a scroll S1,1 which is nothing but a quadric in P3.

For n = 4 and n = 5 we have the scrolls S1,2 and S2,2, respectively.

For n = 2k and n = 2k + 1 we have the scrolls Sk−1,k and Sk,k, respectively.

Question: are there integrable PDE systems in 4D whose characteristic varieties

define involutive scroll structures of type Sk,l with |k − l| > 1?
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Happy Jubilee Sasha!

13


