Involutive scroll structures and heavenly type hierarchies

Evgeny Ferapontov

Department of Mathematical Sciences
Loughborough University, UK
E.V.Ferapontov@Iboro.ac.uk

Based on joint work with Boris Kruglikov

Geometry and Integrability
ICMS, Edinburgh, 12-16 May 2025



Given a PDE system 2., for every solution of > the corresponding characteristic
variety defines some ‘geometry’ such as Einstein-Weyl geometry, self-dual

geometry, involutive scroll geometry, etc.

Master-equations are PDE systems > whose solutions parametrise ‘generic’
geometries of the above type.
e Self-dual Ricci-flat geometry in 4D

— Self-dual Ricci-flat metrics via the Plebansky heavenly equation

e LEinstein-Weyl geometry in 3D

— FEinstein-Weyl structures via the Manakov-Santini system

e Self-dual geometry in 4D

— Self-dual structures via conformal self-duality equations

e Involutive scroll geometry

— Involutive scroll structures via the hierarchy of conformal self-duality

equations

E.V. Ferapontov, B. Kruglikov, Involutive scroll structures on solutions of
dispersionless integrable hierarchies, arXiv:2503.10897.



Self-dual Ricci-flat geometry in 4D
The Plebanski first heavenly equation (Plebanski, 1975) is

u13u24 — ul4u23 = 1.

Characteristic variety (collection of characteristic covectors p;dz*) is a quadric:

gijpipj = u13P2P4 + U24P1P3 — U14p2p3 — u23p1p4s = 0.
Solutions give rise to metrics
g = gijdxid:cj = uw13dx1dr3 + u14dr1dry + uszdradrs + usgsdradry
that are self-dual and Ricci-flat. All self-dual Ricci-flat metrics arise in this way!

Thus, Plebanski’s equation is a master-equation governing self-dual Ricci-flat
geometry. Lax pair [X,Y] = 0:

X = w1301 —u1403 + A\01, Y = —u2304 + u2403 — \O2.

Integral surfaces of the distribution (X,Y’) provide Penrose’s three-parameter
family of totally null surfaces, that is, g(X, X) = g(X,Y) = g(Y,Y) = 0, thus
confirming self-duality of g.

Alternative master-equation: w13 + u24 + u11u22 — u%Q = 0 (second heavenly).



Einstein-Weyl geometry in 3D

Einstein-Weyl geometry is a triple (D, g, w) where D is a symmetric connection,

g is a conformal structure and w is a covector such that
Dkgij = wrgij, Reij) = Agij.

Here R;;) is the symmetrised Ricci tensor of D and A is some function (the first

set of equations defines D uniquely in terms of g and w).
Conformal invariance: D — D, g — Ag, w — w + dIn .

Theorem (Cartan, 1941): In 3D, the triple (D, g, w) satisfies the Einstein-Weyl
equations if and only if there exists a two-parameter family of surfaces that
are totally geodesic with respect to D and null with respect to g.

Generic Einstein-Weyl structures depend on four arbitrary functions of two

variables.

3D Einstein-Weyl equations are integrable (Hitchin, 1980).



Einstein-Weyl structures via the Manakov-Santini system
The Manakov-Santini system (2006) is
Pu)+u2 =0, P(v)=0, P = 0,0 — 9, + u03 + v20:0y — vy 0.

Characteristic variety is a double quadric:

PaPt — Py + upy + vapapy — vypy = 0.
Solutions give rise to Einstein-Weyl structures (Dunajski, 2008):

g = (dy — vzdt)? — 4(dx — (u — vy)dt)dt,

W= —Vzzdy + (duz — 205y + VzVzz )dL.
All 3D Einstein-Weyl structures arise in this way! Lax pair [X,Y] = O:
X =0, + (AN —v2)0z +uz0x, Y =0 — (N —Xvg +vy —u)0z — (Aug — uy)0y.

Projecting integral surfaces of the distribution spanned by X,Y from
(z,y,t, N\)-space to (x,y,t)-space one obtains Cartan’s two-parameter family
of totally geodesic null surfaces.

M. Dunajskr, E.V. Ferapontov and B. Kruglikov, On the Einstein-Weyl and
conformal self-duality equations, J. Math. Phys. 56, 083501 (2015).



Self-dual geometry in 4D

Let g be a conformal structure in 4D and let W be its Weyl tensor. Consider
self-dual and anti-self-dual parts, W4 = %(W + xW), where * is the Hodge star
operator defined as

. 1 .
*W;kl =3 det g gmgbceajdeCdkl.
A conformal structure is said to be self-dual/anti-self-dual if either W_ or W

vanishes.

Theorem (Penrose, 1976): self-duality of g is equivalent to the existence of a
three-parameter family of totally null surfaces.

It was shown by Grossman (2000) that self-dual structures locally depend on six
arbitrary functions of three variables.



Self-dual structures via conformal self-duality equations

Conformal self-duality equations have the form
R(u) = wywo —ugwi, R(Ww)=wviws —vowi, R(w)=0,

where R is the second-order operator

R =u10203 + v10204 — u20103 — v20104.
Characteristic variety is a triple quadric:

u1p2p3 + vip2p4 — u2p1p3 — v2p1ps = 0.
Solutions give rise to self-dual conformal structures:

g = (urdz! + uadx®)dz* — (vida! + vodz?)dz.
All self-dual structures in 4D arise in this way! Lax pair [X, Y] € span(X,Y):
X =201 —u103 —v104 + Aw10y, Y = A02 — ug03 — 1204 + Aw20).

Projecting integral surfaces of the distribution spanned by X,Y from

(z1,..., 2% N)-space to (x!,...,z%)-space one obtains Penrose’s

three-parameter family of totally null surfaces.



Involutive scroll geometry

In projective space P"™ choose two complementary P* and P!, n = k + 1 4+ 1. Choose
two rational normal curves of degrees k and [ in these subspaces, let ¢ be an
isomorphism between them. The rational normal scroll Sy ; is a smooth ruled surface
of degree n — 1 consisting of all lines joining the corresponding points x and ¢(x).

If £ <[ then the rational normal curve of degree k is uniquely determined by the scroll
and is called its directrix. Del Pezzo’s theorem implies that scrolls S ; are the only
irreducible smooth ruled surfaces of degree deg(Sk,;) = k + 1 = n — 1 spanning P".

Given an (n + 1)-dimensional manifold M, a (rational normal) scroll structure is a
distribution of rational normal scrolls S ; in the projectivised cotangent bundle
P™ = PT* M. Explicitly, a scroll structure can be parametrised as aw(\) + 8 ¢(A)
where o and S are some functions and

W(A):w0+>\w1+---+>\kwk, ¢(>\):¢0+>\¢1—|—---—|—>\l¢l.

For every x € M, the equations w(\) = ¢(A) = 0 define a one-parameter family of
a-subspaces of codimension two in T, M parametrised by A. A codimension two
submanifold of M is said to be an a-manafold if all its tangent spaces are a-subspaces.

Definition. A scroll structure is said to be involutive if every a-subspace is tangential
to some a-manifold.



Involutive S; 2 scroll structures via heavenly hierarchy
The first three equations in the heavenly hierarchy are as follows:
u1s — U13U44 + u14u3zs =0, wi4u23z —uizu24 =1, u2s — u23us4 + ug4uzs = 0.
The characteristic variety is the intersection of quadrics,
P1ps — U13p421 — U44P1P3 + u14p3P4 + u34p1pa = 0,

U14P2P3 + U23P1P4 — u13P2p4 — u24p1p3 = 0,

pP2ps — U23p421 — U44P2P3 + u24P3P4 + uzap2ps = 0,
which specify a scroll Sy 2 parametrised as p;dr’ = aw(\) + B8 ¢(\), where
w(A) = —ugadx! — ugadx? + A(dz3 + ugqdx®),
d(N) = urzdr! + uazdr? + A(dx* — uzsedx®) + N\2dxd.

As w(A) is linear in A, it plays the role of directrix of the scroll. The equations
w(A) = ¢(A) = 0 define a 3-dimensional integrable distribution

(AO1 + u1403 — u1304, AO2 + u2403 —u2301, Os5 — w4403 + (uza — A)0a),

whose integral manifolds are a-manifolds. Thus, this 51,2 scroll structure is

involutive.



Involutive S; 2 scroll structures in 5D

The first few flows of the hierarchy of conformal self-duality equations (Bogdanov,

2016) come from the requirement of involutivity of the distribution
D = span{X,Y, Z} where

X = A\01 — u103 — v104 + Aw10,,
Y = AO2 — u203 — v204 + Aw20),
Z = 05 + u403 + (’04 + w — >\)84 — Awy 0.

(9 second-order PDEs for u, v, w). Characteristic variety, which is a triple scroll
S1,2, can be parametrised as p;dz’ = aw()\) + B¢(\) where a, B are arbitrary
functions and

w(A) = urdz® + uadx? + A(dx3 — ugdz®),
d(N) = vidzt + vodx? + A(dz* — (vq4 + w)dz®) + N2dxd.

All involutive Sy o scroll structures in 5D arise in this way! Projecting integral

1 1

manifolds of the distribution D from (z!,...,z°, \)-space to (z!,...,2%)-space

one obtains three-parameter family of a-manifolds.

Generic involutive 51 5 scroll structures locally depend on 9 arbitrary
functions of 3 variables.
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Involutive S; 2 scroll structures in 6D

The next few flows of the hierarchy of conformal self-duality equations come from
the requirement of involutivity of the distribution D = span{X,Y, Z, W} where

X = A\01 — u103 — v104 + Aw10y,
Y = ANO2 — u203 — v204 + Aw20),
Z =05 + u403 + (v4a +w — A)04 — Awa 0y,
W = 0s + (uz +w — A\)933 + v304 — Aw3 0.
(18 second-order PDEs for u, v, w). Characteristic variety, which is a triple scroll

So.2, can be parametrised as p;dz’ = aw()\) + B¢(\) where a, B are arbitrary
functions and

w(A) = urdz! + uadx? + \(dx3 — ugdz® — (uz + w)dz®) + A2dxb,
d(A\) = vidx! + vodz? + A(dz* — (vg + w)dx® — v3dx®) + \2dz®.

All involutive S9 o scroll structures in 6D arise in this way! Projecting integral

1

manifolds of the distribution D from (z!,..., 2% X\)-space to (z!,..., 2%)-space

one obtains three-parameter family of a-manifolds.

Generic involutive S3 2 scroll structures locally depend on 12 arbitrary
functions of 3 variables.
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Involutive scroll structures via the general heavenly
hierarchy

The general heavenly hierarchy (Bogdanov, 2015) is a collection of PDEs

(ak — aj)(al — ai)ujkuz-l + (ai — ak)(al — aj)uz'k’Ule + (Clj — ai)(al — ak)uijukl =0,

one equation for every quadruple of distinct indices ¢, 5, k,l € {1,...,n+ 1}. The

characteristic variety is the intersection of quadrics,
(ar —aj)(a; — a;)(ujkpipr + uapjpr) + (@i — ag)(a; — aj)(Uikpjpr + wj1piPr)
+ (a; — a;)(a; — ag)(uijpepr + ukipip;) = 0.
For n = 3 we obtain a scroll S1 1 which is nothing but a quadric in P3,

For n = 4 and n = 5 we have the scrolls S1 2 and S22, respectively.

For n = 2k and n = 2k + 1 we have the scrolls Si_1 y and S}, x, respectively.

Question: are there integrable PDE systems in 4D whose characteristic varieties

define involutive scroll structures of type Sy ; with |k — ] > 17
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Happy Jubilee Sashal!
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