Some attacks on algebraic lattice problems

Alice Pellet--Mary

CNRS and university of Bordeaux, France

Fundations and applications of lattice-based cryptography workshop 25-28 July 2022, Edinburgh

Two algebraic attacks

Arrows may not all compose (different parameters) 🔬

Alice Pellet-Mary	Pellet-Mary
-------------------	-------------

Two algebraic attacks

Arrows may not all compose (different parameters) A

Alice Pellet-Mary	Alice	Pel	et-l	Mary
-------------------	-------	-----	------	------

Outline of the talk

Brief history:

 \blacktriangleright using units [CGS14,CDPR16] \rightsquigarrow cyclotomics, only principal ideals

[[]CGS14] Campbell, Groves, and Shepherd. Soliloquy: A cautionary tale. ETSI 2nd Quantum-Safe Crypto Workshop [CDPR16] Cramer, Ducas, Peikert, and Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings. Eurocrypt.

Brief history:

- ▶ using units [CGS14,CDPR16] ~→ cyclotomics, only principal ideals
- ▶ using Stickelberger's relations [CDW17] ~→ cyclotomics, all ideals

[[]CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.

Brief history:

- ▶ using units [CGS14,CDPR16] ~→ cyclotomics, only principal ideals
- ▶ using Stickelberger's relations [CDW17] ~→ cyclotomics, all ideals
- ▶ using S-units [PHS19,BR20] ~ all ideals, different trade-offs

[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[[]BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

Brief history:

- ▶ using units [CGS14,CDPR16] ~→ cyclotomics, only principal ideals
- ▶ using Stickelberger's relations [CDW17] ~→ cyclotomics, all ideals
- ▶ using S-units [PHS19,BR20] ~> all ideals, different trade-offs

[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

Brief history:

- ▶ using units [CGS14,CDPR16] ~→ cyclotomics, only principal ideals
- ▶ using Stickelberger's relations [CDW17] ~→ cyclotomics, all ideals
- \blacktriangleright using S-units [PHS19,BR20] \rightsquigarrow all ideals, different trade-offs

Motivations:

- that's the simplest case of mod-SIVP_k
- for the moment that's all we manage to do

[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

Brief history:

- ▶ using units [CGS14,CDPR16] ~→ cyclotomics, only principal ideals
- ▶ using Stickelberger's relations [CDW17] ~→ cyclotomics, all ideals
- \blacktriangleright using S-units [PHS19,BR20] \rightsquigarrow all ideals, different trade-offs

Motivations:

- that's the simplest case of mod-SIVP_k
- for the moment that's all we manage to do
- can also break some exotic cryptographic primitives/assumptions

[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

id-SVP vs SVP

[CDW21] Cramer, Ducas, Wesolowski. Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time. Journal of the ACM.

[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

Alice Pellet-Mary

Algebraic attacks

Number theoretical reminders

From now on:

•
$$K = \mathbb{Q}[X]/(X^d + 1)$$
 $(d = 2^\ell)$

•
$$\mathcal{O}_K = \mathbb{Z}[X]/(X^d + 1)$$

Number theoretical reminders

From now on:

$$K = \mathbb{Q}[X]/(X^d + 1) \quad (d = 2^\ell)$$

•
$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[X]/(X^d + 1)$$

Units:
$$O_K^{\times} = \{ a \in O_K \mid \exists b \in O_K, ab = 1 \}$$

Principal ideals:
$$\langle g \rangle = \{gr \mid r \in O_K\}$$

• g is a generator of $\langle g \rangle$

$$\blacktriangleright \ \ \{ \ \mathsf{generators} \ \mathsf{of} \ \langle g \rangle \ \} = \{ gu \, | \, u \in \mathcal{O}_{K}^{\times} \}$$

Dimension of ideal lattices: n = d

$$\mathsf{Log}: \mathcal{K} \to \mathbb{R}^d$$
$$y \mapsto (\log |y(\alpha_1)|, \cdots, \log |y(\alpha_d)|)$$

$$\mathsf{Log}: \mathcal{K} \to \mathbb{R}^d$$
$$y \mapsto (\log |y(\alpha_1)|, \cdots, \log |y(\alpha_d)|)$$

$$\begin{array}{l} \mathsf{Log}: \mathcal{K} \to \mathbb{R}^d \\ y \mapsto (\log |y(\alpha_1)|, \cdots, \log |y(\alpha_d)|) \end{array}$$

Let
$$1 = (1, \dots, 1)$$
 and $H = 1^{\perp}$.
Properties $(r \in O_K)$
Log $r = h + a \cdot 1$, with $h \in H$
 $\blacktriangleright \text{ Log}(r_1 \cdot r_2) = \text{Log}(r_1) + \text{Log}(r_2)$
 $\blacktriangleright a \ge 0$

$$\mathsf{Log}: \mathcal{K} \to \mathbb{R}^d$$
$$y \mapsto (\log |y(\alpha_1)|, \cdots, \log |y(\alpha_d)|)$$

$$\begin{aligned} \mathsf{Log}: \mathcal{K} \to \mathbb{R}^d \\ y \mapsto (\log |y(\alpha_1)|, \cdots, \log |y(\alpha_d)|) \end{aligned}$$

The Log-unit lattice: $\Lambda := Log(O_K^{\times})$ is a lattice in H.

$$\begin{aligned} \mathsf{Log}: \mathcal{K} \to \mathbb{R}^d \\ y \mapsto (\log |y(\alpha_1)|, \cdots, \log |y(\alpha_d)|) \end{aligned}$$

The Log-unit lattice: $\Lambda := Log(O_K^{\times})$ is a lattice in H.

What does $Log\langle g \rangle$ look like?

[[]CGS14]: Campbell, Groves, and Shepherd. Soliloquy: a cautionary tale.

[[]CDPR16] Cramer, Ducas, Peikert and Regev. Recovering short generators of principal ideals in cyclotomic rings. EC.

What does $Log\langle g \rangle$ look like?

[[]CGS14]: Campbell, Groves, and Shepherd. Soliloquy: a cautionary tale.

[[]CDPR16] Cramer, Ducas, Peikert and Regev. Recovering short generators of principal ideals in cyclotomic rings. EC.

What does $Log\langle g \rangle$ look like?

[[]CGS14]: Campbell, Groves, and Shepherd. Soliloquy: a cautionary tale.

[[]CDPR16] Cramer, Ducas, Peikert and Regev. Recovering short generators of principal ideals in cyclotomic rings. EC.

[[]BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Find a generator g₁ of ⟨g⟩.
[BS16]: quantum poly time

 $Log(g_1)$

[[]BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

[[]BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

- ▶ Find a generator g₁ of ⟨g⟩.
 ▶ [BS16]: quantum poly time
- Solve CVP in Λ

[[]BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

- ▶ Find a generator g₁ of ⟨g⟩.
 ▶ [BS16]: quantum poly time
- Solve CVP in Λ
 - Good basis of Λ (cyclotomic field)
 - $\Rightarrow \mathsf{CVP} \text{ in poly time} \\ \Rightarrow \|h\| \leq \widetilde{O}(\sqrt{d})$

[[]BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

[[]BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

[[]BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

▶ only principal ideals ~> solved using Stickelberger's relations

- ▶ only principal ideals ~> solved using Stickelberger's relations
- approximation factor $exp(\sqrt{d})$
 - cannot do better if we only use units

- ▶ only principal ideals ~> solved using Stickelberger's relations
- approximation factor $exp(\sqrt{d})$
 - cannot do better if we only use units

- ▶ only principal ideals ~> solved using Stickelberger's relations
- approximation factor $exp(\sqrt{d})$
 - cannot do better if we only use units

- ▶ only principal ideals ~> solved using Stickelberger's relations
- approximation factor $exp(\sqrt{d})$
 - cannot do better if we only use units

- ▶ only principal ideals ~> solved using Stickelberger's relations
- approximation factor $exp(\sqrt{d})$
 - cannot do better if we only use units

The covering radius of Λ is $pprox \sqrt{d}$

Alice Pellet-Mary

Idea: replace units by S-units

Idea: replace units by S-units

+ covering radius of Log-S-unit lattice = O(1) (instead of $O(\sqrt{d})$)

• can reach approximation factor poly(d) (instead of $2^{O(\sqrt{d})}$)

Idea: replace units by S-units

+ covering radius of Log-S-unit lattice = O(1) (instead of $O(\sqrt{d})$)

- can reach approximation factor poly(d) (instead of $2^{O(\sqrt{d})}$)
- we don't know a good basis of the Log-S-unit lattice
 - ▶ need to pre-compute it (time 2^{O(d)})
 - ▶ even with the best basis possible, we can only solve CVP with approx $O(\sqrt{d})$ in poly time ⇒ still $2^{O(\sqrt{d})}$ approx-SVP in poly time

Idea: replace units by S-units

+ covering radius of Log-S-unit lattice = O(1) (instead of $O(\sqrt{d})$)

- can reach approximation factor poly(d) (instead of $2^{O(\sqrt{d})}$)
- we don't know a good basis of the Log-S-unit lattice
 - ▶ need to pre-compute it (time 2^{O(d)})
 - ▶ even with the best basis possible, we can only solve CVP with approx $O(\sqrt{d})$ in poly time ⇒ still $2^{O(\sqrt{d})}$ approx-SVP in poly time

How will these algorithms perform in practice for crypto relevant fields?

How will these algorithms perform in practice for crypto relevant fields?

[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- \blacktriangleright [CDW21] beats BKZ-80 for fields of degree \gtrsim 2,000
- \blacktriangleright [CDW21] beats BKZ-300 for fields of degree \gtrsim 16,000

[[]DPW19] Ducas, Plançon, Wesolowski. On the shortness of vectors to be found by the ideal-SVP quantum algorithm. Crypto.

How will these algorithms perform in practice for crypto relevant fields?

[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- \blacktriangleright [CDW21] beats BKZ-80 for fields of degree \gtrsim 2,000
- \blacktriangleright [CDW21] beats BKZ-300 for fields of degree \gtrsim 16,000

[BR19, BLNR21]: first experimental results for S-units

[[]BLNR21] Bernard, Lesavourey, Nguyen, Roux-Langlois. Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. EPrint.

How will these algorithms perform in practice for crypto relevant fields?

[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- \blacktriangleright [CDW21] beats BKZ-80 for fields of degree \gtrsim 2,000
- \blacktriangleright [CDW21] beats BKZ-300 for fields of degree \gtrsim 16,000

[BR19,BLNR21]: first experimental results for S-units

- ▶ main limitation so far: computation of the S-units
 - ▶ [BR19] computes S-units up to degree 70
 - ▶ [BLNR21] computes a sublattice of the S-units up to degree 210

[[]BLNR21] Bernard, Lesavourey, Nguyen, Roux-Langlois. Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. EPrint.

How will these algorithms perform in practice for crypto relevant fields?

[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- \blacktriangleright [CDW21] beats BKZ-80 for fields of degree \gtrsim 2,000
- \blacktriangleright [CDW21] beats BKZ-300 for fields of degree $\gtrsim 16,000$

[BR19,BLNR21]: first experimental results for S-units

- ▶ main limitation so far: computation of the S-units
 - ▶ [BR19] computes S-units up to degree 70
 - ▶ [BLNR21] computes a sublattice of the S-units up to degree 210
- no CVP with pre-processing so far (BKZ then Babai nearest plane)

[[]BLNR21] Bernard, Lesavourey, Nguyen, Roux-Langlois. Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. EPrint.

Outline of the talk

Reminder: NTRU [HPS98]

dec-NTRU

Parameters: $q \geq B > 1$ and ψ distribution over \mathcal{O}_K outputting elements $\leq B$

Objective: distinguish between h as above and u, where

- *u* is uniform in $\mathcal{O}_K/(q\mathcal{O}_K)$
- $f, g \leftarrow \psi$ conditioned on g invertible modulo q
- $h = f \cdot g^{-1} \bmod q$

[[]HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.

Brief history:

- ▶ subfield attacks [ABD16,CJL16]
 - ▶ solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$

ightarrow e.g., for B=O(1), poly time attack when $q\gtrsim 2^{\sqrt{d}}$

[[]ABD16] Albrecht, Bai, and Ducas. A subfield lattice attack on overstretched NTRU assumptions. Crypto.

[[]CJL16] Cheon, Jeong, and Lee. An algorithm for NTRU problems. LMS J Comput Math.

Brief history:

- ▶ subfield attacks [ABD16,CJL16]
 - solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$

ightarrow e.g., for $B={\it O}(1)$, poly time attack when $q\gtrsim 2^{\sqrt{d}}$

requires (many) subfields

[[]ABD16] Albrecht, Bai, and Ducas. A subfield lattice attack on overstretched NTRU assumptions. Crypto.

[[]CJL16] Cheon, Jeong, and Lee. An algorithm for NTRU problems. LMS J Comput Math.

Brief history:

- subfield attacks [ABD16,CJL16]
 - solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$

ightarrow e.g., for B=O(1), poly time attack when $q\gtrsim 2^{\sqrt{d}}$

- requires (many) subfields
- Kirchner-Fouque attack [KF17]
 - solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$
 - works in any number field (only plain lattice reduction, no algebraic tools)

[[]KF17] Kirchner and Fouque. Revisiting lattice attacks on overstretched NTRU parameters. Eurocrypt

Brief history:

- ▶ subfield attacks [ABD16,CJL16]
 - solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$

ightarrow e.g., for B=O(1), poly time attack when $q\gtrsim 2^{\sqrt{d}}$

- requires (many) subfields
- Kirchner-Fouque attack [KF17]
 - solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$
 - works in any number field (only plain lattice reduction, no algebraic tools)

[[]KF17] Kirchner and Fouque. Revisiting lattice attacks on overstretched NTRU parameters. Eurocrypt

Brief history:

- subfield attacks [ABD16,CJL16]
 - solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$

ightarrow e.g., for B=O(1), poly time attack when $q\gtrsim 2^{\sqrt{d}}$

- requires (many) subfields
- Kirchner-Fouque attack [KF17]
 - ▶ solves dec-NTRU in time $\approx \exp\left(\frac{d \cdot \log B}{(\log q)^2}\right)$
 - works in any number field

 (only plain lattice reduction, no algebraic tools)

Impact: few schemes use such large q's, but some of them did (e.g., some FHE schemes or multilinear maps)

[[]KF17] Kirchner and Fouque. Revisiting lattice attacks on overstretched NTRU parameters. Eurocrypt

Meaning:

• K contains L, which contains \mathbb{Q}

Meaning:

- K contains L, which contains $\mathbb Q$
- K is a L-vector space of degree $[K:L] = n_1$
- L is a \mathbb{Q} -vector space of degree $[L:\mathbb{Q}] = n_2$

Meaning:

- K contains L, which contains $\mathbb Q$
- K is a L-vector space of degree $[K:L] = n_1$
- *L* is a \mathbb{Q} -vector space of degree $[L : \mathbb{Q}] = n_2$

 \Rightarrow K is a \mathbb{Q} -vector space of degree $n_1 \cdot n_2$

Meaning:

- K contains L, which contains $\mathbb Q$
- K is a L-vector space of degree $[K:L] = n_1$
- L is a Q-vector space of degree [L : Q] = n₂
 ⇒ K is a Q-vector space of degree n₁ ⋅ n₂

Example:

$$\begin{array}{c} \mathbb{Q}[X]/(X^{4}+1) \\ \mathbb{Q}[X]/(X^{2}+1) \\ \mathbb{Q}\\ \mathbb{Q} \end{array}$$

Automorphisms and subfields

In this slide
$$K = \mathbb{Q}[X]/(X^d + 1)$$

(or any Galois field)

Automorphisms: $\exists \sigma_1, \cdots, \sigma_d$ automorphisms of K

Automorphisms and subfields

In this slide
$$K = \mathbb{Q}[X]/(X^d + 1)$$
 (or any Galois field)

Automorphisms: $\exists \sigma_1, \cdots, \sigma_d$ automorphisms of K

Properties:

- if $f \in \mathcal{O}_K$ then $\sigma_i(f) \in \mathcal{O}_K$
- $\|\sigma(f)\| = \|\sigma(\sigma_i(f))\|$, for all $f \in K$

Automorphisms and subfields

In this slide
$$K = \mathbb{Q}[X]/(X^d + 1)$$

Automorphisms: $\exists \sigma_1, \cdots, \sigma_d$ automorphisms of K

Properties:

• if
$$f \in \mathcal{O}_K$$
 then $\sigma_i(f) \in \mathcal{O}_K$

•
$$\|\sigma(f)\| = \|\sigma(\sigma_i(f))\|$$
, for all $f \in K$

Subfields: If L subfield of K, there exist $S_L \subseteq \{1, \cdots, d\}$ s.t.

▶
$$|S_L| = [K : L] - 1$$

• for all
$$f \in K$$
,

$$\mathcal{N}_{\mathcal{K}/\mathcal{L}}(f) := f \cdot \prod_{i \in S_{\mathcal{L}}} \sigma_i(f) \in \mathcal{L}$$

A subfield attack on dec-NTRU [ABD16]

Objective: distinguish between

- ► *h* uniform mod *q*

Attack: runs in time
$$pprox \exp\left(rac{d\cdot\log B}{(\log q)^2}
ight)$$

On the board

[ABD16] Albrecht, Bai, and Ducas. A subfield lattice attack on overstretched NTRU assumptions. Crypto.

Main idea:

transform instance X in K into instance X' in L

Main idea:

- transform instance X in K into instance X' in L
- ▶ solve X' in L (smaller lattice problems)

Main idea:

- transform instance X in K into instance X' in L
- ▶ solve X' in L (smaller lattice problems)
- move the solution back to X in K

Main idea:

- transform instance X in K into instance X' in L
- ▶ solve X' in L (smaller lattice problems)
- move the solution back to X in K

Can be used for:

computing S-units [BFHP22]

[[]BFHP22] Biasse, Fieker, Hofmann, and Page. Norm relations and computational problems in number fields. Journal of the London Mathematical Society.

Main idea:

- transform instance X in K into instance X' in L
- ▶ solve X' in L (smaller lattice problems)
- move the solution back to X in K

Can be used for:

- computing S-units [BFHP22]
- solving id-SVP in some very specific ideals [PXWC21,BGP22]

[[]PXWC21] Pan, Xu, Wadleigh, and Cheng. On the ideal shortest vector problem over random rational primes. Eurocrypt.

[[]BGP22] Boudgoust, Gachon, and Pellet-Mary. Some Easy Instances of Ideal-SVP and Implications on the Partial Vandermonde Knapsack Problem. Crypto.

Main idea:

- transform instance X in K into instance X' in L
- ▶ solve X' in L (smaller lattice problems)
- move the solution back to X in K

Can be used for:

- computing S-units [BFHP22]
- solving id-SVP in some very specific ideals [PXWC21,BGP22]
 ...?

[[]PXWC21] Pan, Xu, Wadleigh, and Cheng. On the ideal shortest vector problem over random rational primes. Eurocrypt.

[[]BGP22] Boudgoust, Gachon, and Pellet-Mary. Some Easy Instances of Ideal-SVP and Implications on the Partial Vandermonde Knapsack Problem. Crypto.

Conclusion

Two algebraic attacks:

- on id-SVP when $\gamma \ge 2^{\sqrt{d}}$ (or smaller γ 's with pre-processing)
- ▶ on NTRU when q is large

Conclusion

Two algebraic attacks:

- on id-SVP when $\gamma \ge 2^{\sqrt{d}}$ (or smaller γ 's with pre-processing)
- on NTRU when q is large

One of my favorite open problems:

Can we transfer a problem instance to another number field? (e.g., id-SVP over $K \rightarrow$ id-SVP over K')

 \rightsquigarrow would allow to move from a field without subfields to a field with many subfields

Conclusion

Two algebraic attacks:

- on id-SVP when γ ≥ 2^{√d} (or smaller γ's with pre-processing)
- on NTRU when q is large

One of my favorite open problems:

Can we transfer a problem instance to another number field? (e.g., id-SVP over $K \rightarrow$ id-SVP over K')

 \rightsquigarrow would allow to move from a field without subfields to a field with many subfields

Thank you