Some attacks on algebraic lattice problems

Alice Pellet--Mary

CNRS and university of Bordeaux, France

Fundations and applications of lattice-based cryptography workshop
25-28 July 2022, Edinburgh

Two algebraic attacks

\triangle Arrows may not all compose (different parameters)

Two algebraic attacks

\triangle Arrows may not all compose (different parameters)

Outline of the talk

(1) S-unit attacks on id-SVP

(2) subfield attacks on dec-NTRU

Attacks on id-SVP

Brief history:

- using units [CGS14,CDPR16] \rightsquigarrow cyclotomics, only principal ideals
[CGS14] Campbell, Groves, and Shepherd. Soliloquy: A cautionary tale. ETSI 2nd Quantum-Safe Crypto Workshop [CDPR16] Cramer, Ducas, Peikert, and Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings. Eurocrypt.

Attacks on id-SVP

Brief history:

- using units [CGS14,CDPR16] \rightsquigarrow cyclotomics, only principal ideals
- using Stickelberger's relations [CDW17] \rightsquigarrow cyclotomics, all ideals

Attacks on id-SVP

Brief history:

- using units [CGS14,CDPR16] \rightsquigarrow cyclotomics, only principal ideals
- using Stickelberger's relations [CDW17] \rightsquigarrow cyclotomics, all ideals
- using S-units [PHS19,BR20] \rightsquigarrow all ideals, different trade-offs

[^0]
Attacks on id-SVP

Brief history:

- using units [CGS14,CDPR16] \rightsquigarrow cyclotomics, only principal ideals
- using Stickelberger's relations [CDW17] \rightsquigarrow cyclotomics, all ideals
- using S-units [PHS19,BR20] \rightsquigarrow all ideals, different trade-offs

[^1]
Attacks on id-SVP

Brief history:

- using units [CGS14, CDPR16] \rightsquigarrow cyclotomics, only principal ideals
- using Stickelberger's relations [CDW17] \rightsquigarrow cyclotomics, all ideals
- using S-units [PHS19,BR20] \rightsquigarrow all ideals, different trade-offs

Motivations:

- that's the simplest case of mod-SIVP ${ }_{k}$
- for the moment that's all we manage to do

[^2]
Attacks on id-SVP

Brief history:

- using units [CGS14,CDPR16] \rightsquigarrow cyclotomics, only principal ideals
- using Stickelberger's relations [CDW17] \rightsquigarrow cyclotomics, all ideals
- using S-units [PHS19,BR20] \rightsquigarrow all ideals, different trade-offs

Motivations:

- that's the simplest case of mod-SIVP ${ }_{k}$
- for the moment that's all we manage to do
- can also break some exotic cryptographic primitives/assumptions

[^3]
id-SVP vs SVP

id-SVP [CDW21]
(in cyclotomic fields)
units + Stickelberger

id-SVP [PHS19]
(with $2^{O(n)}$ pre-processing) S-units

[^4] Journal of the ACM.
[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

Number theoretical reminders

From now on:

- $K=\mathbb{Q}[X] /\left(X^{d}+1\right) \quad\left(d=2^{\ell}\right)$
- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{d}+1\right)$

Number theoretical reminders

From now on:

- $K=\mathbb{Q}[X] /\left(X^{d}+1\right) \quad\left(d=2^{\ell}\right)$
- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{d}+1\right)$

Units: $O_{K}^{\times}=\left\{a \in O_{K} \mid \exists b \in O_{K}, a b=1\right\}$

Principal ideals: $\langle g\rangle=\left\{g r \mid r \in O_{K}\right\}$

- g is a generator of $\langle g\rangle$
- $\{$ generators of $\langle g\rangle\}=\left\{g u \mid u \in O_{K}^{\times}\right\}$

Dimension of ideal lattices: $n=d$

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$
- $a=0$ iff r is a unit

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$
- $a=0$ iff r is a unit

The Log-unit lattice: $\Lambda:=\log \left(O_{K}^{\times}\right)$is a lattice in H.

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.

Properties $\left(r \in O_{K}\right)$

$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$
- $a=0$ iff r is a unit
- $\|r\| \simeq \exp \left(\|\log r\|_{\infty}\right)$

The Log-unit lattice: $\Lambda:=\log \left(O_{K}^{\times}\right)$is a lattice in H.

Solving id-SVP using units [CGS14,CDPR16]

What does $\log \langle g\rangle$ look like?

Solving id-SVP using units [CGS14,CDPR16]

What does $\log \langle g\rangle$ look like?

Solving id-SVP using units [CGS14,CDPR16]

What does $\log \langle g\rangle$ look like?

Solving id-SVP using units [CGS14,CDPR16]

- Find a generator g_{1} of $\langle g\rangle$.
- [BS16]: quantum poly time
[BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Solving id-SVP using units [CGS14,CDPR16]

- Find a generator g_{1} of $\langle g\rangle$.
- [BS16]: quantum poly time
[BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Solving id-SVP using units [CGS14,CDPR16]

- Find a generator g_{1} of $\langle g\rangle$.
- [BS16]: quantum poly time
- Solve CVP in Λ

Solving id-SVP using units [CGS14,CDPR16]

- Find a generator g_{1} of $\langle g\rangle$.
- [BS16]: quantum poly time
- Solve CVP in Λ

Solving id-SVP using units [CGS14,CDPR16]

- Find a generator g_{1} of $\langle g\rangle$.
- [BS16]: quantum poly time
- Solve CVP in Λ
- Good basis of Λ (cyclotomic field)
\Rightarrow CVP in poly time
$\Rightarrow\|h\| \leq \widetilde{O}(\sqrt{d})$

[BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Solving id-SVP using units [CGS14,CDPR16]

- Find a generator g_{1} of $\langle g\rangle$.
- [BS16]: quantum poly time
- Solve CVP in Λ
- Good basis of Λ (cyclotomic field)
\Rightarrow CVP in poly time
$\Rightarrow\|h\| \leq \widetilde{O}(\sqrt{d})$

$$
\left\|u g_{1}\right\| \leq 2^{\widetilde{O}(\sqrt{d})} \cdot \lambda_{1}
$$

[BS16]: Biasse, Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Solving id-SVP using units [CGS14,CDPR16]

- Find a generator g_{1} of $\langle g\rangle$.
- [BS16]: quantum poly time
- Solve CVP in Λ
- Good basis of Λ (cyclotomic field)
\Rightarrow CVP in poly time
$\Rightarrow\|h\| \leq \widetilde{O}(\sqrt{d})$

$$
\left\|u g_{1}\right\| \leq 2^{\widetilde{O}(\sqrt{d})} \cdot \lambda_{1}
$$

- Heuristic
- Cyclotomic fields

Limitations

- only principal ideals \rightsquigarrow solved using Stickelberger's relations

Limitations

- only principal ideals \rightsquigarrow solved using Stickelberger's relations
- approximation factor $\exp (\sqrt{d})$
- cannot do better if we only use units

Limitations

- only principal ideals \rightsquigarrow solved using Stickelberger's relations
- approximation factor $\exp (\sqrt{d})$
- cannot do better if we only use units

Limitations

- only principal ideals \rightsquigarrow solved using Stickelberger's relations
- approximation factor $\exp (\sqrt{d})$
- cannot do better if we only use units

Limitations

- only principal ideals \rightsquigarrow solved using Stickelberger's relations
- approximation factor $\exp (\sqrt{d})$
- cannot do better if we only use units

Limitations

- only principal ideals \rightsquigarrow solved using Stickelberger's relations
- approximation factor $\exp (\sqrt{d})$
- cannot do better if we only use units

The covering radius of Λ is $\approx \sqrt{d}$

Generalize the algorithm: using S-units

Idea: replace units by S-units

Generalize the algorithm: using S-units

Idea: replace units by S-units

+ covering radius of Log-S-unit lattice $=O(1)$ (instead of $O(\sqrt{d})$)
- can reach approximation factor poly (d) (instead of $2^{O(\sqrt{d})}$)

Generalize the algorithm: using S-units

Idea: replace units by S-units

+ covering radius of Log-S-unit lattice $=O(1)$ (instead of $O(\sqrt{d})$)
- can reach approximation factor poly (d) (instead of $2^{O(\sqrt{d})}$)
- we don't know a good basis of the Log-S-unit lattice
- need to pre-compute it (time $2^{O(d)}$)
- even with the best basis possible, we can only solve CVP with approx $O(\sqrt{d})$ in poly time \Rightarrow still $2^{O(\sqrt{d})}$ approx-SVP in poly time

Generalize the algorithm: using S-units

Idea: replace units by S-units

+ covering radius of Log-S-unit lattice $=O(1)$ (instead of $O(\sqrt{d})$)
- can reach approximation factor poly (d) (instead of $2^{\circ(\sqrt{d})}$)
- we don't know a good basis of the Log-S-unit lattice
- need to pre-compute it (time $2^{O(d)}$)
- even with the best basis possible, we can only solve CVP with approx $O(\sqrt{d})$ in poly time \Rightarrow still $2^{O(\sqrt{d})}$ approx-SVP in poly time

Estimating the actual performance

How will these algorithms perform in practice for crypto relevant fields?

Estimating the actual performance

How will these algorithms perform in practice for crypto relevant fields?
[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- [CDW21] beats BKZ-80 for fields of degree $\gtrsim 2,000$
- [CDW21] beats BKZ-300 for fields of degree $\gtrsim 16,000$

Estimating the actual performance

How will these algorithms perform in practice for crypto relevant fields?
[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- [CDW21] beats BKZ-80 for fields of degree $\gtrsim 2,000$
- [CDW21] beats BKZ-300 for fields of degree $\gtrsim 16,000$
[BR19,BLNR21]: first experimental results for S-units
[BLNR21] Bernard, Lesavourey, Nguyen, Roux-Langlois. Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. EPrint.

Estimating the actual performance

How will these algorithms perform in practice for crypto relevant fields?
[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- [CDW21] beats BKZ-80 for fields of degree $\gtrsim 2,000$
- [CDW21] beats BKZ-300 for fields of degree $\gtrsim 16,000$
[BR19,BLNR21]: first experimental results for S-units
- main limitation so far: computation of the S-units
- [BR19] computes S-units up to degree 70
- [BLNR21] computes a sublattice of the S-units up to degree 210
[BLNR21] Bernard, Lesavourey, Nguyen, Roux-Langlois. Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. EPrint.

Estimating the actual performance

How will these algorithms perform in practice for crypto relevant fields?
[DPW19]: Answers the question for [CDW21] algorithm (units+Stickelberger)

- [CDW21] beats BKZ-80 for fields of degree $\gtrsim 2,000$
- [CDW21] beats BKZ-300 for fields of degree $\gtrsim 16,000$
[BR19,BLNR21]: first experimental results for S-units
- main limitation so far: computation of the S-units
- [BR19] computes S-units up to degree 70
- [BLNR21] computes a sublattice of the S-units up to degree 210
- no CVP with pre-processing so far (BKZ then Babai nearest plane)
[BLNR21] Bernard, Lesavourey, Nguyen, Roux-Langlois. Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP. EPrint.

Outline of the talk

(1) S-unit attacks on id-SVP
(2) subfield attacks on dec-NTRU

Reminder: NTRU [HPS98]

dec-NTRU

Parameters: $q \geq B>1$ and ψ distribution over \mathcal{O}_{K} outputting elements $\leq B$

Objective: distinguish between h as above and u, where

- u is uniform in $\mathcal{O}_{K} /\left(q \mathcal{O}_{K}\right)$
- $f, g \leftarrow \psi$ conditioned on g invertible modulo q
- $h=f \cdot g^{-1} \bmod q$

Attacks on dec-NTRU

Brief history:

- subfield attacks [ABD16,CJL16]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
\rightsquigarrow e.g., for $B=O(1)$, poly time attack when $q \gtrsim 2^{\sqrt{d}}$

Attacks on dec-NTRU

Brief history:

- subfield attacks [ABD16,CJL16]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
\rightsquigarrow e.g., for $B=O(1)$, poly time attack when $q \gtrsim 2^{\sqrt{d}}$
- requires (many) subfields

Attacks on dec-NTRU

Brief history:

- subfield attacks [ABD16,CJL16]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
\rightsquigarrow e.g., for $B=O(1)$, poly time attack when $q \gtrsim 2^{\sqrt{d}}$
- requires (many) subfields
- Kirchner-Fouque attack [KF17]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
- works in any number field
(only plain lattice reduction, no algebraic tools)

Attacks on dec-NTRU

Brief history:

- subfield attacks [ABD16,CJL16]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
\rightsquigarrow e.g., for $B=O(1)$, poly time attack when $q \gtrsim 2^{\sqrt{d}}$
- requires (many) subfields
- Kirchner-Fouque attack [KF17]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
- works in any number field
(only plain lattice reduction, no algebraic tools)

Attacks on dec-NTRU

Brief history:

- subfield attacks [ABD16,CJL16]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
\rightsquigarrow e.g., for $B=O(1)$, poly time attack when $q \gtrsim 2^{\sqrt{d}}$
- requires (many) subfields
- Kirchner-Fouque attack [KF17]
- solves dec-NTRU in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$
- works in any number field (only plain lattice reduction, no algebraic tools)

Impact: few schemes use such large q's, but some of them did (e.g., some FHE schemes or multilinear maps)

Subfields

```
K
n1
L
\(n_{2}\)
\(\mathbb{Q}\)
```


Meaning:

- K contains L, which contains \mathbb{Q}

Subfields

Meaning:

- K contains L, which contains \mathbb{Q}
- K is a L-vector space of degree $[K: L]=n_{1}$
- L is a \mathbb{Q}-vector space of degree $[L: \mathbb{Q}]=n_{2}$

Subfields

Meaning:

- K contains L, which contains \mathbb{Q}
- K is a L-vector space of degree $[K: L]=n_{1}$
- L is a \mathbb{Q}-vector space of degree $[L: \mathbb{Q}]=n_{2}$
$\Rightarrow K$ is a \mathbb{Q}-vector space of degree $n_{1} \cdot n_{2}$

Subfields

Meaning:

- K contains L, which contains \mathbb{Q}
- K is a L-vector space of degree $[K: L]=n_{1}$
- L is a \mathbb{Q}-vector space of degree $[L: \mathbb{Q}]=n_{2}$
$\Rightarrow K$ is a \mathbb{Q}-vector space of degree $n_{1} \cdot n_{2}$

Example:

Automorphisms and subfields

In this slide $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ (or any Galois field)

Automorphisms: $\exists \sigma_{1}, \cdots, \sigma_{d}$ automorphisms of K

Automorphisms and subfields

In this slide $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ (or any Galois field)

Automorphisms: $\exists \sigma_{1}, \cdots, \sigma_{d}$ automorphisms of K
Properties:

- if $f \in \mathcal{O}_{K}$ then $\sigma_{i}(f) \in \mathcal{O}_{K}$
- $\|\sigma(f)\|=\left\|\sigma\left(\sigma_{i}(f)\right)\right\|$, for all $f \in K$

Automorphisms and subfields

In this slide $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$
(or any Galois field)

Automorphisms: $\exists \sigma_{1}, \cdots, \sigma_{d}$ automorphisms of K
Properties:

- if $f \in \mathcal{O}_{K}$ then $\sigma_{i}(f) \in \mathcal{O}_{K}$
- $\|\sigma(f)\|=\left\|\sigma\left(\sigma_{i}(f)\right)\right\|$, for all $f \in K$

Subfields: If L subfield of K, there exist $S_{L} \subseteq\{1, \cdots, d\}$ s.t.

- $\left|S_{L}\right|=[K: L]-1$
- for all $f \in K$,

$$
\mathcal{N}_{K / L}(f):=f \cdot \prod_{i \in S_{L}} \sigma_{i}(f) \in L
$$

A subfield attack on dec-NTRU [AbD16]

Objective: distinguish between

- $h=f / g \bmod q$ with $\|f\|,\|g\| \leq B$
- h uniform $\bmod q$

Attack: runs in time $\approx \exp \left(\frac{d \cdot \log B}{(\log q)^{2}}\right)$

On the board

Other algorithms using subfields

Other algorithms using subfields

Main idea:

- transform instance X in K into instance X^{\prime} in L

Other algorithms using subfields

Other algorithms using subfields

K	X	s
\mid	n_{1}	\downarrow
L_{1}	\uparrow	
L^{\prime}	X^{\prime}	s^{\prime}
$\left.\left\lvert\, \begin{array}{ll}n_{2} & \\ \mathbb{Q} & \\ \hline\end{array}\right.\right]$		

Main idea:

- transform instance X in K into instance X^{\prime} in L
- solve X^{\prime} in L (smaller lattice problems)
- move the solution back to X in K

Other algorithms using subfields

Other algorithms using subfields

Main idea:

- transform instance X in K into instance X^{\prime} in L
- solve X^{\prime} in L (smaller lattice problems)
- move the solution back to X in K

Can be used for:

- computing S-units [BFHP22]
- solving id-SVP in some very specific ideals [PXWC21,BGP22]

```
[PXWC21] Pan, Xu, Wadleigh, and Cheng. On the ideal shortest vector problem over random rational primes.
Eurocrypt.
[BGP22] Boudgoust, Gachon, and Pellet-Mary. Some Easy Instances of Ideal-SVP and Implications on the Partial Vandermonde Knapsack Problem. Crypto.
```


Other algorithms using subfields

Main idea:

- transform instance X in K into instance X^{\prime} in L
- solve X^{\prime} in L (smaller lattice problems)
- move the solution back to X in K

Can be used for:

- computing S-units [BFHP22]
- solving id-SVP in some very specific ideals [PXWC21,BGP22]
- ...?

```
[PXWC21] Pan, Xu, Wadleigh, and Cheng. On the ideal shortest vector problem over random rational primes.
Eurocrypt.
[BGP22] Boudgoust, Gachon, and Pellet-Mary. Some Easy Instances of Ideal-SVP and Implications on the Partial Vandermonde Knapsack Problem. Crypto.
```


Conclusion

Two algebraic attacks:

- on id-SVP when $\gamma \geq 2^{\sqrt{d}}$
(or smaller γ 's with pre-processing)
- on NTRU when q is large

Conclusion

Two algebraic attacks:

- on id-SVP when $\gamma \geq 2^{\sqrt{d}}$
(or smaller γ 's with pre-processing)
- on NTRU when q is large

One of my favorite open problems:
Can we transfer a problem instance to another number field?
(e.g., id-SVP over $K \rightarrow$ id-SVP over K^{\prime})
\rightsquigarrow would allow to move from a field without subfields to a field with many subfields

Conclusion

Two algebraic attacks:

- on id-SVP when $\gamma \geq 2^{\sqrt{d}}$
(or smaller γ 's with pre-processing)
- on NTRU when q is large

One of my favorite open problems:
Can we transfer a problem instance to another number field?
(e.g., id-SVP over $K \rightarrow$ id-SVP over K^{\prime})
\rightsquigarrow would allow to move from a field without subfields to a field with many subfields

Thank you

[^0]: [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.
 [BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

[^1]: [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.
 [BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

[^2]: [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.
 [BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

[^3]: [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.
 [BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

[^4]: [CDW21] Cramer, Ducas, Wesolowski. Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time.

