Introduction to lattice cryptography

Damien Stehlé

ENS Lyon

Edinburgh, July 2022

Plan for this lecture

(1) Signing from SIS
(2) Improving efficiency
© NTRU

$\mathrm{SIS}_{\beta, q, m}$

The Small Integer Solution Problem

Given a uniform $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ such that:

$$
0<\|\mathbf{x}\| \leq \beta \text { and } \mathbf{x}^{\top} \cdot \mathbf{A}=\mathbf{0} \bmod q .
$$

Design principle

Start from a one-way function $x \mapsto y=f(x)$.

- Signing key: x
- Verification key: y

The signer uses a zero-knowledge proof that it knows x s.t. $f(x)=y$.
The random oracle methodology allows to:

- Make the proof non-interactive
- Embed the message in the proof challenge

This is the (heuristic) Fiat-Shamir transform.

Which one-way function to start from?

The Short Integer Solution Problem

Given a uniform $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ such that:

$$
0<\|\mathbf{x}\| \leq \beta \text { and } \mathbf{x}^{\top} \cdot \mathbf{A}=\mathbf{0} \bmod q .
$$

We want a function that is easy to evaluate and (SIS-)hard to invert.

Which one-way function to start from?

The Short Integer Solution Problem

Given a uniform $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ such that:

$$
0<\|\mathbf{x}\| \leq \beta \text { and } \mathbf{x}^{\top} \cdot \mathbf{A}=\mathbf{0} \bmod q .
$$

We want a function that is easy to evaluate and (SIS-)hard to invert.

$$
f_{\mathbf{A}}: \begin{array}{ccc}
\{-B, \ldots, B\}^{m} & \rightarrow & \mathbb{Z}_{q}^{n} \\
\mathbf{x} & \mapsto & \mathbf{x}^{T} \cdot \mathbf{A} \bmod q
\end{array}
$$

Why is it hard to invert?

Which one-way function to start from?

The Short Integer Solution Problem

Given a uniform $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ such that:

$$
0<\|\mathbf{x}\| \leq \beta \text { and } \mathbf{x}^{\top} \cdot \mathbf{A}=\mathbf{0} \bmod q .
$$

We want a function that is easy to evaluate and (SIS-)hard to invert.

$$
f_{\mathbf{A}}: \begin{array}{ccc}
\{-B, \ldots, B\}^{m} & \rightarrow & \mathbb{Z}_{q}^{n} \\
\mathbf{x} & \mapsto & \mathbf{x}^{T} \cdot \mathbf{A} \bmod q
\end{array}
$$

Why is it hard to invert?

- Let A be a SIS instance.
- Sample $\mathbf{x} \hookleftarrow U(\{-B, \ldots, B\})^{m}$, set $\mathbf{y}=\mathbf{x}^{T}$. \mathbf{A}.
- Adversary gets \mathbf{A} and \mathbf{y}, and gives back a pre-image \mathbf{x}^{\prime} of \mathbf{y}.
- Claim: $\mathbf{x}-\mathbf{x}^{\prime}$ is a SIS_{β} solution for $\beta=2 B$ (with high probability).

Proof of knowledge for the SIS one-way function

Prover wants to convince Verifier that it knows small s.t.: $\mathbf{s}^{T} \cdot \mathbf{A}=\mathbf{t}^{T}$, where \mathbf{A} and \mathbf{t} are known.

Proof of knowledge for the SIS one-way function

Prover wants to convince Verifier that it knows small s.t.: $\mathbf{s}^{T} \cdot \mathbf{A}=\mathbf{t}^{T}$, where \mathbf{A} and \mathbf{t} are known.

Prover generates a blinding equation:

$$
\mathbf{y}^{\top} \cdot \mathbf{A}=\mathbf{w}^{\top},
$$

with \mathbf{y} small. It sends \mathbf{w} to Verifier.

After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover

Prover replies with $y+c \cdot s$

Proof of knowledge for the SIS one-way function

Prover wants to convince Verifier that it knows small s.t.:
$\mathbf{s}^{T} \cdot \mathbf{A}=\mathbf{t}^{T}$, where \mathbf{A} and \mathbf{t} are known.

Prover generates a blinding equation:

$$
\mathbf{y}^{\top} \cdot \mathbf{A}=\mathbf{w}^{\top},
$$

with \mathbf{y} small. It sends \mathbf{w} to Verifier.
After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.

Prover replies with $y+c \cdot s$

Challenge space is too small:

Proof of knowledge for the SIS one-way function

Prover wants to convince Verifier that it knows small s.t.:
$\mathbf{s}^{T} \cdot \mathbf{A}=\mathbf{t}^{T}$, where \mathbf{A} and \mathbf{t} are known.

Prover generates a blinding equation:

$$
\mathbf{y}^{\top} \cdot \mathbf{A}=\mathbf{w}^{\top},
$$

with \mathbf{y} small. It sends \mathbf{w} to Verifier.
After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.
Prover replies with $\mathbf{y}+c \cdot \mathbf{s}$.

Challenge space is too small:

Proof of knowledge for the SIS one-way function

Prover wants to convince Verifier that it knows small s.t.:
$\mathbf{s}^{T} \cdot \mathbf{A}=\mathbf{t}^{T}$, where \mathbf{A} and \mathbf{t} are known.

Prover generates a blinding equation:

$$
\mathbf{y}^{\top} \cdot \mathbf{A}=\mathbf{w}^{\top},
$$

with \mathbf{y} small. It sends \mathbf{w} to Verifier.
After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.
Prover replies with $\mathbf{y}+c \cdot \mathbf{s}$.
Verifier checks whether

$$
\mathbf{y}+c \cdot \mathbf{s} \text { is small and }(\mathbf{y}+c \cdot \mathbf{s})^{T} \mathbf{A}=\mathbf{w}^{T}+c \mathbf{t}^{T} .
$$

Challenge space is too small:
Prover can guess c and succeed without knowing \mathbf{s}.

SIS-based signature, 1st attempt

Verify: accept iff $\left\|\sigma_{1}\right\|$ is small and $\sigma_{1}^{T} \mathbf{A}=\mathbf{w}^{T}+\mathbf{c}^{T} \mathbf{T}$.

This signature scheme is insecure but can be fixed

Assume for simplicity that the coefficients of \mathbf{S}, \mathbf{c} and \mathbf{y} are iid uniform in the interval $[-B,+B]$, where $B \ll q$.
$\sigma_{1}^{T}=\mathbf{y}^{\boldsymbol{T}}+\mathbf{c}^{\boldsymbol{T}} \cdot \mathbf{S}$ conditioned on \mathbf{c} and \mathbf{S}, has center $\mathbf{c}^{\boldsymbol{T}} \cdot \mathbf{S}$.

This signature scheme is insecure but can be fixed

Assume for simplicity that the coefficients of \mathbf{S}, \mathbf{c} and \mathbf{y} are iid uniform in the interval $[-B,+B]$, where $B \ll q$.
$\sigma_{1}^{T}=\mathbf{y}^{T}+\mathbf{c}^{T} \cdot \mathbf{S}$ conditioned on \mathbf{c} and \mathbf{S}, has center $\mathbf{c}^{T} \cdot \mathbf{S}$.
Fix: use rejection sampling [Lyu09,Lyu12]

- For uniform distributions in intervals, rejection is simple
- Need to restart signing process, if rejection occurs

Security proof intuition (in the random oracle model)

To answer signing queries, the challenger simulates by sampling σ_{1} and \mathbf{c} from their distributions, and defines

$$
H\left(\mathbf{A}, \mathbf{T}, \mathbf{w}=\sigma_{1} \mathbf{A}-\mathbf{c} \mathbf{T}, M\right):=\mathbf{c}
$$

\Rightarrow No need for a signing key anymore! Simply set \mathbf{T} uniform.

Security proof intuition

(in the random oracle model)

To answer signing queries, the challenger simulates by sampling σ_{1} and \mathbf{c} from their distributions, and defines

$$
H\left(\mathbf{A}, \mathbf{T}, \mathbf{w}=\sigma_{1} \mathbf{A}-\mathbf{c} \mathbf{T}, M\right):=\mathbf{c}
$$

\Rightarrow No need for a signing key anymore! Simply set T uniform.

By rewinding a forging algorithm \mathcal{A} and reprogramming H, we obtain:

$$
\begin{aligned}
\sigma_{1}^{T} \mathbf{A} & =\mathbf{w}^{T}+\mathbf{c}^{T} \mathbf{T} \\
\sigma_{1}^{\prime T} \mathbf{A} & =\mathbf{w}^{T}+\mathbf{c}^{\prime T} \mathbf{T}
\end{aligned}
$$

Subtracting gives a SIS solution to instance (A\|T).

Security proof intuition

(in the random oracle model)

To answer signing queries, the challenger simulates by sampling σ_{1} and \mathbf{c} from their distributions, and defines

$$
H\left(\mathbf{A}, \mathbf{T}, \mathbf{w}=\sigma_{1} \mathbf{A}-\mathbf{c} \mathbf{T}, M\right):=\mathbf{c}
$$

\Rightarrow No need for a signing key anymore! Simply set T uniform.

By rewinding a forging algorithm \mathcal{A} and reprogramming H, we obtain:

$$
\begin{aligned}
\sigma_{1}^{T} \mathbf{A} & =\mathbf{w}^{T}+\mathbf{c}^{T} \mathbf{T} \\
\sigma_{1}^{\prime T} \mathbf{A} & =\mathbf{w}^{T}+\mathbf{c}^{\prime T} \mathbf{T}
\end{aligned}
$$

Subtracting gives a SIS solution to instance (A\|T).

This is Schnorr's signature (and its proof) adapted to SIS!

Further remarks

- Setting parameters requires work. Compromises between:
- Security
- Probability of rejection (and hence signing time)
- Size of signatures
- Further improvement: rely on LWE to use a shorter \mathbf{S}.
- Shorter $\mathbf{S} \Rightarrow$ shorter $\mathbf{y} \Rightarrow$ smaller signatures
- Security proof can be made tight

Further remarks

- Setting parameters requires work. Compromises between:
- Security
- Probability of rejection (and hence signing time)
- Size of signatures
- Further improvement: rely on LWE to use a shorter \mathbf{S}.
- Shorter $\mathbf{S} \Rightarrow$ shorter $\mathbf{y} \Rightarrow$ smaller signatures
- Security proof can be made tight
- Efficient variant of Lyubashevsky's signature without rejection.
- Precise comparison to GPV-type signatures.
- Efficient signature without the random oracle heuristic.

Plan for this lecture

(1) Signing from SIS
(2) Improving efficiency
© NTRU

It's all big and slow

Public key contains a uniformly sampled matrix \mathbf{A}.

- Share A among users (but maybe an adversary can work on A to break all keys)
- Store only the seed of the randomness used to sample \mathbf{A}.

Encrypting, Signing and Verifying require matrix-vector multiplication.
Encryption is only for bits.

Replace matrices by structured matrices

Ring-LWE, Module-LWE

$$
\text { Structured matrices } \Leftrightarrow \text { Polynomials }
$$

This allows us to exploit fast polynomial arithmetic.
The encryption scheme we saw still works. But:

- (Matrix \times vector) is replaced by (polynomial \times polynomial)
- Encryption of a bit is replaced by encryption of a binary polynomial
\Rightarrow Quasi-optimal efficiency: handling n plaintext bits costs $\widetilde{O}(n)$.

What about security?

Ideal/Polynomial-SIS [LM06,PR06]

Let $q \geq 2, \beta>0, m>0$. Let $f=x^{n}+1 \in \mathbb{Z}[x]$ with $n=2^{k}$.

Ideal-SIS ${ }_{m, q, \beta}^{f}$

Given $\left(a_{1}, \ldots, a_{m}\right)$ uniform in $\mathbb{Z}_{q}[x] / f$, find $x_{1}, \ldots, x_{m} \in \mathbb{Z}[x] / f$ s.t.:

- $\sum_{i} x_{i} a_{i}=0 \bmod q$,
- $0<\|\mathbf{x}\| \leq \beta$, where $\mathbf{x} \in \mathbb{Z}^{m n}$ consists in the coeffs of the x_{i} 's.
\qquad
\square

Ideal/Polynomial-SIS [LM06,PR06]

Let $q \geq 2, \beta>0, m>0$. Let $f=x^{n}+1 \in \mathbb{Z}[x]$ with $n=2^{k}$.

Ideal-SIS ${ }_{m, q, \beta}^{f}$

Given $\left(a_{1}, \ldots, a_{m}\right)$ uniform in $\mathbb{Z}_{q}[x] / f$, find $x_{1}, \ldots, x_{m} \in \mathbb{Z}[x] / f$ s.t.:

- $\sum_{i} x_{i} a_{i}=0 \bmod q$,
- $0<\|\mathbf{x}\| \leq \beta$, where $\mathbf{x} \in \mathbb{Z}^{m n}$ consists in the coeffs of the x_{i} 's.

This is SIS, with matrix \mathbf{A} made of stacked blocks $\operatorname{Rot}_{f}\left(a_{i}\right)$.
The j-th row of $\operatorname{Rot}_{f}\left(a_{i}\right)$ is made of the coefficients of $x^{j-1} \cdot a_{i} \bmod f$.

Ideal/Polynomial-SIS [LM06,PR06]

Let $q \geq 2, \beta>0, m>0$. Let $f=x^{n}+1 \in \mathbb{Z}[x]$ with $n=2^{k}$.

Ideal-SIS ${ }_{m, q, \beta}^{f}$

Given $\left(a_{1}, \ldots, a_{m}\right)$ uniform in $\mathbb{Z}_{q}[x] / f$, find $x_{1}, \ldots, x_{m} \in \mathbb{Z}[x] / f$ s.t.:

- $\sum_{i} x_{i} a_{i}=0 \bmod q$,
- $0<\|\mathbf{x}\| \leq \beta$, where $\mathbf{x} \in \mathbb{Z}^{m n}$ consists in the coeffs of the x_{i} 's.

This is SIS, with matrix \mathbf{A} made of stacked blocks $\operatorname{Rot}_{f}\left(a_{i}\right)$.
The j-th row of $\operatorname{Rot}_{f}\left(a_{i}\right)$ is made of the coefficients of $x^{j-1} \cdot a_{i} \bmod f$.

Why this f ?

f is irreducible $\Rightarrow \mathbb{Q}[x] / f$ is a field.
For $q=1 \bmod (2 n)$ prime: $\mathbb{Z}_{q}[x] / f \simeq \mathbb{Z}_{q} \times \ldots \times \mathbb{Z}_{q}$.

Ideal/Polynomial-LWE [SSTX09]

Let $q \geq 2, \alpha>0$. Let $f=x^{n}+1 \in \mathbb{Z}[x]$ with $n=2^{k}$.

Search P-LWE ${ }^{f}$

Given $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(a_{1} \cdot s+e_{1}, \ldots, a_{m} \cdot s+e_{m}\right)$, find s.

- s uniform in $\mathbb{Z}_{q}[x] / f$
- All a_{i} 's uniform in $\mathbb{Z}_{q}[x] / f$
- The coefficients of the e_{i} 's are sampled from $\nu_{\alpha q}$

Hardness of P-SIS / P-LWE

There is a reduction from SVP $_{\gamma}$ for ideals of $\mathbb{Z}[x] / f$ to $\mathrm{P}^{\text {SIS }}{ }^{f}$. The approximation factor γ is proportional to β.

There is a quantum reduction from $\operatorname{SVP}_{\gamma}$ for ideals of $\mathbb{Z}[x] / f$ to search P-LWE .
The approximation factor γ is proportional to $1 / \alpha$.

Hardness of P-SIS / P-LWE

There is a reduction from SVP $_{\gamma}$ for ideals of $\mathbb{Z}[x] / f$ to $\mathrm{P}^{\text {SIS }}{ }^{f}$. The approximation factor γ is proportional to β.

There is a quantum reduction from $\operatorname{SVP}_{\gamma}$ for ideals of $\mathbb{Z}[x] / f$ to search P-LWE .
The approximation factor γ is proportional to $1 / \alpha$.

- Vacuous if SVP $_{\gamma}$ for ideals of $\mathbb{Z}[x] / f$ is easy
- Ideal-SVP ${ }_{\gamma}$ is currently easier than SVP $_{\gamma}$ for large γ [CDW17,PHS19]

Ring-LWE [LPR10]

Let $q \geq 2, \alpha>0, f \in \mathbb{Z}[x]$ monic irreducible of degree n.
K : number field defined by f.
\mathcal{O}_{K} : its ring of integers.
$\mathcal{O}_{K}{ }^{\vee}$: its dual ideal.
$\sigma_{1}, \ldots, \sigma_{n}$: the Minkowski embeddings.
As complex embeddings come by pairs of conjugates, the σ_{k} 's give a bijection σ from $K_{\mathbb{R}}=K \otimes_{\mathbb{Q}} \mathbb{R}$ to \mathbb{R}^{n}.

Decision Ring-LWE: distinguish uniform $\left(a_{i}, b_{i}\right)$'s from $\left(a_{i}, b_{i}\right)$'s as above

Ring-LWE [LPR10]

Let $q \geq 2, \alpha>0, f \in \mathbb{Z}[x]$ monic irreducible of degree n.
K : number field defined by f.
\mathcal{O}_{K} : its ring of integers.
$\mathcal{O}_{K}{ }^{\vee}$: its dual ideal.
$\sigma_{1}, \ldots, \sigma_{n}$: the Minkowski embeddings.
As complex embeddings come by pairs of conjugates, the σ_{k} 's give a bijection σ from $K_{\mathbb{R}}=K \otimes_{\mathbb{Q}} \mathbb{R}$ to \mathbb{R}^{n}.

Search Ring-LWE ${ }^{f}$

Given $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(a_{1} \cdot s+e_{1}, \ldots, a_{m} \cdot s+e_{m}\right)$, find s.

- s uniform in $\mathcal{O}_{K}{ }^{\vee} / q \mathcal{O}_{K}{ }^{\vee}$
- All a_{i} 's uniform in $\mathcal{O}_{K} / q \mathcal{O}_{K}$
- The $\sigma\left(e_{i}\right)$'s are sampled from $\nu_{\alpha q}$

Decision Ring-LWE: distinguish uniform $\left(a_{i}, b_{i}\right)$'s from $\left(a_{i}, b_{i}\right)$'s as above

Ring-LWE [LPR10]

Let $q \geq 2, \alpha>0, f \in \mathbb{Z}[x]$ monic irreducible of degree n.
K : number field defined by f.
\mathcal{O}_{K} : its ring of integers.
$\mathcal{O}_{K}{ }^{\vee}$: its dual ideal.
$\sigma_{1}, \ldots, \sigma_{n}$: the Minkowski embeddings.
As complex embeddings come by pairs of conjugates, the σ_{k} 's give a bijection σ from $K_{\mathbb{R}}=K \otimes_{\mathbb{Q}} \mathbb{R}$ to \mathbb{R}^{n}.

Search Ring-LWE ${ }^{f}$

Given $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(a_{1} \cdot s+e_{1}, \ldots, a_{m} \cdot s+e_{m}\right)$, find s.

- s uniform in $\mathcal{O}_{K}{ }^{\vee} / q \mathcal{O}_{K}{ }^{\vee}$
- All a_{i} 's uniform in $\mathcal{O}_{K} / q \mathcal{O}_{K}$
- The $\sigma\left(e_{i}\right)$'s are sampled from $\nu_{\alpha q}$

Decision Ring-LWE: distinguish uniform $\left(a_{i}, b_{i}\right)$'s from $\left(a_{i}, b_{i}\right)$'s as above

Hardness of Ring-LWE

LPR10 : For all f, there is a reduction from ApproxSVP for \mathcal{O}_{K}-ideals to search Ring-LWE ${ }^{f}$.
For f cyclotomic, there is a reduction from search to decision Ring-LWE ${ }^{f}$.
PRS17 : For all f, there is a reduction from ApproxSVP for $\mathcal{O}_{\mathcal{K}}$-ideals to decision Ring-LWE ${ }^{f}$.

The landscape is complex

Selected open problems

- What are the precise relationships between P-LWE, Ring-LWE and Module-LWE? [AD17,RsW18]
- What do the attacks on Ideal-SVP mean? [CDW17,PHS19]
- Is the relevant worst-case problem SVP for \mathcal{O}_{K}-modules? [LS15]
- Can we go from a K to a K^{\prime} ? [GHPS13]
- Are some K better or worse than others?

Plan for this lecture

(1) Signing from SIS
(2) Improving efficiency
(0) NTRU

NTRU (adapted from [HPS98])

Notations: $\quad R=\mathbb{Z}[x] /\left(x^{n}+1\right) \quad R_{q}=\mathbb{Z}_{q}[x] /\left(x^{n}+1\right)$
Keygen: Sample f, g in R with coeffs in $\{-1,0,1\}$.

$$
s k=f, p k=h:=g / f \bmod q .
$$

Decrypt

NTRU (adapted from [HPS98])

Notations: $\quad R=\mathbb{Z}[x] /\left(x^{n}+1\right) \quad R_{q}=\mathbb{Z}_{q}[x] /\left(x^{n}+1\right)$
Keygen: Sample f, g in R with coeffs in $\{-1,0,1\}$.

$$
s k=f, p k=h:=g / f \bmod q .
$$

Encrypt: $M \in R$ with coeffs in $\{0,1\}$. Sample s and e small. $C=2(h \cdot s+e)+M \bmod q$.

NTRU (adapted from [HPS98])

Notations: $\quad R=\mathbb{Z}[x] /\left(x^{n}+1\right) \quad R_{q}=\mathbb{Z}_{q}[x] /\left(x^{n}+1\right)$
Keygen: Sample f, g in R with coeffs in $\{-1,0,1\}$.

$$
s k=f, p k=h:=g / f \bmod q .
$$

Encrypt: $M \in R$ with coeffs in $\{0,1\}$. Sample s and e small. $C=2(h \cdot s+e)+M \bmod q$.

Decrypt: $(C \cdot f \bmod q) \bmod 2$ is $M \cdot f \bmod 2$ Divide by f mod 2 .
(This requires f invertible $\bmod q$ and $\bmod 2$)
Correct as long as $\|2(g \cdot s+e \cdot f)\|_{\infty}<q / 2$ with probability ≈ 1

The design is versatile

- $f=x^{n}+1, q$ and " 2 " may be changed
- Use diverse types of rounding or noises
- Use small or big coefficients for f, g, s, e

The design is versatile

- $f=x^{n}+1, q$ and " 2 " may be changed
- Use diverse types of rounding or noises
- Use small or big coefficients for f, g, s, e

Security boils down to two intractability assumptions:

- Indistinguishability of $h=g / f \bmod q$ from uniform in R_{q}.

May be waived, but at a significant cost [SS11]
Can be solved efficiently for large q and small f and g [ABD16,CJL16,KF17]

- Indistinguishability of ciphertext from uniform (i.e., Ring-LWE).

NTRU key security

Breaking the key is solving unique-SVP for a rank-2 module lattice.

$$
M:=\left\{x_{1}, x_{2} \in R^{2}: x_{1} \cdot h=x_{2} \bmod q\right\}
$$

- For a uniform h, we would expect $\lambda_{1}(M) \approx \sqrt{n \cdot q}$
- But $(f, g) \in M$ is shorter than that
\qquad

NTRU key security

Breaking the key is solving unique-SVP for a rank-2 module lattice.

$$
M:=\left\{x_{1}, x_{2} \in R^{2}: x_{1} \cdot h=x_{2} \bmod q\right\}
$$

- For a uniform h, we would expect $\lambda_{1}(M) \approx \sqrt{n \cdot q}$
- But $(f, g) \in M$ is shorter than that

Partial hardness results [PS21]

Under specific (and incompatible) parameter restrictions:

- worst-case ideal-SVP reduces to average-case search NTRU [PS21]
- average-case search NTRU reduces to decision NTRU [PS21]

Plan for this lecture

(1) Signing from SIS
(2) Improving efficiency

- NTRU

Wrapping up

Lattices are conjectured to provide hard worst-case problems.
\qquad

Wrapping up

Lattices are conjectured to provide hard worst-case problems.
SIS/LWE are a-c variants no easier than some w-c lattice problems.

- There is no fundamental weakness in SIS/LWE.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental flaw.
\qquad

Wrapping up

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some w-c lattice problems.

- There is no fundamental weakness in SIS/LWE.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental flaw.

SIS/LWE can be viewed as linear algebra problems.

- It leads to simple cryptographic design.
- It enables advanced cryptographic constructions.

[^0]
Wrapping up

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some w-c lattice problems.

- There is no fundamental weakness in SIS/LWE.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental flaw.

SIS/LWE can be viewed as linear algebra problems.

- It leads to simple cryptographic design.
- It enables advanced cryptographic constructions.

To improve efficiency, use algebraic lattices.

- Does it impact computational intractability?
- Plenty of problems involving algebraic number theory.

Bibliography

ACPS09 B. Applebaum, D. Cash, C. Peikert, A. Sahai: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. CRYPTO 2009.
Ajtai96 M. Ajtai: Generating Hard Instances of Lattice Problems. STOC 1996.
BKSW18 Z. Brakerski, E. Kirshanova, D. Stehlé, W. Wen: Learning with Errors and ExtrapolatedDihedral Cosets. Public Key Cryptography 2018.
BLPRS13 Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stehlé: Classical hardness of learningwith errors. STOC 2013.
CDW17 R. Cramer, L. Ducas, B. Wesolowski: Short Stickelberger Class Relations and Application toIdeal-SVP. EUROCRYPT 2017.
GHPS13 C. Gentry, S. Halevi, C. Peikert, N. P. Smart: Field switching in BGV-style homomorphic encryption. J. Comput. Secur. 2013.
GPV08 C. Gentry, C. Peikert, V. Vaikuntanathan: Trapdoors for hard lattices and newcryptographic constructions. STOC 2008.
HPS98 J. Hoffstein, J. Pipher, J. H. Silverman: NTRU: A Ring-Based Public Key Cryptosystem.ANTS 1998.
Lyu09 V. Lyubashevsky: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-BasedSignatures. ASIACRYPT 2009.
Lyu12 V. Lyubashevsky: Lattice Signatures without Trapdoors. EUROCRYPT 2012.
LM06 V. Lyubashevsky, D. Micciancio: Generalized Compact Knapsacks Are Collision Resistant.ICALP 2006.
LPR10 V. Lyubashevsky, C. Peikert, O. Regev: On Ideal Lattices and Learning with Errors overRings. EUROCRYPT 2010.
LPS10 V. Lyubashevsky, A. Palacio, G. Segev: Public-Key Cryptographic Primitives Provably asSecure as Subset Sum. TCC 2010.
LS15 A. Langlois, D. Stehlé: Worst-case to average-case reductions for module lattices. Des.Codes Cryptogr. 2015.

Bibliography

Peikert09 C. Peikert: Public-key cryptosystems from the worst-case shortest vector problem. STOC 2009.

PHS19 A. Pellet-Mary, G. Hanrot, D. Stehlé: Approx-SVP in Ideal Lattices with Pre-processing. EUROCRYPT 2019.
PR06 C. Peikert, A. Rosen: Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. TCC 2006.
PRS17 C. Peikert, O. Regev, N. Stephens-Davidowitz: Pseudorandomness of ring-LWE for any ring and modulus. STOC 2017.

PS21 A. Pellet-Mary, D. Stehlé: On the Hardness of the NTRU Problem. ASIACRYPT 2021.
Regev05 O. Regev: On lattices, learning with errors, random linear codes, and cryptography. STOC 2005.

SSTX09 D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa: Efficient Public Key Encryption Based on Ideal Lattices. ASIACRYPT 2009.

[^0]: To improve efficiency, use algebraic lattices.

 - Does it impact compitational intractability?
 - Plenty of problems involving algebraic number theory

