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Introduction Lattices SIS and LWE LWE-based encryption

Lattice-based cryptography

Probably the most mature approach for quantum-safe crypto.
Allows advanced cryptographic constructions
(homomorphic enc., some functional enc., privacy-preserving primitives, etc)

Topics covered in this introduction:

1 Hardness foundations: what are the assumptions?

2 Basic schemes: how to encrypt and sign?

3 More efficient schemes using algebraic lattices

References:

C. Peikert: a decade of lattice-based cryptography

eprint 2015/939

V. Lyubashevsky: basic lattice cryptography

on Lyubashevsky’s webpage
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Introduction Lattices SIS and LWE LWE-based encryption

Plan for this lecture

1 Background on Euclidean lattices.

2 The SIS and LWE problems.

3 Encrypting from LWE.
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Introduction Lattices SIS and LWE LWE-based encryption

Euclidean lattices

Lattice ≡ discrete subgroup of Rn

≡ {
∑

i≤n xibi : xi ∈ Z}

If the bi ’s are linearly independent,
they are called a basis.

Bases are not unique, but they can be
obtained from each other by integer trans-
forms of determinant ±1:[

−2 1
10 6

]
=

[
4 −3
2 4

]
·
[

1 1
2 1

]
.
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Introduction Lattices SIS and LWE LWE-based encryption

Lattice invariants

Dimension: n

First minimum:
λ1 = min(∥b∥ : b ∈ L \ 0)

Last minimum:
λn = min

{
r :

span(L ∩ B(r)) = span(L)
}

Lattice determinant:
det L = | det(bi )i |, for any basis

Minkowski theorem:
λ1(L) ≤

√
n · (det L)1/n
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Introduction Lattices SIS and LWE LWE-based encryption

An example: construction A lattices

Construction A. Let m ≥ n ≥ 1 and q ≥ 2 prime (for tranquility)

Let A ∈ Zm×n
q . Then L(A) := A · Zn

q + q · Zm is a lattice.

dim L(A) = m & for full-rank A: det L(A) = qm−n

SEE BOARD
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Construction A. Let m ≥ n ≥ 1 and q ≥ 2 prime (for tranquility)

Let A ∈ Zm×n
q . Then L(A) := A · Zn

q + q · Zm is a lattice.

dim L(A) = m & for full-rank A: det L(A) = qm−n

By Minkowski, for full-rank A: λ1(L(A)) ≤ min
(√

mq(m−n)/m, q
)
.

For A uniform, this is tight, up to a constant factor.

SEE BOARD

Damien Stehlé Introduction to lattice cryptography 25/07/2022 7/29



Introduction Lattices SIS and LWE LWE-based encryption

Another example

Let m ≥ n ≥ 1 and q ≥ 2 prime.

Construction A for the orthogonal code

Let A ∈ Zm×n
q . Then A⊥ = {x ∈ Zm : xT · A = 0 [q]} is a lattice.

Dimension: m

Determinant: qrk(A).

λ1 ≈ min(
√
n log q,

√
mqn/m), with probability ≈ 1 for a uniform A.
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Introduction Lattices SIS and LWE LWE-based encryption

SVP and SIVP

The Shortest Vector Problem: SVPγ

Given a basis of L, find b ∈ L \ 0 such that: ∥b∥ ≤ γ · λ(L).
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Introduction Lattices SIS and LWE LWE-based encryption

SVP and SIVP

The Shortest Vector Problem: SVPγ

Given a basis of L, find b ∈ L \ 0 such that: ∥b∥ ≤ γ · λ(L).

The Shortest Independent Vectors Problem: SIVPγ

Given a basis of L, find b1, . . . ,bn ∈ L lin. indep. such that:

max ∥bi∥ ≤ γ · λn(L).
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CVP and BDD

The Closest Vector Problem: CVPγ

Given a basis of L and a target t ∈ Qn, find b ∈ L such that:
∥b− t∥ ≤ γ ·min(∥c− t∥ : c ∈ L).

BDDγ (Bounded Distance Decoding)

Find the closest b ∈ L to t, under the promise that ∥b− t∥ ≤ λ1(L)/γ.
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Hardness of SVP, SIVP, CVP, BDD

NP-hard for some γ = O(1) (under randomized reductions for SVP).

Most of lattice crypto uses γ = Poly(n):
for such γ, all known (quantum) algorithms cost 2Ω(n).

Solvable in polynomial time when γ = 2Õ(n).

Major open problems

How equivalent are these problems? See survey by Noah Stephens-Davidowitz

Can we beat the 2Ω(n) cost barrier?

But these are worst-case problems, which is not convenient for crypto.
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Introduction Lattices SIS and LWE LWE-based encryption

Plan for this lecture

1 Background on Euclidean lattices.

2 The SIS and LWE problems.

3 Encrypting from LWE.
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SISβ,q,m [Ajtai’96]

The Short Integer Solution Problem

Given a uniform A ∈ Zm×n
q , find x ∈ Zm such that:

0 < ∥x∥ ≤ β and xT · A = 0 mod q.
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SIS as a lattice problem

Remember our lattice example:

A⊥ = {x ∈ Zm : xT · A = 0 [q]}.

SIS consists in finding a short non-zero vector in A⊥, for a uniform A.

If β < λ1 ≈ min(
√
n log q,

√
mqn/m): trivially hard.

If β ≥ q: trivially easy.

In between: interesting.

SIS is an average-case SVP/SIVP.
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (γ ≈ nβ, q ≥
√
nβ)

Any efficient SISβ,q,m algorithm succeeding with non-negligible
probability leads to an efficient SIVPγ algorithm.

SKETCH: SEE BOARD
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LWEα,q [Regev’05]

Let s ∈ Zn
q. Let Ds,α be the distribution corresponding to:

(a; ⟨a, s⟩+ e [q]) with a←↩ U(Zn
q), e ←↩ ⌊ναq⌉,

where ναq denotes the continuous Gaussian of st. dev. αq.

The Learning With Errors Problem — Search-LWEα

Let s ∈ Zn
q. Given arbitrarily many samples from Ds,α, find s.
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LWE as a lattice problem

Search-LWEα

Let s ∈ Zn
q. Given (A;As+ e [q]) with A←↩ U(Zm×n

q ) and e←↩ ⌊νmαq⌉
for and arbitrary m, find s.

Remember our lattice example LA = A · Zn
q + q · Zm.

If α ≈ 0, then LWE is easy to solve.

If α≫ 1, then LWE is trivially hard.

In between: interesting.

LWE is an average-case BDD.

Damien Stehlé Introduction to lattice cryptography 25/07/2022 17/29



Introduction Lattices SIS and LWE LWE-based encryption

LWE as a lattice problem

Search-LWEα

Let s ∈ Zn
q. Given (A;As+ e [q]) with A←↩ U(Zm×n

q ) and e←↩ ⌊νmαq⌉
for and arbitrary m, find s.

Remember our lattice example LA = A · Zn
q + q · Zm.

If α ≈ 0, then LWE is easy to solve.

If α≫ 1, then LWE is trivially hard.

In between: interesting.

LWE is an average-case BDD.
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Introduction Lattices SIS and LWE LWE-based encryption

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction (γ ≈ n/α, αq ≥
√
n)

Assume that q is prime and Poly(n).
Any efficient LWEn,α,q algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVPγ algorithm.
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How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction (γ ≈ n/α, αq ≥
√
n)

Assume that q is prime and Poly(n).
Any efficient LWEn,α,q algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVPγ algorithm.

[Peikert09]: classical reduction, for q ≈ 2n, from BDD.

[SSTX09]: simpler (but weaker) quantum reduction, from SIS.

[BLPRS13]: de-quantized reduction, for any q that is at least some
Poly(n), from a weaker worst-case lattice problem.

[BKSW18]: yet another quantum reduction, from BDD.

Damien Stehlé Introduction to lattice cryptography 25/07/2022 18/29



Introduction Lattices SIS and LWE LWE-based encryption

Decision LWE

Ds,α : (a; ⟨a, s⟩+ e [q]) with a←↩ U(Zn
q), e ←↩ ⌊ναq⌉.

Search-LWEα

Let s ∈ Zn
q. Given arbitrarily many samples from Ds,α, find s.

Dec-LWEα

Let s←↩ U(Zn
q). With non-negligible probability over s, distinguish

between an oracle access to Ds,α or an oracle access to U(Zn+1
q ).

Damien Stehlé Introduction to lattice cryptography 25/07/2022 19/29



Introduction Lattices SIS and LWE LWE-based encryption

Decision LWE

Ds,α : (a; ⟨a, s⟩+ e [q]) with a←↩ U(Zn
q), e ←↩ ⌊ναq⌉.

Search-LWEα

Let s ∈ Zn
q. Given arbitrarily many samples from Ds,α, find s.

Dec-LWEα

Let s←↩ U(Zn
q). With non-negligible probability over s, distinguish

between an oracle access to Ds,α or an oracle access to U(Zn+1
q ).
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Decision LWE

Ds,α : (a; ⟨a, s⟩+ e [q]) with a←↩ U(Zn
q), e ←↩ ⌊ναq⌉.

Search-LWEα

Let s ∈ Zn
q. Given arbitrarily many samples from Ds,α, find s.

Dec-LWEα

Let s←↩ U(Zn
q). With non-negligible probability over s, distinguish

between an oracle access to Ds,α or an oracle access to U(Zn+1
q ).

Dec-LWE and Search-LWE efficiently reduce to one another.
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Decision LWE and SIS
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Nice properties of LWE

1 Arbitrary number of samples
⇒ can amplify success probability and distinguishing advantage.

2 Random self-reducibility
⇒ solving for a non-negligible fraction of s’s suffices.

(A,A · s+ e) + (0,A · t) = (A,A · (s+ t) + e)

3 A distinguishing oracle allows to check a guess for a coordinate of s.

⇒ These lead to a search-to-decision reduction.

4 Can take different types of noises:

Discrete Gaussian
Uniform integer in an interval
Deterministic, using rounding

Damien Stehlé Introduction to lattice cryptography 25/07/2022 21/29



Introduction Lattices SIS and LWE LWE-based encryption

Nice properties of LWE

1 Arbitrary number of samples
⇒ can amplify success probability and distinguishing advantage.

2 Random self-reducibility
⇒ solving for a non-negligible fraction of s’s suffices.

(A,A · s+ e) + (0,A · t) = (A,A · (s+ t) + e)

3 A distinguishing oracle allows to check a guess for a coordinate of s.

⇒ These lead to a search-to-decision reduction.

4 Can take different types of noises:

Discrete Gaussian
Uniform integer in an interval
Deterministic, using rounding
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Open problems

Selected problems on SIS/LWE

Can we get hardness of SIS/LWE based on SIVP with approximation
factor less than n?

Can we reduce SVPγ to SIS/LWE?

Can we get a classical reduction from SIVP to LWE with parameters
equivalent to those of Regev’s quantum reduction?

Or is this discrepancy intrinsic and there is a quantum acceleration
for solving LWE and SIVP?
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Introduction Lattices SIS and LWE LWE-based encryption

Plan for this lecture

1 Background on Euclidean lattices.

2 The SIS and LWE problems.

3 Encrypting from LWE.

SVP/SIVP/CVP/BDD are here only implicitly:
(almost) no need to know lattices to design lattice-based schemes!
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LWE with small secret [ACPS09]

Small-secret-LWEα

Let s←↩ ⌊ναq⌉n. With non-negligible probability over s, distinguish
between (arbitrarily many) samples from Ds,α or from U(Zn+1

q ).

SEE BOARD
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LWE-based encryption [LPS10]
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Introduction Lattices SIS and LWE LWE-based encryption

Decryption correctness

To ensure correctness, it suffices that∣∣tTe+ fT (−s|1)
∣∣ < q/4,

with probability very close to 1.

Up to the roundings of Gaussians:

Gaussian tail bound ⇒ ∥t∥, ∥e∥, ∥f∥, ∥s∥ ≲
√
nαq

with probability 1− 2−Ω(n).

It suffices that (
√
nαq)2 ≲ q/4, i.e., α ≲ 1/(n

√
q).

Damien Stehlé Introduction to lattice cryptography 25/07/2022 26/29



Introduction Lattices SIS and LWE LWE-based encryption

Decryption correctness

To ensure correctness, it suffices that∣∣tTe+ fT (−s|1)
∣∣ < q/4,

with probability very close to 1.

Up to the roundings of Gaussians:

Gaussian tail bound ⇒ ∥t∥, ∥e∥, ∥f∥, ∥s∥ ≲
√
nαq

with probability 1− 2−Ω(n).

It suffices that (
√
nαq)2 ≲ q/4, i.e., α ≲ 1/(n

√
q).
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Introduction Lattices SIS and LWE LWE-based encryption

Passive security (IND-CPA)
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Setting parameters (asymptotically)

How do we choose n, α and q?

Minimize bandwidth/key-size/run-times under the conditions that:

Correctness holds

Some security is guaranteed

Take
√
n/q ≈ 1/(n

√
q), i.e., q ≈ n3.

Take α ≈
√
n/q ≈ n−5/2.

(Don’t use the SIVP to LWE reduction to set concrete parameters!)
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Open problems

Selected problems on LWE encryption

Do the diverse noise distributions have an impact?

What is the best way to upgrade security from passive (CPA) to
active (CCA)?

Damien Stehlé Introduction to lattice cryptography 25/07/2022 29/29



Introduction Lattices SIS and LWE LWE-based encryption

Open problems

Selected problems on LWE encryption

Do the diverse noise distributions have an impact?

What is the best way to upgrade security from passive (CPA) to
active (CCA)?
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