Introduction to lattice cryptography

Damien Stehlé

ENS Lyon

Edinburgh, July 2022

Lattice-based cryptography

Probably the most mature approach for quantum-safe crypto. Allows advanced cryptographic constructions
(homomorphic enc., some functional enc., privacy-preserving primitives, etc)

Topics covered in this introduction:
(1) Hardness foundations: what are the assumptions?
(2) Basic schemes: how to encrypt and sign?
(More efficient schemes using algebraic lattices

- V. Lyubashevsky: basic lattice cryptography

Lattice-based cryptography

Probably the most mature approach for quantum-safe crypto. Allows advanced cryptographic constructions
(homomorphic enc., some functional enc., privacy-preserving primitives, etc)

Topics covered in this introduction:
(1) Hardness foundations: what are the assumptions?
(2) Basic schemes: how to encrypt and sign?
(3) More efficient schemes using algebraic lattices

References:

- C. Peikert: a decade of lattice-based cryptography
eprint 2015/939
- V. Lyubashevsky: basic lattice cryptography

Plan for this lecture

(1) Background on Euclidean lattices.
(2) The SIS and LWE problems.
(3) Encrypting from LWE.

Euclidean lattices

Lattice \equiv discrete subgroup of \mathbb{R}^{n}

If the \mathbf{b}_{i} 's are linearly independent they are called a basis. Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1

Euclidean lattices

Lattice \equiv discrete subgroup of \mathbb{R}^{n}

$$
\equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}
$$

If the \mathbf{b}_{i} 's are linearly independent, they are called a basis.

Bases
obtained from each other by integer trans-
forms of determinant +1 .

Euclidean lattices

Lattice \equiv discrete subgroup of \mathbb{R}^{n}

$$
\equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}
$$

If the \mathbf{b}_{i} 's are linearly independent, they are called a basis.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$
\left[\begin{array}{cc}
-2 & 1 \\
10 & 6
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]
$$

Lattice invariants

Dimension: n
First minimum:
$\lambda_{1}=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$

Lattice invariants

Dimension: n
First minimum:
$\lambda_{1}=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$
Last minimum:
$\lambda_{n}=\min \{r$:
$\operatorname{span}(L \cap \mathcal{B}(r))=\operatorname{span}(L)\}$

Lattice invariants

Dimension: n
First minimum:
$\lambda_{1}=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$
Last minimum:
$\lambda_{n}=\min \{r:$
$\operatorname{span}(L \cap \mathcal{B}(r))=\operatorname{span}(L)\}$
Lattice determinant:
$\operatorname{det} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right|$, for any basis

Lattice invariants

Dimension: n
First minimum:
$\lambda_{1}=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$
Last minimum:
$\lambda_{n}=\min \{r$:

$$
\operatorname{span}(L \cap \mathcal{B}(r))=\operatorname{span}(L)\}
$$

Lattice determinant:
$\operatorname{det} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right|$, for any basis
Minkowski theorem:
$\lambda_{1}(L) \leq \sqrt{n} \cdot(\operatorname{det} L)^{1 / n}$

An example: construction A lattices

> Construction A . Let $m \geq n \geq 1$ and $q \geq 2$ prime (for tranquility)
> Let $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$. Then $L(\mathbf{A}):=\mathbf{A} \cdot \mathbb{Z}_{q}^{n}+q \cdot \mathbb{Z}^{m}$ is a lattice.

$$
\operatorname{dim} L(\mathbf{A})=m \quad \& \quad \text { for full-rank } \mathbf{A}: \operatorname{det} L(\mathbf{A})=q^{m-n}
$$

SEE BOARD

An example: construction A lattices

Construction A . Let $m \geq n \geq 1$ and $q \geq 2$ prime (for tranquility)

Let $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$. Then $L(\mathbf{A}):=\mathbf{A} \cdot \mathbb{Z}_{q}^{n}+q \cdot \mathbb{Z}^{m}$ is a lattice.

$$
\operatorname{dim} L(\mathbf{A})=m \quad \& \quad \text { for full-rank } \mathbf{A}: \operatorname{det} L(\mathbf{A})=q^{m-n}
$$

By Minkowski, for full-rank A: $\quad \lambda_{1}(L(\mathbf{A})) \leq \min \left(\sqrt{m} q^{(m-n) / m}, q\right)$.

For \mathbf{A} uniform, this is tight, up to a constant factor.

SEE BOARD

Another example

Let $m \geq n \geq 1$ and $q \geq 2$ prime.
Construction A for the orthogonal code
Let $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$. Then $\mathbf{A}^{\perp}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \mathbf{x}^{T} \cdot \mathbf{A}=\mathbf{0}[q]\right\}$ is a lattice.

Another example

Let $m \geq n \geq 1$ and $q \geq 2$ prime.
Construction A for the orthogonal code
Let $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$. Then $\mathbf{A}^{\perp}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \mathbf{x}^{T} \cdot \mathbf{A}=\mathbf{0}[q]\right\}$ is a lattice.

- Dimension: m
- Determinant: $q^{r k(\mathbf{A})}$.
- $\lambda_{1} \approx \min \left(\sqrt{n \log q}, \sqrt{m} q^{n / m}\right)$, with probability ≈ 1 for a uniform \mathbf{A}.

SVP and SIVP

The Shortest Vector Problem: SVP ${ }_{\gamma}$
 Given a basis of L, find $\mathbf{b} \in L \backslash \mathbf{0}$ such that: $\quad\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

SVP and SIVP

The Shortest Vector Problem: SVP ${ }_{\gamma}$

Given a basis of L, find $\mathbf{b} \in L \backslash \mathbf{0}$ such that: $\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

The Shortest Independent Vectors Problem: SIVP ${ }_{\gamma}$

Given a basis of L, find $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in L$ lin. indep. such that:

$$
\max \left\|\mathbf{b}_{i}\right\| \leq \gamma \cdot \lambda_{n}(L)
$$

CVP and BDD

The Closest Vector Problem: CVP γ_{γ}

Given a basis of L and a target $\mathbf{t} \in \mathbb{Q}^{n}$, find $\mathbf{b} \in L$ such that:

$$
\|\mathbf{b}-\mathbf{t}\| \leq \gamma \cdot \min (\|\mathbf{c}-\mathbf{t}\|: \mathbf{c} \in L)
$$

BDD_{γ} (Bounded Distance Decoding)

Find the closest $\mathbf{b} \in L$ to \mathbf{t}, under the promise that $\|\mathbf{b}-\mathbf{t}\| \leq \lambda_{1}(L) / \gamma$.

Hardness of SVP, SIVP, CVP, BDD

- NP-hard for some $\gamma=O(1)$ (under randomized reductions for SVP).
- Most of lattice crypto uses $\gamma=\mathcal{P}$ oly (n) :
for such γ, all known (quantum) algorithms cost $2^{\Omega(n)}$.
- Solvable in polynomial time when $\gamma=2^{\widetilde{O}(n)}$.

Hardness of SVP, SIVP, CVP, BDD

- NP-hard for some $\gamma=O(1)$ (under randomized reductions for SVP).
- Most of lattice crypto uses $\gamma=\mathcal{P}$ oly (n) : for such γ, all known (quantum) algorithms cost $2^{\Omega(n)}$.
- Solvable in polynomial time when $\gamma=2^{\widetilde{O}(n)}$.

Major open problems

- How equivalent are these problems? See survey by Noah Stephens-Davidowitz
- Can we beat the $2^{\Omega(n)}$ cost barrier?

But these are worst-case problems, which is not convenient for crypto.

Plan for this lecture

(1) Background on Euclidean lattices.
(2) The SIS and LWE problems.
(3) Encrypting from LWE.

SIS $_{\beta, q, m}$ [Ajtai'96]

The Short Integer Solution Problem

Given a uniform $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^{m}$ such that:

$$
0<\|\mathbf{x}\| \leq \beta \text { and } \mathbf{x}^{\top} \cdot \mathbf{A}=\mathbf{0} \bmod q
$$

SIS as a lattice problem

Remember our lattice example:

$$
\mathbf{A}^{\perp}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \mathbf{x}^{T} \cdot \mathbf{A}=\mathbf{0}[q]\right\} .
$$

SIS consists in finding a short non-zero vector in \mathbf{A}^{\perp}, for a uniform \mathbf{A}.

SIS as a lattice problem

Remember our lattice example:

$$
\mathbf{A}^{\perp}=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \mathbf{x}^{T} \cdot \mathbf{A}=\mathbf{0}[q]\right\} .
$$

SIS consists in finding a short non-zero vector in \mathbf{A}^{\perp}, for a uniform \mathbf{A}.

- If $\beta<\lambda_{1} \approx \min \left(\sqrt{n \log q}, \sqrt{m} q^{n / m}\right)$: trivially hard.
- If $\beta \geq q$: trivially easy.
- In between: interesting.

SIS is an average-case SVP/SIVP.

Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction $(\gamma \approx n \beta, q \geq \sqrt{n} \beta)$

Any efficient SIS $_{\beta, q, m}$ algorithm succeeding with non-negligible probability leads to an efficient SIVP $_{\gamma}$ algorithm.

SKETCH: SEE BOARD

$\mathrm{LWE}_{\alpha, q} \quad$ [Regev'05]

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Let $D_{\mathbf{s}, \alpha}$ be the distribution corresponding to:

$$
(\mathbf{a} ;\langle\mathbf{a}, \mathbf{s}\rangle+e[q]) \text { with } \mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), e \hookleftarrow\left\lfloor\nu_{\alpha q}\right\rceil \text {, }
$$

where $\nu_{\alpha q}$ denotes the continuous Gaussian of st. dev. αq.

The Learning With Errors Problem - Search-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s}.

LWE as a lattice problem

Search-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given $(\mathbf{A} ; \mathbf{A s}+\mathbf{e}[q])$ with $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{e} \hookleftarrow\left\lfloor\nu_{\alpha q}^{m}\right\rceil$ for and arbitrary m, find \mathbf{s}.

Remember our lattice example $L_{\mathbf{A}}=\mathbf{A} \cdot \mathbb{Z}_{q}^{n}+q \cdot \mathbb{Z}^{m}$.

LWE as a lattice problem

Search-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given $(\mathbf{A} ; \mathbf{A s}+\mathbf{e}[q])$ with $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{e} \hookleftarrow\left\lfloor\nu_{\alpha q}^{m}\right\rceil$ for and arbitrary m, find \mathbf{s}.

Remember our lattice example $L_{\mathbf{A}}=\mathbf{A} \cdot \mathbb{Z}_{q}^{n}+q \cdot \mathbb{Z}^{m}$.

- If $\alpha \approx 0$, then LWE is easy to solve.
- If $\alpha \gg 1$, then LWE is trivially hard.
- In between: interesting.

LWE is an average-case BDD.

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction $\quad(\gamma \approx n / \alpha, \alpha q \geq \sqrt{n})$
Assume that q is prime and $\mathcal{P o l y}(n)$.
Any efficient $\mathrm{LWE}_{n, \alpha, q}$ algorithm succeeding with non-negligible probability leads to an efficient quantum SIVP $_{\gamma}$ algorithm.

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction $\quad(\gamma \approx n / \alpha, \alpha q \geq \sqrt{n})$
Assume that q is prime and $\mathcal{P o l y}(n)$.
Any efficient $\mathrm{LWE}_{n, \alpha, q}$ algorithm succeeding with non-negligible probability leads to an efficient quantum SIVP $_{\gamma}$ algorithm.

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction $\quad(\gamma \approx n / \alpha, \alpha q \geq \sqrt{n})$

Assume that q is prime and $\mathcal{P o l y}(n)$.
Any efficient $\mathrm{LWE}_{n, \alpha, q}$ algorithm succeeding with non-negligible probability leads to an efficient quantum SIVP $_{\gamma}$ algorithm.

- [Peikert09]: classical reduction, for $q \approx 2^{n}$, from BDD.
- [SSTX09]: simpler (but weaker) quantum reduction, from SIS.
- [BLPRS13]: de-quantized reduction, for any q that is at least some Poly (n), from a weaker worst-case lattice problem.
- [BKSW18]: yet another quantum reduction, from BDD.

Decision LWE

$D_{\mathbf{s}, \alpha}: \quad(\mathbf{a} ;\langle\mathbf{a}, \mathbf{s}\rangle+e[q]) \quad$ with $\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), e \hookleftarrow\left\lfloor\nu_{\alpha q}\right\rceil$.

Search-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s}.

Decision LWE

$D_{\mathbf{s}, \alpha}: \quad(\mathbf{a} ;\langle\mathbf{a}, \mathbf{s}\rangle+e[q]) \quad$ with $\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), e \hookleftarrow\left\lfloor\nu_{\alpha q}\right\rceil$.

Search-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s}.

Dec-LWE ${ }_{\alpha}$

Let $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$. With non-negligible probability over s, distinguish between an oracle access to $D_{\mathrm{s}, \alpha}$ or an oracle access to $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

Decision LWE

$D_{\mathrm{s}, \alpha}: \quad(\mathbf{a} ;\langle\mathbf{a}, \mathbf{s}\rangle+e[q]) \quad$ with $\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), e \hookleftarrow\left\lfloor\nu_{\alpha q}\right\rceil$.

Search-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s}.

Dec-LWE ${ }_{\alpha}$

Let $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$. With non-negligible probability over \mathbf{s}, distinguish between an oracle access to $D_{\mathrm{s}, \alpha}$ or an oracle access to $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

Dec-LWE and Search-LWE efficiently reduce to one another.

Decision LWE and SIS

Nice properties of LWE

(1) Arbitrary number of samples
\Rightarrow can amplify success probability and distinguishing advantage.
(3) A distinguishing oracle allows to check a guess for a coordinate of \mathbf{s}. These lead to a search-to-decicion reduction

Nice properties of LWE

(1) Arbitrary number of samples
\Rightarrow can amplify success probability and distinguishing advantage.
(2) Random self-reducibility
\Rightarrow solving for a non-negligible fraction of s's suffices.

$$
(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e})+(\mathbf{0}, \mathbf{A} \cdot \mathbf{t})=(\mathbf{A}, \mathbf{A} \cdot(\mathbf{s}+\mathbf{t})+\mathbf{e})
$$

Nice properties of LWE

(1) Arbitrary number of samples
\Rightarrow can amplify success probability and distinguishing advantage.
(3) Random self-reducibility
\Rightarrow solving for a non-negligible fraction of s's suffices.

$$
(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e})+(\mathbf{0}, \mathbf{A} \cdot \mathbf{t})=(\mathbf{A}, \mathbf{A} \cdot(\mathbf{s}+\mathbf{t})+\mathbf{e})
$$

(3) A distinguishing oracle allows to check a guess for a coordinate of \mathbf{s}.
\Rightarrow These lead to a search-to-decision reduction.

Nice properties of LWE

(1) Arbitrary number of samples
\Rightarrow can amplify success probability and distinguishing advantage.
(3) Random self-reducibility
\Rightarrow solving for a non-negligible fraction of s's suffices.

$$
(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e})+(\mathbf{0}, \mathbf{A} \cdot \mathbf{t})=(\mathbf{A}, \mathbf{A} \cdot(\mathbf{s}+\mathbf{t})+\mathbf{e})
$$

(A distinguishing oracle allows to check a guess for a coordinate of \mathbf{s}.
\Rightarrow These lead to a search-to-decision reduction.
(1) Can take different types of noises:

- Discrete Gaussian
- Uniform integer in an interval
- Deterministic, using rounding

Open problems

Selected problems on SIS/LWE

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than n ?

Open problems

Selected problems on SIS/LWE

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than n ?
- Can we reduce SVP γ_{γ} to SIS/LWE?

Open problems

Selected problems on SIS/LWE

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than n ?
- Can we reduce SVP γ_{γ} to SIS/LWE?
- Can we get a classical reduction from SIVP to LWE with parameters equivalent to those of Regev's quantum reduction?
- Or is this discrepancy intrinsic and there is a quantum acceleration for solving LWE and SIVP?

Plan for this lecture

(1) Background on Euclidean lattices.
(2) The SIS and LWE problems.
(3) Encrypting from LWE.

SVP/SIVP/CVP/BDD are here only implicitly:
(almost) no need to know lattices to design lattice-based schemes!

LWE with small secret [ACPS09]

Small-secret-LWE ${ }_{\alpha}$

Let $\mathbf{s} \hookleftarrow\left\lfloor\nu_{\alpha q}\right\rceil^{n}$. With non-negligible probability over \mathbf{s}, distinguish between (arbitrarily many) samples from $D_{\mathbf{s}, \alpha}$ or from $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

SEE BOARD

LWE-based encryption [LPS10]

Decryption correctness

To ensure correctness, it suffices that

$$
\left|\mathbf{t}^{T} \mathbf{e}+\mathbf{f}^{T}(-\mathbf{s} \mid 1)\right|<q / 4,
$$

with probability very close to 1 .

Decryption correctness

To ensure correctness, it suffices that

$$
\left|\mathbf{t}^{T} \mathbf{e}+\mathbf{f}^{T}(-\mathbf{s} \mid 1)\right|<q / 4
$$

with probability very close to 1 .
Up to the roundings of Gaussians:

- Gaussian tail bound $\Rightarrow\|\mathbf{t}\|,\|\mathbf{e}\|,\|\mathbf{f}\|,\|\mathbf{s}\| \lesssim \sqrt{n} \alpha q$ with probability $1-2^{-\Omega(n)}$.
- It suffices that $(\sqrt{n} \alpha q)^{2} \lesssim q / 4$, i.e., $\alpha \lesssim 1 /(n \sqrt{q})$.

Passive security (IND-CPA)

Passive security (IND-CPA)

Setting parameters (asymptotically)

How do we choose n, α and q ?

Minimize bandwidth/key-size/run-times under the conditions that: - Correctness holds

Setting parameters (asymptotically)

How do we choose n, α and q ?
Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds
- Some security is guaranteed

Setting parameters (asymptotically)

How do we choose n, α and q ?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds

$$
\begin{aligned}
& \alpha \lesssim 1 /(n \sqrt{q}) \\
& \alpha q \geq \sqrt{n}
\end{aligned}
$$

- Some security is guaranteed

Take $\sqrt{n} / q \approx 1 /(n \sqrt{q})$, i.e., $q \approx n^{3}$.
Take $\alpha \approx \sqrt{n} / q \approx n^{-5 / 2}$.

Setting parameters (asymptotically)

How do we choose n, α and q ?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds

$$
\begin{aligned}
& \alpha \lesssim 1 /(n \sqrt{q}) \\
& \alpha q \geq \sqrt{n}
\end{aligned}
$$

- Some security is guaranteed

Take $\sqrt{n} / q \approx 1 /(n \sqrt{q})$, i.e., $q \approx n^{3}$.
Take $\alpha \approx \sqrt{n} / q \approx n^{-5 / 2}$.
(Don't use the SIVP to LWE reduction to set concrete parameters!)

Open problems

Selected problems on LWE encryption

- Do the diverse noise distributions have an impact?
- What is the best way to upgrade security from passive (CPA) to

Open problems

Selected problems on LWE encryption

- Do the diverse noise distributions have an impact?
- What is the best way to upgrade security from passive (CPA) to active (CCA)?

