Introduction to lattice cryptography

Damien Stehlé

ENS Lyon

Edinburgh, July 2022

Damien Stehlé

Lattice-based cryptography

Probably the most mature approach for quantum-safe crypto. Allows advanced cryptographic constructions (homomorphic enc., some functional enc., privacy-preserving primitives, etc)

Topics covered in this introduction:

- I Hardness foundations: what are the assumptions?
- Basic schemes: how to encrypt and sign?
- More efficient schemes using algebraic lattices

References:

• C. Peikert: a decade of lattice-based cryptography

eprint 2015/939

• V. Lyubashevsky: basic lattice cryptography

on Lyubashevsky's webpage

Lattice-based cryptography

Probably the most mature approach for quantum-safe crypto. Allows advanced cryptographic constructions (homomorphic enc., some functional enc., privacy-preserving primitives, etc)

Topics covered in this introduction:

- I Hardness foundations: what are the assumptions?
- Basic schemes: how to encrypt and sign?
- More efficient schemes using algebraic lattices

References:

• C. Peikert: a decade of lattice-based cryptography

eprint 2015/939

• V. Lyubashevsky: basic lattice cryptography

on Lyubashevsky's webpage

Plan for this lecture

- Background on Euclidean lattices.
- The SIS and LWE problems.
- S Encrypting from LWE.

LWE-based encryption

Euclidean lattices

Lattice \equiv discrete subgroup of \mathbb{R}^n $\equiv \{\sum_{i < n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$

If the **b**_i's are linearly independent, they are called a **basis**.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Introd	
00	

LWE-based encryption

Euclidean lattices

 $\begin{array}{ll} \mathsf{Lattice} \ \equiv \ \mathsf{discrete} \ \mathsf{subgroup} \ \mathsf{of} \ \mathbb{R}^n \\ \ \equiv \ \ \{\sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\} \end{array}$

If the \mathbf{b}_i 's are linearly independent, they are called a **basis**.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Introd	

LWE-based encryption

Euclidean lattices

 $\begin{array}{ll} \mathsf{Lattice} \ \equiv \ \mathsf{discrete} \ \mathsf{subgroup} \ \mathsf{of} \ \mathbb{R}^n \\ \ \equiv \ \ \{\sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\} \end{array}$

If the \mathbf{b}_i 's are linearly independent, they are called a **basis**.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant $\pm 1\colon$

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	0000000

Dimension: n

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$

Last minimum: $\lambda_n = \min \{r :$ $\operatorname{span}(L \cap \mathcal{B}(r)) = \operatorname{span}(L)\}$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis

$\begin{array}{l} \mathsf{Minkowski theorem:} \\ \lambda_1(L) \leq \sqrt{n} \cdot (\mathsf{det } L)^{1/n} \end{array}$

	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	0000000

Dimension: n

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$

Last minimum: $\lambda_n = \min \{r : span(L \cap \mathcal{B}(r)) = span(L)\}$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis

Minkowski theorem: $\lambda_1(L) \leq \sqrt{n} \cdot (\det L)^{1/n}$

	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	0000000

Dimension: n

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$

Last minimum: $\lambda_n = \min \{r : span(L \cap \mathcal{B}(r)) = span(L)\}$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis

Minkowski theorem: $\lambda_1(L) \leq \sqrt{n} \cdot (\det L)^{1/n}$

	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	0000000

Dimension: n

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$

Last minimum: $\lambda_n = \min \{r : span(L \cap \mathcal{B}(r)) = span(L)\}$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis

Minkowski theorem: $\lambda_1(L) \leq \sqrt{n} \cdot (\det L)^{1/n}$

	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	0000000

An example: construction A lattices

Construction A. Let $m \ge n \ge 1$ and $q \ge 2$ prime (for tranquility)

Let $\mathbf{A} \in \mathbb{Z}_q^{m imes n}$. Then $L(\mathbf{A}) := \mathbf{A} \cdot \mathbb{Z}_q^n + q \cdot \mathbb{Z}^m$ is a lattice.

dim $L(\mathbf{A}) = m$ & for full-rank \mathbf{A} : det $L(\mathbf{A}) = q^{m-n}$

SEE BOARD

	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	0000000

An example: construction A lattices

Construction A. Let $m \ge n \ge 1$ and $q \ge 2$ prime (for tranquility)

Let $\mathbf{A} \in \mathbb{Z}_q^{m imes n}$. Then $L(\mathbf{A}) := \mathbf{A} \cdot \mathbb{Z}_q^n + q \cdot \mathbb{Z}^m$ is a lattice.

dim $L(\mathbf{A}) = m$ & for full-rank \mathbf{A} : det $L(\mathbf{A}) = q^{m-n}$

By Minkowski, for full-rank **A**: $\lambda_1(L(\mathbf{A})) \leq \min(\sqrt{mq^{(m-n)/m}}, q)$.

For **A** uniform, this is tight, up to a constant factor.

SEE BOARD

Lattices	SIS and LWE	LWE-based encryption
00000000		

Another example

Let $m \ge n \ge 1$ and $q \ge 2$ prime.

Construction A for the orthogonal code

Let $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$. Then $\mathbf{A}^{\perp} = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot \mathbf{A} = \mathbf{0} \ [q] \}$ is a lattice.

- Dimension: *m*
- Determinant: q^{rk(A)}
- $\lambda_1 pprox {\sf min}(\sqrt{n\log q}, \sqrt{m}q^{n/m})$, with probability pprox 1 for a uniform **A**.

00 0000000 0000000 0000000 00000000000	

Another example

Let $m \ge n \ge 1$ and $q \ge 2$ prime.

Construction A for the orthogonal code

Let $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$. Then $\mathbf{A}^{\perp} = \{\mathbf{x} \in \mathbb{Z}^{m} : \mathbf{x}^{T} \cdot \mathbf{A} = \mathbf{0} \ [q]\}$ is a lattice.

- Dimension: m
- Determinant: $q^{rk(\mathbf{A})}$.
- $\lambda_1 \approx \min(\sqrt{n \log q}, \sqrt{m}q^{n/m})$, with probability ≈ 1 for a uniform **A**.

Introduction OO	Lattices 00000●00	SIS and LWE	LWE-based encryption
	000000000		000000
SVP and SIVP			

The Shortest Vector Problem: SVP_{γ}

Given a basis of *L*, find $\mathbf{b} \in L \setminus \mathbf{0}$ such that: $\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

Introduction 00	Lattices 00000●00	SIS and LWE	LWE-based encryption
SVP and S	SIVP		

The Shortest Vector Problem: SVP_{γ}

Given a basis of *L*, find $\mathbf{b} \in L \setminus \mathbf{0}$ such that: $\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

The Shortest Independent Vectors Problem: SIVP $_\gamma$

Given a basis of *L*, find $\mathbf{b}_1, \ldots, \mathbf{b}_n \in L$ lin. indep. such that:

 $\max \|\mathbf{b}_i\| \leq \gamma \cdot \lambda_n(L).$

Introduction	Lattices	SIS and LWE	LWE-based encryption
	00000000		
CVP and F			

The Closest Vector Problem: CVP_{γ}

Given a basis of *L* and a target $\mathbf{t} \in \mathbb{Q}^n$, find $\mathbf{b} \in L$ such that: $\|\mathbf{b} - \mathbf{t}\| \le \gamma \cdot \min(\|\mathbf{c} - \mathbf{t}\| : \mathbf{c} \in L).$

BDD_{γ} (Bounded Distance Decoding)

Find the closest $\mathbf{b} \in L$ to \mathbf{t} , under the promise that $\|\mathbf{b} - \mathbf{t}\| \leq \lambda_1(L)/\gamma$.

Hardness of SVP, SIVP, CVP, BDD

- NP-hard for some $\gamma = {\it O}(1)$ (under randomized reductions for SVP).
- Most of lattice crypto uses γ = Poly(n): for such γ, all known (quantum) algorithms cost 2^{Ω(n)}.
- Solvable in polynomial time when $\gamma = 2^{\widetilde{O}(n)}$.

Major open problems

- How equivalent are these problems? See survey by Noah Stephens-Davidowitz
- Can we beat the $2^{\Omega(n)}$ cost barrier?

But these are worst-case problems, which is not convenient for crypto.

Hardness of SVP, SIVP, CVP, BDD

- NP-hard for some $\gamma = {\it O}(1)$ (under randomized reductions for SVP).
- Most of lattice crypto uses γ = Poly(n): for such γ, all known (quantum) algorithms cost 2^{Ω(n)}.
- Solvable in polynomial time when $\gamma = 2^{\widetilde{O}(n)}$.

Major open problems

- How equivalent are these problems? See survey by Noah Stephens-Davidowitz
- Can we beat the $2^{\Omega(n)}$ cost barrier?

But these are worst-case problems, which is not convenient for crypto.

	SIS and LWE	LWE-based encryption
	•000000000	

Plan for this lecture

- Background on Euclidean lattices.
- **②** The SIS and LWE problems.
- Incrypting from LWE.

Introduction	Lattices	SIS and LWE	LWE-based encryption
00	00000000	0000000000	
$SIS_{eta,q,m}$	[Ajtai'96]		

The Short Integer Solution Problem

Given a uniform $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^m$ such that:

$$0 < \|\mathbf{x}\| \le \beta$$
 and $\mathbf{x}^T \cdot \mathbf{A} = \mathbf{0} \mod q$.

Introduction 00	Lattices 00000000	SIS and LWE	LWE-based encryption
SIS as a lattice	e problem		

Remember our lattice example:

$$\mathbf{A}^{\perp} = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot \mathbf{A} = \mathbf{0} \ [q] \}.$$

SIS consists in finding a short non-zero vector in \mathbf{A}^{\perp} , for a uniform \mathbf{A} .

- If $\beta < \lambda_1 \approx \min(\sqrt{n \log q}, \sqrt{m}q^{n/m})$: trivially hard.
- If $\beta \ge q$: trivially easy.
- In between: interesting.

SIS is an average-case SVP/SIVP.

Introduction OO	Lattices 00000000	SIS and LWE	LWE-based encryption
SIS as a lattice	e problem		

Remember our lattice example:

$$\mathbf{A}^{\perp} = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot \mathbf{A} = \mathbf{0} \ [q] \}.$$

SIS consists in finding a short non-zero vector in \mathbf{A}^{\perp} , for a uniform \mathbf{A} .

- If $\beta < \lambda_1 \approx \min(\sqrt{n \log q}, \sqrt{m}q^{n/m})$: trivially hard.
- If $\beta \geq q$: trivially easy.
- In between: interesting.

SIS is an average-case SVP/SIVP.

		SIS and LWE	LWE-based encryption
00	0000000	000000000	0000000

Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient ${\sf SIS}_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient ${\sf SIVP}_\gamma$ algorithm.

SKETCH: SEE BOARD

Introduction 00	Lattices 0000000	SIS and LWE 0000000000	LWE-based encryption
LWE $_{lpha, q}$ [F	Regev'05]		
Let $\mathbf{s} \in \mathbb{Z}$	$_{q}^{n}$. Let $D_{\mathbf{s},lpha}$ be the dist	tribution corresponding to):
	$egin{aligned} (a; \langle a, s angle + e \; [q] \ w \end{aligned}$	with $\mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n), \ e \hookleftarrow \lfloor u$	$\gamma_{\alpha q}$,
where $ u_{lpha q}$	denotes the continuo	us Gaussian of st. dev. $lpha$	q.
The Learn	ing With Errors Probl	em — Search-LWE $_{lpha}$	

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s},\alpha}$, find \mathbf{s} .

LWE as a lattice problem

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given $(\mathbf{A}; \mathbf{As} + \mathbf{e} [q])$ with $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \leftarrow \lfloor \nu_{\alpha q}^m \rfloor$ for and arbitrary m, find \mathbf{s} .

Remember our lattice example $L_{\mathbf{A}} = \mathbf{A} \cdot \mathbb{Z}_{q}^{n} + q \cdot \mathbb{Z}^{m}$.

- If $\alpha \approx$ 0, then LWE is easy to solve.
- If $\alpha \gg 1$, then LWE is trivially hard.
- In between: interesting.

LWE is an average-case BDD.

LWE as a lattice problem

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given $(\mathbf{A}; \mathbf{As} + \mathbf{e} [q])$ with $\mathbf{A} \hookrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \hookrightarrow \lfloor \nu_{\alpha q}^m \rfloor$ for and arbitrary m, find \mathbf{s} .

Remember our lattice example $L_{\mathbf{A}} = \mathbf{A} \cdot \mathbb{Z}_q^n + q \cdot \mathbb{Z}^m$.

- If $\alpha \approx$ 0, then LWE is easy to solve.
- If $\alpha \gg 1$, then LWE is trivially hard.
- In between: interesting.

LWE is an average-case BDD.

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction $(\gamma \approx n/\alpha, \ \alpha q \geq \sqrt{n})$

Assume that q is prime and $\mathcal{P}oly(n)$. Any efficient LWE_{*n*, α ,q} algorithm succeeding with non-negligible probability leads to an efficient **quantum** SIVP_{γ} algorithm.

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction $(\gamma \approx n/\alpha, \ \alpha q \geq \sqrt{n})$

Assume that q is prime and $\mathcal{P}oly(n)$. Any efficient LWE_{*n*, α ,q} algorithm succeeding with non-negligible probability leads to an efficient **quantum** SIVP_{γ} algorithm.

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction $(\gamma \approx n/\alpha, \ \alpha q \geq \sqrt{n})$

Assume that q is prime and $\mathcal{P}oly(n)$. Any efficient LWE_{*n*, α ,q} algorithm succeeding with non-negligible probability leads to an efficient **quantum** SIVP_{γ} algorithm.

- [Peikert09]: classical reduction, for $q \approx 2^n$, from BDD.
- [SSTX09]: simpler (but weaker) quantum reduction, from SIS.
- [BLPRS13]: de-quantized reduction, for any q that is at least some $\mathcal{P}oly(n)$, from a weaker worst-case lattice problem.
- [BKSW18]: yet another quantum reduction, from BDD.

Introduction 00	Lattices 00000000	SIS and LWE 000000000000	LWE-based encryption 0000000
Decision L	VVE		

$$D_{\mathbf{s},lpha}$$
: $(\mathbf{a}; \langle \mathbf{a}, \mathbf{s}
angle + e[q])$ with $\mathbf{a} \leftarrow U(\mathbb{Z}_q^n), \ e \leftarrow \lfloor \nu_{lpha q}
ceil.$

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s},\alpha}$, find \mathbf{s} .

$\mathsf{Dec} extsf{-}\mathsf{LWE}_lpha$

Let $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$. With non-negligible probability over \mathbf{s} , distinguish between an oracle access to $D_{\mathbf{s},\alpha}$ or an oracle access to $U(\mathbb{Z}_q^{n+1})$.

Introduction 00	Lattices 00000000	SIS and LWE 00000000000	LWE-based encryption 0000000
Decision L	VVE		

$$D_{\mathbf{s},lpha}$$
: $(\mathbf{a}; \langle \mathbf{a}, \mathbf{s} \rangle + e \ [q])$ with $\mathbf{a} \leftarrow U(\mathbb{Z}_q^n), \ e \leftarrow \lfloor \nu_{lpha q}
ceil.$

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s},\alpha}$, find \mathbf{s} .

$\mathsf{Dec}\text{-}\mathsf{LWE}_{\alpha}$

Let $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$. With non-negligible probability over \mathbf{s} , distinguish between an oracle access to $D_{\mathbf{s},\alpha}$ or an oracle access to $U(\mathbb{Z}_q^{n+1})$.

Introduction 00	Lattices 00000000	SIS and LWE 00000000000	LWE-based encryption
Decision LW	/E		

$$D_{\mathbf{s},lpha}$$
: $(\mathbf{a}; \langle \mathbf{a}, \mathbf{s} \rangle + e \ [q])$ with $\mathbf{a} \leftarrow U(\mathbb{Z}_q^n), \ e \leftarrow \lfloor \nu_{lpha q}
ceil.$

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s} .

$\mathsf{Dec}\text{-}\mathsf{LWE}_{\alpha}$

Let $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$. With non-negligible probability over \mathbf{s} , distinguish between an oracle access to $D_{\mathbf{s},\alpha}$ or an oracle access to $U(\mathbb{Z}_q^{n+1})$.

Dec-LWE and Search-LWE efficiently reduce to one another.

Introduction

Lattices

SIS and LWE

LWE-based encryption

Decision LWE and SIS

	SIS and LWE	LWE-based encryption
	00000000000	

Nice properties of LWE

- Arbitrary number of samples
 ⇒ can amplify success probability and distinguishing advantage.
- andom self-reducibility
 ⇒ solving for a non-negligible fraction of s's suffices.

 $(\textbf{A},\textbf{A}\cdot\textbf{s}+\textbf{e})+(\textbf{0},\textbf{A}\cdot\textbf{t})=(\textbf{A},\textbf{A}\cdot(\textbf{s}+\textbf{t})+\textbf{e})$

A distinguishing oracle allows to check a guess for a coordinate of s.
 These lead to a search-to-decision reduction.

- Can take different types of noises:
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

	SIS and LWE	LWE-based encryption
	00000000000	

Nice properties of LWE

- Arbitrary number of samples
 ⇒ can amplify success probability and distinguishing advantage.
- Pandom self-reducibility
 - \Rightarrow solving for a non-negligible fraction of $\boldsymbol{s}\text{'s}$ suffices.

$$(\textbf{A},\textbf{A}\cdot\textbf{s}+\textbf{e})+(\textbf{0},\textbf{A}\cdot\textbf{t})=(\textbf{A},\textbf{A}\cdot(\textbf{s}+\textbf{t})+\textbf{e})$$

A distinguishing oracle allows to check a guess for a coordinate of s.
 These lead to a search-to-decision reduction.

- On take different types of noises:
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

	SIS and LWE	LWE-based encryption
	0000000000	

Nice properties of LWE

- Arbitrary number of samples
 ⇒ can amplify success probability and distinguishing advantage.
- Pandom self-reducibility
 - \Rightarrow solving for a non-negligible fraction of $\boldsymbol{s}'s$ suffices.

$$(\textbf{A},\textbf{A}\cdot\textbf{s}+\textbf{e})+(\textbf{0},\textbf{A}\cdot\textbf{t})=(\textbf{A},\textbf{A}\cdot(\textbf{s}+\textbf{t})+\textbf{e})$$

A distinguishing oracle allows to check a guess for a coordinate of s.
 ⇒ These lead to a search-to-decision reduction.

- Can take different types of noises
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

	SIS and LWE	LWE-based encryption
	0000000000	

Nice properties of LWE

- Arbitrary number of samples
 ⇒ can amplify success probability and distinguishing advantage.
- Random self-reducibility
 - \Rightarrow solving for a non-negligible fraction of $\boldsymbol{s}'s$ suffices.

$$(\textbf{A},\textbf{A}\cdot\textbf{s}+\textbf{e})+(\textbf{0},\textbf{A}\cdot\textbf{t})=(\textbf{A},\textbf{A}\cdot(\textbf{s}+\textbf{t})+\textbf{e})$$

A distinguishing oracle allows to check a guess for a coordinate of s.
 These lead to a search-to-decision reduction.

- Gan take different types of noises:
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

Selected problems on $\mathsf{SIS}/\mathsf{LWE}$

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than *n*?
- Can we reduce SVP $_{\gamma}$ to SIS/LWE?
- Can we get a classical reduction from SIVP to LWE with parameters equivalent to those of Regev's quantum reduction?
- Or is this discrepancy intrinsic and there is a quantum acceleration for solving LWE and SIVP?

Selected problems on $\mathsf{SIS}/\mathsf{LWE}$

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than *n*?
- Can we reduce SVP_{γ} to SIS/LWE?
- Can we get a classical reduction from SIVP to LWE with parameters equivalent to those of Regev's quantum reduction?
- Or is this discrepancy intrinsic and there is a quantum acceleration for solving LWE and SIVP?

Selected problems on $\mathsf{SIS}/\mathsf{LWE}$

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than *n*?
- Can we reduce SVP_{γ} to SIS/LWE?
- Can we get a classical reduction from SIVP to LWE with parameters equivalent to those of Regev's quantum reduction?
- Or is this discrepancy intrinsic and there is a quantum acceleration for solving LWE and SIVP?

Plan for this lecture

- Background on Euclidean lattices.
- The SIS and LWE problems.
- Sencrypting from LWE.

SVP/SIVP/CVP/BDD are here only implicitly: (almost) no need to know lattices to design lattice-based schemes!

LWE with small secret [ACPS09]

Small-secret-LWE $_{\alpha}$

Let $\mathbf{s} \leftarrow \lfloor \nu_{\alpha q} \rceil^n$. With non-negligible probability over \mathbf{s} , distinguish between (arbitrarily many) samples from $D_{\mathbf{s},\alpha}$ or from $U(\mathbb{Z}_q^{n+1})$.

SEE BOARD

	SIS and LWE	LWE-based encryption
		000000

LWE-based encryption [LPS10]

Introduction 00	Lattices 0000000	SIS and LWE	LWE-based encryption
Decryption co	orrectness		

To ensure correctness, it suffices that

$$\left|\mathbf{t}^{\mathsf{T}}\mathbf{e} + \mathbf{f}^{\mathsf{T}}(-\mathbf{s}|1)\right| < q/4,$$

with probability very close to 1.

Up to the roundings of Gaussians:

- Gaussian tail bound $\Rightarrow \|\mathbf{t}\|, \|\mathbf{e}\|, \|\mathbf{f}\|, \|\mathbf{s}\| \lesssim \sqrt{n} \alpha q$ with probability $1 - 2^{-\Omega(n)}$.
- It suffices that $(\sqrt{n}\alpha q)^2 \lesssim q/4$, i.e., $\alpha \lesssim 1/(n\sqrt{q})$.

Introduction	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	
Decryption co	orrectness		

To ensure correctness, it suffices that

$$\left|\mathbf{t}^{T}\mathbf{e} + \mathbf{f}^{T}(-\mathbf{s}|1)\right| < q/4,$$

with probability very close to 1.

Up to the roundings of Gaussians:

- Gaussian tail bound $\Rightarrow \|\mathbf{t}\|, \|\mathbf{e}\|, \|\mathbf{f}\|, \|\mathbf{s}\| \lesssim \sqrt{n} \alpha q$ with probability $1 - 2^{-\Omega(n)}$.
- It suffices that $(\sqrt{n}\alpha q)^2 \lesssim q/4$, i.e., $\alpha \lesssim 1/(n\sqrt{q})$.

Intro	ъd		i
00			

Lattices

SIS and LWE

LWE-based encryption

Passive security (IND-CPA)

Intro	du		
00			

Lattices

SIS and LWE

LWE-based encryption

Passive security (IND-CPA)

How do we choose n, α and q?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds
- Some security is guaranteed

Take $\sqrt{n}/q \approx 1/(n\sqrt{q})$, i.e., $q \approx n^3$ Take $\alpha \approx \sqrt{n}/q \approx n^{-5/2}$.

(Don't use the SIVP to LWE reduction to set concrete parameters!)

	Lattices	SIS and LWE	LWE-based encryption
00	0000000	0000000000	0000000

How do we choose n, α and q?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds
- Some security is guaranteed

Take $\sqrt{n}/q pprox 1/(n\sqrt{q})$, i.e., $q pprox n^3$ Take $lpha pprox \sqrt{n}/q pprox n^{-5/2}$.

(Don't use the SIVP to LWE reduction to set concrete parameters!)

	SIS and LWE	LWE-based encryption
		0000000

How do we choose *n*, α and *q*?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds $\alpha \leq 1/(n_{\sqrt{q}})$
- Some security is guaranteed $\alpha q > \sqrt{n}$

Take $\sqrt{n}/q \approx 1/(n\sqrt{q})$, i.e., $q \approx n^3$. Take $\alpha \approx \sqrt{n}/q \approx n^{-5/2}$.

	SIS and LWE	LWE-based encryption
		0000000

How do we choose *n*, α and *q*?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds $lpha \lesssim 1/(n\sqrt{q})$
- Some security is guaranteed $\alpha q \ge \sqrt{n}$

Take $\sqrt{n}/q \approx 1/(n\sqrt{q})$, i.e., $q \approx n^3$. Take $\alpha \approx \sqrt{n}/q \approx n^{-5/2}$.

(Don't use the SIVP to LWE reduction to set concrete parameters!)

١d			

Selected problems on LWE encryption

- Do the diverse noise distributions have an impact?
- What is the best way to upgrade security from passive (CPA) to active (CCA)?

Selected problems on LWE encryption

- Do the diverse noise distributions have an impact?
- What is the best way to upgrade security from passive (CPA) to active (CCA)?