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Outlines

Parabolic equations in divergence form in Sobolev 
spaces: Lower-order coefficients are not necessarily 
bounded.
• Joint work with Seungjin Ryu and Kwan Woo.

Parabolic equations with fractional time derivatives in 
Sobolev spaces.
• Joint work with Hongjie Dong.

Also introduce some of Krylov’s work.



Elliptic equations








Parabolic equations








Solution spaces: Sobolev spaces


. 

aijDiju + biDiu + cu = f

Di(aijDju + aiu) + biDiu + cu = Digi + f

−ut + aijDiju + biDiu + cu = f

−ut + Di(aijDju + aiu) + biDiu + cu = Digi + f

W2
p(Ω) = {u, Du, D2u ∈ Lp(Ω)}

Elliptic and Parabolic equations






Assumptions on : strong ellipticity and boundedness


,  for .


Regularity or summability assumptions


• Some regularity assumptions are needed for  for .


• If , , and  are bounded, no other conditions are needed for 
, , and .


If , , and  are not bounded, what assumptions do we need?

−ut + Di(aijDju + aiu) + biDiu + cu = Digi + f

aij

aijξiξj ≥ δ |ξ |2 |aij | ≤ δ−1 δ ∈ (0,1)

aij p ≠ 2

ai bi c
ai bi c

ai bi c

Assumptions and Question



Ladyzenskaja, Solonnikov, Ural’tseva, 1967 for .





Assumptions: for 


, , ,


    , , ,


, , .


An additional smallness assumption on  when .

p = 2

−ut + Di(aijDju + aiu) + biDiu + cu = Digi + f

n ≥ 3

ai, bi, |c |1/2 ∈ Lq,r(ΩT) gi ∈ L2(ΩT) f ∈ Lq1,r1
(ΩT)

n
q

+
2
r

≤ 1 q ∈ [n, ∞] r ∈ [2,∞]

n
q1

+
2
r1

≤ 2 +
n
2

q1 ∈ [ 2n
n + 2

,2] r1 ∈ [1,2]

ai, bi, c r = ∞

Equations in divergence form with 
unbounded lower-order coefficients



,   





.

ΩT = (0,T ) × Ω Ω ⊂ ℝn

f ∈ Lp,q(ΩT)

∥f∥p,q = ∥f∥Lp,q(ΩT) = ∫
T

0 (∫Ω
| f(t, x) |p dx)

q/p
1/q

< ∞

Mixed  normLp,q(ΩT)



,





➡   , where .


However, it is not possible to have  unless 
.


Thus, we first need to solve equations


,


where  , , .

−ut + Di(aijDju) + biDiu = Digi + f

u, Du ∈ Lp,q(ΩT)

−ut + Di(aijDju) = Digi + F F = f − biDiu

F ∈ Lp,q(ΩT)
bi ∈ L∞(ΩT)

−ut + Di(aijDju) = Digi + f

u, Du ∈ Lp,q(ΩT) f ∈ Lp1,q1
(ΩT) p1 ≤ p q1 ≤ q

A simple case: ai = c = 0
Observation



Find  satisfying  in  
and set  so that


   in .


 for , then


      .

w Δw = fIΩ BR ⊃ Ω
Gi = Diw

DiGi = f Ω

f ∈ Lp1
(Ω) p1 ≥

np
n + p

w ∈ Wp1
(Ω) ⇒ Gi ∈ Lp(Ω)

Elliptic equations with data having a 
lower Summability

,   


where , , .

Di(aijDju) = Digi + f u |∂Ω = 0

u, Du, gi ∈ Lp(Ω) f ∈ Lp1
(Ω) p1 ≤ p ∈ (1,∞)

➡         Di(aijDju) = Digi + f ⟺ Di(aijDju) = Digi + DiGi



 in 


➡ ,


where we need  for .


➡ Because , we need ,


where  and , .


In particular,  if .

Di(aijDju + aiu) + biDiu = Digi + f W1
p(Ω)

Di(aijDju) = Di(gi − aiu) + f − biDiu

biDiu ∈ Lp1
(Ω) p1 ≥

np
n + p

Diu ∈ Lp(Ω) bi ∈ Lr(Ω)

r ∈ [n, ∞) r > p1 =
np

n + p
p ∈ (r/(r − 1), ∞)

r ≥ 2 n = 2

Elliptic case



Stampacchia 1965, Ladyzhenskaya, Ural’tseva 1968: , 
, , where  for  and 

 for ,  has an additional assumption.


Trudinger, 1973: General degenerate divergence form operators, 
, . Weak maximum principle.


H. Kim and Y.-H. Kim, 2015: , Laplace operator,  
estimate.


, , ,


, where  for  and  for .


Hyunwoo Kwon, 2020.  and  ( ) for an elliptic 
operator which can be converted to a non-divergence type equation.

p = 2
ai, bi ∈ Lr(Ω) c ∈ Lr/2(Ω) r ∈ [n, ∞) n ≥ 3
r ∈ (2,∞) n = 2 c

p = 2 Diai + c ≤ 0

ai = c = 0 W1
p

b = (b1, …, bn) = b1 + b2 div b1 = 0 b1 ∈ Ln

b2 ∈ Lr r ≥ n n ≥ 3 r > 2 n = 2

n = r = 2 p > 2 ai = 0

Some reference for elliptic equations 
in divergence form



Krylov 2021: Aleksandrov’s estimate  for  
satisfying


,   


where , ,  with . (Previously, )


Krylov 2021: Elliptic case, , ,   with 
, more precisely,


,   


or


,   ,   .


Krylov also considered Morrey classes for .

u(x) ≤ N∥f−∥Ln0(Ω) u

aijDiju + biDiu + cu = f u |∂Ω = 0

bn ∈ Ln c ≤ 0 f ∈ Ln0
n0 < n f ∈ Ln

b ∈ Ln(Ω) c ∈ Lq(Ω) f ∈ Lp(Ω)
1 < p < n

n/2 < q < n p ≤ q

q = n/2 1 < p < n/2 n ≥ 3

bi

Aleksandrov’s estimate






Krylov 1976: , 


Nazarov, Ural′tseva 1985, K. Tso 1985:


,   .


Krylov 2021:  ( ), ,


where  with an additional condition on .


Mixed norms.

−ut + aijDiju + biDiu = f

b ∈ L∞ f ∈ Ln+1

b ∈ Ln+1 f ∈ Ln+1

b ∈ Ln+1 b ∈ Ln0+1 f ∈ Ln0+1

n0 < n b

(Parabolic version of Alekandrov’s estimate)
N. V. Krylov’s maximum principle



Ladyzenskaja, Solonnikov, Uralceva 1967: .


Nazarov and Uraltseva 2011: Qualitative properties (the maximum 
principle, the Harnack inequality, and the Liouville theorem) of 
solutions of parabolic (and elliptic) equations with unbounded 
lower-order coefficients. 


There are some results by Krylov (2021) for non-divergence type 
parabolic equations with unbounded coefficients, where the 
lower-order terms are not treated as perturbation terms.

p = 2

Some reference for parabolic 
equations with unbounded 
coefficients in divergence form






• , 


• , , 


• , ,


Then, the above equation is solvable whenever





and its dual problem is solvable when  so that  
(  need an appropriate regularity condition).


Boundary condition: Dirichlet or conormal derivative condition.

−ut + Di(aijDju + aiu) + biDiu + cu = Digi +
m

∑
k=1

fk

p, q ∈ (1,∞) u, Du ∈ Lp,q(ΩT)

ai ∈ Lℓ1,r1
(ΩT) bi ∈ Lℓ2,r2

(ΩT) c ∈ Lℓ3,r3
(ΩT)

gi ∈ Lp,q(ΩT) fk ∈ Lpk,qk
(ΩT)

−ut + Di(aijDju) = Digi + f

gi, f ∈ Lp,q(ΩT) u, Du ∈ Lp,q(ΩT)
aij

Main results



For simplicity, assume that .


, where  and  such that


.





, then . In this case  needs to be small.

ai = c = 0

bi ∈ Lℓ2,r2
(ΩT) ℓ2 ∈ (n, ∞] r2 ∈ [2,∞)

n
ℓ2

+
2
r2

≤ 1

p
p − 1

≤ ℓ2 and
q

q − 1
≤ r2,

p
p − 1

≤ ℓ2 and
q

q − 1
< r2 if

n
ℓ2

+
2
r2

= 1.

ℓ2 = n r2 = ∞ ∥bi∥Lℓ2,r2

Conditions on the coefficients



 is said to satisfy





if for any , we have





 for .


•  if there exist  such that  in 
the distribution sense.


u

−ut + Di(aijDju + aiu) + biDiu + cu = Digi + f

φ ∈ C∞
0 ((0,T ) × Ω)

∫ΩT
(uφt − aijDjuDiφ − aiuDiφ + biDiuφ + cuφ) dx dt = ∫ΩT

(fφ − giDiφ) dx dt

u ∈ ℋ1
p(ΩT) = {u, Du ∈ Lp(ΩT), ut ∈ ℍ−1

p (ΩT)} gi, f ∈ Lp(ΩT)

v ∈ ℍ−1
p (ΩT) gi, f ∈ Lp(ΩT) v = Digi + f

u ∈ H1
p(0,T; H−1

p (Ω)) ∩ Lp(0,T; H1
p(Ω))

Solution to parabolic equations in 
divergence form






➡   , where .


However, it is not possible to have  unless 
.


Thus, we first solve equations


,


where  , , .

−ut + Di(aijDju) + biDiu = Digi + f

−ut + Di(aijDju) = Digi + F F = f − biDiu

F ∈ Lp,q(ΩT)
bi ∈ L∞(ΩT)

−ut + Di(aijDju) = Digi +
m

∑
k=1

fk

u, Du ∈ Lp,q(ΩT) fk ∈ Lpk,qk
(ΩT) pk ≤ p qk ≤ q

A simple case: ai = c = 0
To prove main results



,


, , , .


Not as easy as the elliptic case!


For each , find : no increase in time 
summability! Thus, not applicable if .


Find  such that  in . Then write





and solve for : If the domain is not good enough, then one cannot 
solve the non-divergence type equation .

−ut + Di(aijDju) = Digi +
m

∑
k=1

fk

u, Du ∈ Lp,q(ΩT) g ∈ Lp,q(ΩT) fk ∈ Lpk,qk
(ΩT) pk < p, qk < q

t ∈ [0,T ] div Φ(t, x) = f(t, x)
qk < q

w ∈ W1,2
pk,qk

(ΩT) f = Δw − wt ΩT

(u − w)t + Di(aijDj(u − w)) = Di(gi + Diw − aijDjw)

u − w
f = Δw − wt

Equations with the right-hand side 
having lower summability



,


where , , , , .


What are possible ?


Non-divergence , where .


➡ .


➡ To have , we need .

−ut + Di(aijDju) = Digi +
m

∑
k=1

fk

p, q ∈ (1,∞) u, Du ∈ Lp,q(ΩT) fk ∈ Lpk,qk
(ΩT) pk ≤ p qk ≤ q

(pk, qk)

−ut + Δu = Digi + f Digi, f ∈ Lpk,qk
(ΩT)

u ∈ W1,2
pk,qk

(ΩT) = {u, Du, D2u, ut ∈ Lpk,qk
(ΩT)}

Du ∈ Lp,q(ΩT) 1 +
n
p

+
2
q

≥
n
pk

+
2
qk

Equations with the right-hand side 
having lower summability






in  with the Dirichlet or conormal derivative boundary 
condition using the duality argument and a parabolic Sobolev 
embedding.


, , 


•  for .


• .

−ut + Di(aijDju) = Digi +
m

∑
k=1

fk

ΩT

1 +
n
p

+
2
q

≥
n
pk

+
2
qk

pk ∈ [1,p] qk ∈ [1,q]

(pk, qk, p) ≠ (1,q, n/(n − 1)) n ≥ 2

qk > 1 if 1 +
n
p

+
2
q

=
n
pk

+
2
qk

Equations with the right-hand side 
having lower summability






➡ ,


,


That is, we need to have a Sobolev embedding for  such that


, ,


where , .

−ut + Di(aijDju) = Digi +
m

∑
k=1

fk

u, Du ∈ Lp,q(ΩT)

ut = Di(aijDju − gi) −
m

∑
k=1

fk = DiGi + Fk

u

u, Du ∈ Lp,q(ΩT) ut = DiGi + Fk

Gi ∈ Lp,q(ΩT) Fk ∈ Lpk,qk
(ΩT)

Parabolic Sobolev embedding



, , , .


Then, for , we have


,


where


If , then .


 are arbitrary.

u, Du ∈ Lp,q(ΩT) ut = DiGi + Fk Gi ∈ Lp,q(ΩT) Fk ∈ Lpk,qk
(ΩT)

(p0, q0)

∥u∥p0,q0
≤ N (∥|u | + |Du | + |g |∥p,q +

m

∑
k=1

∥fk∥pk,qk)

q0 = q
n
p

≤ 1 +
n
p0

, (p, p0) ≠ (n( ≥ 2), ∞)

(pk, qk)

Parabolic Sobolev embedding






If , then  and


  


 are real numbers such that


, , ,


 or  if .

∥u∥p0,q0
≤ N (∥|u | + |Du | + |g |∥p,q +

m

∑
k=1

∥fk∥pk,qk)
q0 > q

n
p

+
2
q

≤ 1 +
n
p0

+
2
q0

1 < q < q0 < ∞ if
n
p

+
2
q

= 1 +
d
p0

+
2
q0

(pk, qk)

pk ∈ [1,p0] qk ∈ [1,q0]
n
pk

+
2
qk

≤ 2 +
n
p0

+
2
q0

1 = qk < q0 = ∞ 1 < qk < q0 < ∞
n
pk

+
2
qk

= 2 +
n
p0

+
2
q0

Parabolic Sobolev embedding



, but if , 

then ?


If is easy if  because if  and , 
where , then


 


• When the Dirichlet boundary condition is considered, I just 
extended  to be zero outside the domain and used the 
embedding for , just as in the elliptic case  
with , then one can use embeddings for the zero 
extension of  in . However, it is wrong!

H1
p(0,T; H−1

q (Ω)) ∩ Lp(0,T; H1
q(Ω)) ut = Digi +

m

∑
k=1

fk

u ∈ H1
p(0,T; H−1

q (Ω)) ∩ Lp(0,T; H1
q(Ω))

Ω = ℝn u, Du ∈ Lp(ΩT) ut = Digi + f
gi, f ∈ Lp(ΩT)

(1 − Δ)−1/2u ∈ W1,2
p (ΩT)

u
Ω = ℝn u ∈ W1

p(Ω)
u |∂Ω = 0

u ℝn

Remark



In the elliptic case, if  and , then 

, where 


If  with zero 
lateral boundary condition, then the zero extension , where





is in the same class of functions? No!

u ∈ W1
p(Ω) u |∂Ω = 0

ū ∈ W1
p(ℝn) ū = {u x ∈ Ω,

0 x ∈ Ωc .

u ∈ ℋ1
p(ΩT) = {u ∈ Lp(ΩT), u, Du, ut ∈ ℍ−1

p (ΩT)}
ū

ū(t, x) = {u(t, x) for (t, x) ∈ (0,T ) × Ω,
0 for (t, x) ∈ (0,T ) × Ωc,

Remark






Mollifications


Reifenberg flat domain


Remark about an endpoint case ( ) needs additional 
restrictions!


• For , see Alkhutov and Gordeev 2008, Agresti, 
Lindemulder, Veraar 2021.

∥u∥p0,q0
≤ N (∥|u | + |Du | + |g |∥p,q +

m

∑
k=1

∥fk∥pk,qk)

q = 1

q0 = ∞

Parabolic Sobolev embedding






Move the lower-order terms to the right-hand side.


Use the solvability of equations without lower-order terms, but 
with the right-hands side having lower summability.


Parabolic Sobolev embedding to write


,


then absorb to the left-hand side of  is small.


Divide the time interval into short intervals. This is why we do not 
deal with  unless this is sufficiently small.  

−ut + Di(aijDju) + biDiu = Digi + f

∥biDu∥pk,qk
≤ ∥bi∥ℓ2,r2

∥Du∥p,q

∥bi∥ℓ2,r2

∥bi∥n,∞

Proof of the main results



Parabolic equations with local time derivative


• , 


• 


Parabolic equations with non-local time derivative


• , 


• 


Bounded lower-order coefficients or they are zero.


Anomalous diffusions

−ut + aijDiju = f

−ut + Di(aijDju) = Digi + f

−∂α
t u + aijDiju = f

−∂α
t u + Di(aijDju) = Digi + f

Parabolic equations with non-local 
time derivative



-th integral of 





Caputo fractional derivative of order 








• 0 integral then 1 derivative = 1 derivative.


•  integral then 1 derivative =  derivative.

α u

Iαu(t, x) =
1

Γ(α) ∫
t

0
(t − s)α−1u(s, x) ds

α ∈ (0,1)

∂α
t u = ∂tI1−α

0 (u( ⋅ , x) − u(0,x))

=
1

Γ(1 − α)
∂t ∫

t

0
(t − s)−α[u(s, x) − u(0,x)] ds

1 − α α

Fractional time derivative



For the usual elliptic and parabolic equations


• ,   


• ,    


there are many unique solvability results in Sobolev spaces when 
the coefficients  are very irregular.


We would like to deal with irregular coefficients as those for the 
usual parabolic equations in Sobolev spaces for time fractional 
parabolic equations.


•  is measurable in  and has small mean 
oscillations in 

aijDiju = f Di(aijDju) = Digi + f

−ut + aijDiju = f −ut + Di(aijDju) = Digi + f

aij

aij = aij(t, x1, x′￼) (t, x1)
x′￼

Objective



,        


There are counterexamples when  have no regularity 
assumptions.


• Meyers 1963, Piccinini and Spagnolo 1972, divergence, 


• Ladyzhenskaya and N. N. Ural′ceva, 1973, non-divergence


• Dong and K. 2014


• Parabolic case: Krylov 2016. , . 

aijDiju = f −ut + aijDiju = f

aij(x)

p ≠ 2

n = 1 aij = aij(t, x)
p ∈ (1,3/2) ∪ (3,∞)

Counterexamples
Equations with rough aij



,        


 have vanishing mean oscillations (VMO coefficients)


 as 


• F. Chiarenza, M. Frasca, and P. Longo 1991, elliptic.


• M. Bramanti and M. C. Cerutti 1993, parabolic.


• Di Fazio 1996


• Byun and Wang 2004, BMO (small bounded mean oscillation)

aijDiju = f −ut + aijDiju = f

aij

⨏Br(x)
aij(y) − ⨏Br(x)

aij(y) dx → 0 r ↘ 0

Brief history



Krylov 2007, : measurable in time and VMO in .


• Mean oscillation estimates for perturbation.


Krylov and K. 2007,  is measurable in  and VMO in 
. Elliptic.


• G. Chiti 1976, 


There are many results for equations with rough coefficients. For 
instance, : measurable in  and VMO in , where 

 and .

aij = aij(t, x) x

aij(x1, x′￼) x1
x′￼∈ ℝn−1

p = 2

aij(t, x1, x′￼) (t, x1) x′￼

x1 ∈ ℝ x′￼∈ ℝd−1

Brief history



Krylov 2009, variably partially VMO elliptic, non-divergence type, 
.


•  can be measurable in one direction (measurable direction), 
but the direction can differ depending on .


• There appeared many results for equations with such 
coefficients (also called, for instance, -vanishing of 
codimension 1), but Krylov’s coefficients are more general (the 
involved map is not necessarily linear).

p > 2

aij(x)
x

(σ, R)

Variably partially VMO coefficients



Zacher 2005, 2009, 2013: Non-divergence type fractional parabolic 
and Voltera type equation


,


where  is a time independent operator. Divergence type fraction 
parabolic equations in the Hilbert space setting, De Giorgi–Nash type 
theorem


M. Allen, L. Caffarelli, and A. Vasseur, 2016: De Giorgi-Nash-Moser 
type Holder estimates for parabolic equations with fractional operators 
in both  and .


I. Kim, K.-H. Kim, S. Lim, 2017:  are continuous in  and 
piecewise continuous in .  . -estimates.

u(t, x) + ∫
t

0
a(t − s)Au(s, x) ds = f(t, x)

A

t x

aij(t, x) x
t α ∈ (0,2) Lq(Lp)

Some references for fractional 
equations



Dong and K. 2019


 is measurable in  and has small mean oscillations in , 
then, for  there exists a unique solution  satisfying





in .


The initial condition is zero.


There are other results for coefficients measurable in one variable 
as well as for divergence type equations. Weights are also 
considered.

aij(t, x) t x
f ∈ Lp(ℝn

T) u

−∂α
t u + aijDiju = f

ℝn
T = (0,T ) × ℝn

Main results



For non-divergence time fractional parabolic equations ( ), for 
instance, Zacher 2006 considers





• When the initial trace is zero,  in place of 



• For , the initial trace does not make sense. In particular, 
.


• For , the initial trace is well defined.


• When the initial is non-zero, Zacher 2006 considers 
 except .

α ∈ (0,1)

Hα
p ((0,T ), Lp(ℝn)) ∩ Lp((0,T ), H2

p(ℝn))

0Hα
p ((0,T ), Lp(ℝ))

Hα
p ((0,T ), Lp(ℝn))

α ∈ (0,1/p)
Hα

p ((0,T ), Lp(ℝn)) = 0Hα
p ((0,T ), Lp(ℝn))

α > 1/p

Hα
p ((0,T ), Lp(ℝn)) ∩ Lp((0,T ), H2

p(ℝn)) α = 1/p

Solution spaces as vector valued 
functions



What is an appropriate space for fractional parabolic equations 
including the case ?


When , , Kubica, Ryszewska, Yamamoto 2020 (if 
functions have only the time variable) has


•  for 


•  for 


•  for 


as solution spaces with zero initial conditions.


α = 1/p

p = 2 α = 1/2

Hα
2 (0,T ) α ∈ (0,1/2)

{u : u ∈ Hα
2 (0,T ), ∫

T

0
|u(t) |2 t−1 dt < ∞} α = 1/2

{u ∈ Hα
2 (0,T ) : u(0) = 0} α ∈ (1/2,1)

Solution spaces



 if there exists  such that





for all . That is, .


If , then in some sense .


 if there exists  such that


.

u ∈ ℍα,0
p,0(ΩT) f ∈ Lp(ΩT)

∫ΩT

I1−αu φt dx dt = − ∫ΩT

f φ dx dt

φ ∈ C∞
0 ([0,T ) × Ω) ∂tI1−αu = f

u ∈ ℍα,0
p,0(ΩT) u(0,x) = 0

u ∈ ℍα,0
p (ΩT) u0 = u0(x) ∈ Lp(Ω)

u − u0 ∈ ℍα,0
p,0(ΩT)

Solution spaces , ℍα,0
p (ΩT) ℋα,−1

p (ΩT)



 if there exists  such that


.


• For , .


• For , if , then there exists a unique 
 such that .


Similarly, we define , but using  instead of .


If , then the initial traces belong to Besov type spaces as 
in Agresti, Lindemulder, Veraar 2021.

u ∈ ℍα,0
p (ΩT) u0 = u0(x) ∈ Lp(Ω)

u − u0 ∈ ℍα,0
p,0(ΩT)

α ∈ (0,1/p) ℍα,0
p,0(ΩT) = ℍα,0

p (ΩT)

α ∈ [1/p,1) u ∈ ℍα,0
p (ΩT)

u0(x) ∈ Lp(ΩT) u − u0 ∈ ℍα,0
p,0(ΩT)

ℋα,−1
p (ΩT) H−1

p (Ω) Lp(Ω)

α ∈ (1/p,1)

Solution spaces , ℍα,0
p (ΩT) ℋα,−1

p (ΩT)



Non-divergence case


• 


• 


Divergence case


• 


•

ℍα,2
p (ΩT) = {u ∈ Lp(ΩT) : u ∈ ℍα,0

p (ΩT), Du, D2u ∈ Lp(ΩT)}

ℍα,2
p,0(ΩT) = {u ∈ Lp(ΩT) : u ∈ ℍα,0

p,0(ΩT), Du, D2u ∈ Lp(ΩT)}

ℋα,1
p (ΩT) = {u ∈ Lp(ΩT) : u ∈ ℋα,−1

p (ΩT), Du ∈ Lp(ΩT)}

ℋα,1
p,0(ΩT) = {u ∈ Lp(ΩT) : u ∈ ℋα,−1

p,0 (ΩT), Du ∈ Lp(ΩT)}

Solution spaces for fractional 
parabolic equations






We try to obtain mean oscillation estimates for ,


,


where  and  is the average of 
 over .


, where  satisfies  in .


If , we have a sufficiently regularity for .


However, for , it is only possible to obtain some increase of 
summability of .

−∂α
t u + aijDiju = f

D2u

⨏Qr

|D2u − (D2u)Qr
| dx dt

Qr(t0, x0) = (t0 − r2/α, t0) × Br(x0) ( f )Qr

f Qr

u = w + v v −∂α
t v + aijDijv = 0 Qr

α = 1 D2v

α ∈ (0,1)
D2v

Approach



Due to the non-local time 
derivative


 

for ,


it is not possible to obtain a 
sufficient regularity for 
solutions to homogeneous 
equations.


Consider homogenous 
equations not on , 
but on infinite cylinder 

.

∂α
t v ∼ ∂t ∫

t

0
(t − s)−αv(s, x) ds

v(0,x) = 0

Qr(t0, x0)

(−∞, t0) × Br(x0)

Approach






, not on a cylinder , but 
.


More precisely, since the time fractional equation is dealt with on 
, we consider  on  for 

 and extend to be zero for .


.

−∂α
t u + aijDiju = f

u = w + v (t0 − r2, t0) × Br(x0)
(−∞, t0) × Br(x0)

ΩT = (0,T ) × Ω w, v (0,t0) × Br(x0)
t0 ∈ [0,T] (−∞,0) × Br(x0)

( |D2v |p1 )1/p1

Qr/2(t1,0)
≤ N

∞

∑
j=1

j−(1+α) ( |D2v |p0 )1/p0

Qr(t1−( j−1)r2/α,0)

New decomposition



Then we deal with  as well on .


.


Combining the above two estimates, we have








This approach is also applicable to the usual parabolic equation.

w (−∞, t0) × Br(x0)

( |D2w |p0 )1/p0

Q1/2(t1,0)
≤

∞

∑
k=0

ck( | f |p0 )1/p0
(sk+1,sk)×B1

( |D2u − (D2u)Qκr(t0,x0) |)Qr(t0,x0)
≤ Nκ−σ(𝒮ℳ |D2u |p0 )1/p0(t0, x0)

+Nκ(d+2/α)/p0

∞

∑
k=0

ck ( | f |p0 )1/p0

(t0−(2k+2−2)(κr)2/α,t0)×Bκr(x0)

Modified mean oscillation estimates



Thank you


