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Outlines

¢ Parabolic equations in divergence form in Sobolev
spaces: Lower-order coefficients are not necessarily
bounded.

- Joint work with Seungjin Ryu and Kwan Woo.

¢ Parabolic equations with fractional time derivatives in
Sobolev spaces.
- Joint work with Hongjie Dong.

< Also introduce some of Krylov’s work.



Elliptic and Parabolic equations
= Elliptic equations
aijDiju +b'Du+cu=f
D{(a"Du + a'u) + b'Du + cu = D;g; + f
& Parabolic equations
—u, + aileju +b'Du+cu=f
—u, + Di(aliju +a'u)+b'Du+cu=Dg +f
® Solution spaces: Sobolev spaces

W>(Q) = {u, Du,D’u € L (Q)}.



Assumptions and Question

e Di(aiiju +a'u) +b'Du+cu=D,g; +f

¥ Assumptions on a¥: strong ellipticity and boundedness

algg 2 81€1°, |a¥| < 67" for 5 € (0,1).

2 Regularity or summabillity assumptions
« Some regularity assumptions are needed for aV for p # 2.

e |f ai, bi, and ¢ are bounded, no other conditions are needed for
a', b', and c.

B if o', b, and ¢ are not bounded, what assumptions do we need?



Equations in divergence form with
unbounded lower-order coefficients

“|_adyzenskaja, Solonnikov, Ural’tseva, 1967 for p = 2.

—u, + Di(aliju +a'u)+b'Du+cu=Dg +f

€ Assumptions: for n > 3
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An additional smallness assumption on a‘, b’, c when r = o0.



Mixed L, (£27) norm

Q. =(0T)XQ, QCR

f e L, q(QT)

. o 1/q
AL, = Hf”Lp,q(QT) = J (J | f(t, x) |° dx) < 0.
0 Q



Observation
A simple case: a' = c =0

—U, + Dl-(aiiju) +b'D'u=Dg +f
u, Du Lp,q(QT)
= —u,+D(a’Du) = D;g;+ F, where F = f— b'Du.

B However, it is not possible to have F' € Lp,q(QT) unless
b' e L_(Q7).

¥ Thus, we first need to solve equations
— s Di(aliju) =D,g; +1,

where u,Du € L, (Qr)f€ L, (7)., p1 <p,q; < q.



Elliptic equations with data having a
lower Summability
Dl-(aiiju) =Dg+f ul,,=0

where u, Du, g; € Lp(Q),fe Lpl(Q),pl <pe€(l,x0).
®Find w satisfying Aw = fl in Bp D
and set G; = D.w so that

D.G;=f inf.

if € L, (Q)for p, > ——, th
& or , then

i - +p

weW,(Q = G eLQ)

= Dfa’Du) = Dig;+f < Dya’Du) = D;g;+ DG,




Elliptic case

D(a’Du + a'u) + b'D'u = Dig; + fin W (Q)
- Di(aliju) = D.(g, — a'u) + f— b'D'u,
np
n—+p '
= Because Diu & Lp(Q), we need b’ € L.(€2),

where we need b'D'u € L, (£2) forp; 2

n
where r € [n,00)and r > p; = = ,pE€ (r/(r—1),00).
n—+p

In particular, r > 2 ifn = 2.



Some reference for elliptic equations
In divergence form
® Stampacchia 1965, Ladyzhenskaya, Ural’tseva 1968: p = 2,

a,b' e L(€),c e L), wherer € [n,c0) forn > 3 and
r € (2,00) forn = 2, ¢ has an additional assumption.

¥ Trudinger, 1973: General degenerate divergence form operators,
p=2,Da"+ c < 0. Weak maximum principle.

®H. Kim and Y.-H. Kim, 2015: a' = ¢ = 0, Laplace operator, Wl}
estimate.

b=(b',...b") =b,+b, divh, =0,b, € L,

b, € L,wherer > nforn>3andr > 2forn=2.

¥ Hyunwoo Kwon, 2020.n = r = 2 and p > 2 (a' = 0) for an elliptic
operator which can be converted to a non-divergence type equation.



Aleksandrov’s estimate

BKrylov 2021: Aleksandrov’s estimate u(x) < N||f_||; ©) for u
nQ

satisfying

a’le-]-u +b'Du + cu =f, 0

|0 =

where b, € L,, ¢ < 0, f € L, with ny < n. (Previously, f € L,)

B Krylov 2021: Elliptic case, b € L (£2), ¢ € Lq(Q), J € L,(£2) with

1 < p < n, more precisely,

nl2<qg<n, p<gq

or
ga=nll, |l <p<nll n—>

®Krylov also considered Morrey classes for b'.



N. V. Krylov’s maximum principle
(Parabolic version of Alekandrov’s estimate)

—u, + a’le-ju +b'Du = f
SKrylov1976:b e L, f€ L,
®Nazarov, Ural’tseva 1985, K. Tso 1985:
bel,, f€L,.
BKrylov2021:b €L, bEL, ,\).fEL, .

where 1, < n with an additional condition on b.

Mixed norms.



Some reference for parabolic
equations with unbounded
coefficients in divergence form

® | adyzenskaja, Solonnikov, Uralceva 1967: p = 2.

®Nazarov and Uraltseva 2011: Qualitative properties (the maximum
principle, the Harnack inequality, and the Liouville theorem) of
solutions of parabolic (and elliptic) equations with unbounded
lower-order coefficients.

There are some results by Krylov (2021) for non-divergence type
parabolic equations with unbounded coefficients, where the
lower-order terms are not treated as perturbation terms.



Main results

=7 == Di(aiiju +a'u) + b'D'u+ cu = D,g; + ka
=

'pa q S (1900)! ua Du S Lp,q(QT)
= L, ,(Qp), = L, . (Qp).c€Ly  (Qr)

2 gi S Lp,q(QT),f}( S ka,qk(QT),

Then, the above equation is solvable whenever
—u, + Dfa? Du) = Dg; +f

and its dual problem is solvable when g., | € Lp’q(QT) so that u, Du € Lp,q(QT)

(aij need an appropriate regularity condition).

® Boundary condition: Dirichlet or conormal derivative condition.



Conditions on the coefficients

For simplicity, assume that a' = ¢ = 0.

B!

€L, ,(827), where £, € (n,o0] and r, € [2,00) such that

n 2
| <1

) I
P <?¢, and < 75,
p—1 qg—1
p q e )

sz and <7‘2 If : =1

p—1 qg—1 £y 1

W/, = n, then r, = 0. In this case ||blHLf needs to be small.
Dol



Solution to parabolic equations In
divergence form

u Is said to satisfy
— b, Di(aliju +a'u)+bDu+cu=D,g +f

if forany ¢ € C;°((0,T) X £2), we have

J (uqa, — a’ijuDiqo — a'uDyp + b'Dug + cuqu) dxdt = J (fgo — gl-Dl-ga) dx dt
Qr Qr

Bue X (Qp) = {u,Du € L(Qp),u, € H'(Qp)} for g, f € L(Qp).

-V E I]-I]]jl(QT) if there exist g;, f € L,(£27) such that v = D;g; + fin
the distribution sense.

5 1 - {1 - H!
®u € H)(0,T; H;'(Q)) N L(0,T; H)(Q))



To prove main results
A simple case: a' = c =0

» —u + D, (alfD u) =D.g. + F,where F' = f — biDiu.

B However, it is not possible to have F € Lp,q(QT) unless
b' e L_(Qr).

@ Thus, we first solve equations
m
—u,+ D{a"Du) = Dig;+ Y fi

where u, Du € L, (£27) f; € ka,qk(QT), De=pDag = ¢



Equations with the right-hand side
having lower summability

m
—u,+ D(a'Du) = Dig; + Y fi
k=1

u, Dl/l S Lp,q(QT)’ g S Lp,q(QT)if]‘{ S ka,qk(QT)s pk < p7 Qk < q

Not as easy as the elliptic case!

®Foreacht € [0,T], find div ®(z, x) = f(¢, x): no increase in time
summability! Thus, not applicable if g, < q.

BFind w € Wplk’,zqk(QT) such that f = Aw — w, in ;. Then write
(u—w),+ Dl-(aiij(u —w)) =D(g, + D;w — a’ijw)

and solve for u — w: If the domain is not good enough, then one cannot
solve the non-divergence type equation f = Aw — w..



Equations with the right-hand side
having lower summability

m
—u,+ D{a"Du) = Dig;+ Y f
k=1

where p, g € (1,00), u,Du € L, (27),fy € L, ,(L27), P < P, g < q.

®What are possible (p;, q;)?
Non-divergence —u, + Au = D,g; +f, where D;g;, f € L, . (£27).

-1 E W;]qu(QT) = {u, Du, D*u, U, € ka,qk(QT)}.

no- 20 2
= 10 have Du & Lp,q(QT), weneedl +—+—2> — 4+ —.

P 4 D45



Equations with the right-hand side
having lower summability

k=1

in €2 with the Dirichlet or conormal derivative boundary

condition using the duality argument and a parabolic Sobolev
embedding.

e 2 n 2
l+—+—>—+—,p. €llpl g €[lg]
P 49 Pr Yk

(P>, P) # (l,g,n/(n— 1)) forn > 2.

| g )
= qk > 1 If 1 I I — I ;
224 D 4y




Parabolic Sobolev embedding

—u,+ D(a'Du) = Dg; + Y f;
k=1
- u,Du € L, (Q),

k=1

That is, we need to have a Sobolev embedding for i such that
U, Dl/t = Lp,q(QT)’ l/lt — DiGi + Fk’

where G, € L, (S27), F € o qk(QT).



Parabolic Sobolev embedding
u,Du € L, (Qp), u,= DG;+ F, G, €L, (Q),F, €L, ,(Qp.
Then, for (py, qo), We have

m
[l 4, < N(\HM\ + [ Dul+1glll,, + Z ka”pk,qk>’

k=1

where

n n
Bifgy=¢q,then—<1+—, (p,py) # (n( = 2), ).
P Po

2(py» q,) are arbitrary.



Parabolic Sobolev embedding

m
2l g < N(Illul +1Dul + g,y + D hillyq

k=1
pie ) n 2
“If gy > g, then —+— <1 4 | and
P (4 Po 4o
o n 2 d 2
l<g<gy<oo ff F—=14+— +—
P 4 Po 4o

Z(Pw» q,) are real numbers such that

n 2 n 2
P € LLpol, g € [1,gp), —+— < 24 |

Pr 4k Po 40
n 2

—
A |

)

l=q,<qgy=orl <g,<qgy< ooif
Pe=4F



Remark

- pagl 71 .yl : ==

HY0,T; Hy'(Q)) N L(0.T; HX(Q), but if u, = Dig; + Y fi
k=1

then u € H)(0,T; H, '(Q)) N L,(0,T; H,(2))?

if is easy if 2 = R" because if u, Du € L (£27) and u, = D;g; + f,
where g;, f € L,(£27), then

(1= A)""u e WA (Qyp)

* When the Dirichlet boundary condition is considered, | just
extended u to be zero outside the domain and used the
embedding for 2 = R", just as in the elliptic case u € WI}(Q)

with u ‘agz = (), then one can use embeddings for the zero
extension of u in R”. However, it is wrong!



Remark

®In the elliptic case, if u € Wl}(Q) and u|,, = 0, then

i € W\(R"), where it = 4 - o
0 xeQ°.

Bifu € Z)(Q) = {u € L(Qp),u,Du,u, € H;'(Q7)} with zero

lateral boundary condition, then the zero extension u, where

- u(t,x) for (t,x) € (0,7) X Q,
) = 0 for (t,x) € (0,T) X €,

IS in the same class of functions? No!



Parabolic Sobolev embedding

m
el g < N{ Nl + 1Dul + 18100+ Y Willpg,
k=1

2 Mollifications

¥ Reifenberg flat domain

“Remark about an endpoint case (¢ = 1) needs additional
restrictions!

» For gy = o0, see Alkhutov and Gordeev 2008, Agresti,
Lindemulder, Veraar 2021.



Proof of the main results

—u, + Di(aiiju) +b'D'u=Dg +f
®Move the lower-order terms to the right-hand side.

B Use the solvability of equations without lower-order terms, but
with the right-hands side having lower summability.

¥ Parabolic Sobolev embedding to write

HbiDu”pk,qk < Hbl”L”Q,FQHDuHP’C]’

then absorb to the left-hand side of HbiHLﬂzJ2 is small.

® Divide the time interval into short intervals. This is why we do not
deal with ||b']],, ., unless this is sufficiently small.



Parabolic equations with non-local
time derivative

®Parabolic equations with local time derivative
=0 aileju = J,
. —u, + Di(a’JDju) =D.g +f

B Parabolic equations with non-local time derivative
. —0;u+a’Du ={,
. —0%u + Di(a’iju) — D.g. +f

®Bounded lower-order coefficients or they are zero.

2 Anomalous diffusions



Fractional time derivative

= a-th integral of u

rl

[%u(t, x) = F(la) (t — )* u(s, x) ds
Jo

® Caputo fractional derivative of order a € (0,1)
0 u = dtl(}_“(u( -, X) — u(0,x))
1 !

TR R

* 0 integral then 1 derivative = 1 derivative.

- | — aintegral then 1 derivative = a derivative.



Objective

For the usual elliptic and parabolic equations
.a’Dyu =f, D(a’Du) = Dg;+f
- —U, + a’jDZju =f, —u + Di(aliju) =Dg +f

there are many unique solvability results in Sobolev spaces when
the coefficients a are very irregular.

We would like to deal with irregular coefficients as those for the

usual parabolic equations in Sobolev spaces for time fractional
parabolic equations.

- a’ = a"(t, x;, x’) is measurable in (¢, x;) and has small mean
oscillations in x’



Equations with rough a"
Counterexamples

aileju = f, —U, + a’le-]-u =

® There are counterexamples when a’(x) have no regularity
assumptions.

- Meyers 1963, Piccinini and Spagnolo 1972, divergence, p # 2
- Ladyzhenskaya and N. N. Ural’ceva, 1973, non-divergence

* Dong and K. 2014

. Parabolic case: Krylov 2016.n = 1, a¥ = a¥(t, x).
p € (1,3/2) U (3,00)



Brief history

a’leju — —U, + a’le-]-u =11

® 4V have vanishing mean oscillations (VMO coefficients)
{/ |a’7(y) — {/ a’(y) | dx - Qasr \( 0
B,(x) B,(x)

» F. Chiarenza, M. Frasca, and P. Longo 1991, elliptic.
- M. Bramanti and M. C. Cerutti 1993, parabolic.
« Di Fazio 1996

- Byun and Wang 2004, BMO (small bounded mean oscillation)



Brief history

# Krylov 2007, a¥ = aij(t, X): measurable in time and VMO in x.

» Mean oscillation estimates for perturbation.

H Krylov and K. 2007, a’(x;, x") is measurable in x; and VMO in
x’ € R* !, Elliptic.

. G.Chiti 1976, p = 2

& There are many results for equations with rough coefficients. For
instance, a’(t, x;, x"): measurable in (7, x;) and VMO in x’, where
x; E Randx’ € RT!



Variably partially VMO coefficients

2 Krylov 2009, variably partially VMO elliptic, non-divergence type,
B 2.

- a¥(x) can be measurable in one direction (measurable direction),
but the direction can differ depending on x.

* There appeared many results for equations with such

coefficients (also called, for instance, (o, R)-vanishing of

codimension 1), but Krylov’s coefficients are more general (the
involved map is not necessarily linear).



Some references for fractional
equations

B Zacher 2005, 2009, 2013: Non-divergence type fractional parabolic
and Voltera type equation

ot

u(t,x)+ | a(t— s)Au(s,x)ds = (1, x),

J0

where A is a time independent operator. Divergence type fraction

parabolic equations in the Hilbert space setting, De Giorgi—Nash type
theorem

B M. Allen, L. Caffarelli, and A. Vasseur, 2016: De Giorgi-Nash-Moser
type Holder estimates for parabolic equations with fractional operators

In both f and x.

®|. Kim, K.-H. Kim, S. Lim, 2017: a¥(t, x) are continuous in x and
piecewise continuous in . a € (0,2). Lq(Lp)—estimates.



Main results

®Dong and K. 2019

a’j(t, X) is measurable in f and has small mean oscillations in x,
then, for f € Lp(IR’;) there exists a unique solution u satisfying

—07u + aile-ju =1
in R% = (0,T) x R".
The initial condition is zero.

2 There are other results for coefficients measurable in one variable
as well as for divergence type equations. Weights are also
considered.



Solution spaces as vector valued
functions

For non-divergence time fractional parabolic equations (a € (0, 1)), for
instance, Zacher 2006 considers

H((0,T), L,(R™) N L,((0,T), Hy(R"))

. When the initial trace is zero, OH;‘((O,T), L (R)) in place of
H(0,T), L,(R™)

- For a € (0,1/p), the initial trace does not make sense. In particular,
HE((0,T), L(R™) = (HX(0,T), L(R™)).
- For a > 1/p, the initial trace is well defined.

* When the initial is non-zero, Zacher 2006 considers
H((0,T), L,(R™) N L,((0,T), H;(R™) excepta = 1/p.



Solution spaces

What is an appropriate space for fractional parabolic equations
including the case a = 1/p?

®When p = 2, a = 1/2, Kubica, Ryszewska, Yamamoto 2020 (if
functions have only the time variable) has

- H3(0,T) for a € (0,1/2)

o T
u:u € HXNOT), | |u@)|*t™'dt < oo pfora=1/2
J

. {u € HY(0,T) : u(0) =0} fora € (1/2,1)

as solution spaces with zero initial conditions.



Solution spaces H%"(Q;), #5~' ()

Bu € I]-[I“ O(QT) if there exists f € L,,(£27) such that

rl

UQT

Il

“u@,dxdt = —

uQT

fodxdt

forall p € C° ([0,7) X Q). That is, ' %u = f.

If u € I]-[I“ O(QT) then in some sense u(0,x) =

By & I]-[Ig’O(QT) if there exists uy = 1y(x) € L,(€2) such that

U— Uy €

|]_[|a O(QT)



Solution spaces H%"(Q;), #5~' ()

By e I]-I]g’O(QT) if there exists uy = uy(x) € LP(Q) such that
U — Uy € IH]Z‘:(()’(QT).
. For a € (0,1/p), H;;;g@T) = HX(Q)).

-Fora € [1/p,1),ifu € I]-I]g’O(QT), then there exists a unique
uy(x) € L,(Qy) such that u — uy € Hg:g(ng).

®Similarly, we define Z°%~'(Q;), but using H; '(Q) instead of L (Q).

Bifa € (1/p,1), then the initial traces belong to Besov type spaces as
In Agresti, Lindemulder, Veraar 2021.



Solution spaces for fractional
parabolic equations

® Non-divergence case
cHIA(Qp) = {u € L(Qp) : u € HY(Qyp), Du, D*u € L (Q))
. ngg(ng) ={ueL(Q):uc Hg:g(QT),Du,DZM e L(Qp))
® Divergence case
A Q) ={ue L(Qp):ue Xy (Qp),Due L(Qp)}

. H50Qr) = {u € L(Qp) : u € X7 (Qr), Du € L(Qy))



Approach
—0%u + alleju —=

®We try to obtain mean oscillation estimates for Dzu,

{/ | D%y — (D2u)Qr| dx dt,
Q

where O (t,, x,) = (t, — r?'%, 1) X B.(x,) and (f),, is the average of
r\"0> 0 0 0 r\*0 Q.

fover Q..
®u = w + v, where v satisfies —07v + allejV =0in Q..
Hfa =1, we have a sufficiently regularity for D?v.

®However, for a € (0,1), it is only possible to obtain some increase of
summability of D?v.



Approach

2 Due to the non-local time
derivative

4

o7V ~ O’J (t —5)" (s, x)ds
0

for v(0,x) = 0,

It Is not possible to obtain a
sufficient regularity for
solutions to homogeneous
equations.

2 Consider homogenous
equations not on Q,(y, Xy),
but on infinite cylinder
(—o0, ) X B,(xp).




New decomposition

—07u + alle-]-u —

%1 = w + v, not on a cylinder (t, — %, 1) X B,(x,), but
(_ 0, t()) X Br(xO)-

2 More precisely, since the time fractional equation is dealt with on
Q- = (0,7) X €, we consider w, v on (0,7,) X B,(x,) for
I, € [0,T] and extend to be zero for (—00,0) X B,(xy).

1/p o 1/p
D2 p1 P1 (1+a) Po 0
( ‘ ‘ Qr/z(fl O) 2 ‘ >Qr(t1 —(j—Dr2=0)



Modified mean oscillation estimates

#Then we deal with w as well on (— 00, 1) X B,(x)

2 po 1/py < Po1/po
8 (D) " o < Z Meidiis bl

® Combining the above two estimates, we have

(10% = (D2u)g gy ) < NS D2ul) ot o)
Qr(t09x0)

(©9)

(d+2a)/p, po ') Po
+NK Z Ck ( ‘f‘ ) (tO_(2k+2_2)(KI’)2/a,t0)XBKr(xO)
k=0

% This approach is also applicable to the usual parabolic equation.



Thank you



