L_{p} theory for parabolic equations with local and non-local time derivatives

Harmonic Analysis, Stochastics and PDEs in Honour of the 80th Birthday of Nicolai Krylov workshop ICMS Edinburgh, 20-24 Jun 2022

Doyoon Kim
Korea University

Outlines

QParabolic equations in divergence form in Sobolev spaces: Lower-order coefficients are not necessarily bounded.

- Joint work with Seungjin Ryu and Kwan Woo.

QParabolic equations with fractional time derivatives in Sobolev spaces.

- Joint work with Hongjie Dong.

QAlso introduce some of Krylov's work.

Elliptic and Parabolic equations

Elliptic equations

$$
\begin{gathered}
a^{i j} D_{i j} u+b^{i} D_{i} u+c u=f \\
D_{i}\left(a^{i j} D_{j} u+a^{i} u\right)+b^{i} D_{i} u+c u=D_{i} g_{i}+f
\end{gathered}
$$

- Parabolic equations

$$
\begin{gathered}
-u_{t}+a^{i j} D_{i j} u+b^{i} D_{i} u+c u=f \\
-u_{t}+D_{i}\left(a^{i j} D_{j} u+a^{i} u\right)+b^{i} D_{i} u+c u=D_{i} g_{i}+f
\end{gathered}
$$

- Solution spaces: Sobolev spaces

$$
W_{p}^{2}(\Omega)=\left\{u, D u, D^{2} u \in L_{p}(\Omega)\right\}
$$

Assumptions and Question

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u+a^{i} u\right)+b^{i} D_{i} u+c u=D_{i} g_{i}+f
$$

Assumptions on $a^{i j}$: strong ellipticity and boundedness

$$
a^{i j} \xi_{i} \xi_{j} \geq \delta|\xi|^{2},\left|a^{i j}\right| \leq \delta^{-1} \text { for } \delta \in(0,1) .
$$

Regularity or summability assumptions

- Some regularity assumptions are needed for $a^{i j}$ for $p \neq 2$.
- If a^{i}, b^{i}, and c are bounded, no other conditions are needed for a^{i}, b^{i}, and c.

If a^{i}, b^{i}, and c are not bounded, what assumptions do we need?

Equations in divergence form with unbounded lower-order coefficients

Ladyzenskaja, Solonnikov, Ural'tseva, 1967 for $p=2$.

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u+a^{i} u\right)+b^{i} D_{i} u+c u=D_{i} g_{i}+f
$$

*Assumptions: for $n \geq 3$

$$
\begin{aligned}
& a^{i}, b^{i},|c|^{1 / 2} \in L_{q, r}\left(\Omega_{T}\right), g_{i} \in L_{2}\left(\Omega_{T}\right), f \in L_{q_{1}, r_{1}}\left(\Omega_{T}\right) \\
& \frac{n}{q}+\frac{2}{r} \leq 1, q \in[n, \infty], r \in[2, \infty] \\
& \frac{n}{q_{1}}+\frac{2}{r_{1}} \leq 2+\frac{n}{2}, q_{1} \in\left[\frac{2 n}{n+2}, 2\right], r_{1} \in[1,2]
\end{aligned}
$$

An additional smallness assumption on a^{i}, b^{i}, c when $r=\infty$.

Mixed $L_{p, q}\left(\Omega_{T}\right)$ norm

$$
\begin{aligned}
\Omega_{T}= & (0, T) \times \Omega, \Omega \subset \mathbb{R}^{n} \\
& f \in L_{p, q}\left(\Omega_{T}\right) \\
\|f\|_{p, q}=\|f\|_{L_{p, q}\left(\Omega_{T}\right)}= & \left(\int_{0}^{T}\left(\int_{\Omega}|f(t, x)|^{p} d x\right)^{q / p}\right)^{1 / q}<\infty .
\end{aligned}
$$

Observation

A simple case: $a^{i}=c=0$

$$
\begin{gathered}
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)+b^{i} D^{i} u=D_{i} g_{i}+f, \\
u, D u \in L_{p, q}\left(\Omega_{T}\right) \\
\Rightarrow-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+F, \text { where } F=f-b^{i} D_{i} u .
\end{gathered}
$$

However, it is not possible to have $F \in L_{p, q}\left(\Omega_{T}\right)$ unless $b^{i} \in L_{\infty}\left(\Omega_{T}\right)$.
Thus, we first need to solve equations

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f,
$$

where $u, D u \in L_{p, q}\left(\Omega_{T}\right) f \in L_{p_{1}, q_{1}}\left(\Omega_{T}\right), p_{1} \leq p, q_{1} \leq q$.

Elliptic equations with data having a lower Summability

$$
D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f,\left.\quad u\right|_{\partial \Omega}=0
$$

where $u, D u, g_{i} \in L_{p}(\Omega), f \in L_{p_{1}}(\Omega), p_{1} \leq p \in(1, \infty)$.
Find w satisfying $\Delta w=f I_{\Omega}$ in $B_{R} \supset \Omega$ and set $G_{i}=D_{i} w$ so that

$$
D_{i} G_{i}=f \text { in } \Omega .
$$

$\square \in L_{p_{1}}(\Omega)$ for $p_{1} \geq \frac{n p}{n+p}$, then

$$
w \in W_{p_{1}}(\Omega) \Rightarrow G_{i} \in L_{p}(\Omega) .
$$

$$
\Rightarrow D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f \Longleftrightarrow D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+D_{i} G_{i}
$$

Elliptic case

$$
D_{i}\left(a^{i j} D_{j} u+a^{i} u\right)+b^{i} D^{i} u=D_{i} g_{i}+f \text { in } W_{p}^{1}(\Omega)
$$

$\Rightarrow D_{i}\left(a^{i j} D_{j} u\right)=D_{i}\left(g_{i}-a^{i} u\right)+f-b^{i} D^{i} u$,
where we need $b^{i} D^{i} u \in L_{p_{1}}(\Omega)$ for $p_{1} \geq \frac{n p}{n+p}$.

- Because $D_{i} u \in L_{p}(\Omega)$, we need $b^{i} \in L_{r}(\Omega)$,
where $r \in[n, \infty)$ and $r>p_{1}=\frac{n p}{n+p}, p \in(r /(r-1), \infty)$.
In particular, $r \geq 2$ if $n=2$.

Some reference for elliptic equations in divergence form

-Stampacchia 1965, Ladyzhenskaya, Ural'tseva 1968: $p=2$, $a^{i}, b^{i} \in L_{r}(\Omega), c \in L_{r / 2}(\Omega)$, where $r \in[n, \infty)$ for $n \geq 3$ and $r \in(2, \infty)$ for $n=2, c$ has an additional assumption.

Trudinger, 1973: General degenerate divergence form operators, $p=2, D_{i} a^{i}+c \leq 0$. Weak maximum principle.
H. Kim and Y.-H. Kim, 2015: $a^{i}=c=0$, Laplace operator, W_{p}^{1} estimate.

$$
\begin{aligned}
& b=\left(b^{1}, \ldots, b^{n}\right)=b_{1}+b_{2}, \operatorname{div} b_{1}=0, b_{1} \in L_{n} \\
& b_{2} \in L_{r}, \text { where } r \geq n \text { for } n \geq 3 \text { and } r>2 \text { for } n=2
\end{aligned}
$$

Hyunwoo Kwon, 2020. $n=r=2$ and $p>2\left(a^{i}=0\right)$ for an elliptic operator which can be converted to a non-divergence type equation.

Aleksandrov's estimate

Krylov 2021: Aleksandrov's estimate $u(x) \leq N\left\|f_{-}\right\|_{L_{n_{0}}(\Omega)}$ for u satisfying

$$
a^{i j} D_{i j} u+b^{i} D_{i} u+c u=f,\left.\quad u\right|_{\partial \Omega}=0
$$

where $b_{n} \in L_{n}, c \leq 0, f \in L_{n_{0}}$ with $n_{0}<n$. (Previously, $f \in L_{n}$)
EKrylov 2021: Elliptic case, $b \in L_{n}(\Omega), c \in L_{q}(\Omega), f \in L_{p}(\Omega)$ with $1<p<n$, more precisely,

$$
\begin{gathered}
n / 2<q<n, \quad p \leq q \\
\text { or } \\
q=n / 2, \quad 1<p<n / 2, \quad n \geq 3 .
\end{gathered}
$$

Krylov also considered Morrey classes for b^{i}.

N. V. Krylov's maximum principle
 (Parabolic version of Alekandrov's estimate)

$$
-u_{t}+a^{i j} D_{i j} u+b^{i} D_{i} u=f
$$

Krylov 1976: $b \in L_{\infty}, f \in L_{n+1}$

- Nazarov, Ural'tseva 1985, K. Tso 1985:

$$
b \in L_{n+1}, f \in L_{n+1} .
$$

Krylov 2021: $b \in L_{n+1}\left(b \in L_{n_{0}+1}\right), f \in L_{n_{0}+1}$,
where $n_{0}<n$ with an additional condition on b.
Mixed norms.

Some reference for parabolic equations with unbounded coefficients in divergence form

Ladyzenskaja, Solonnikov, Uralceva 1967: $p=2$.

- Nazarov and Uraltseva 2011: Qualitative properties (the maximum principle, the Harnack inequality, and the Liouville theorem) of solutions of parabolic (and elliptic) equations with unbounded lower-order coefficients.
*There are some results by Krylov (2021) for non-divergence type parabolic equations with unbounded coefficients, where the lower-order terms are not treated as perturbation terms.

Main results

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u+a^{i} u\right)+b^{i} D^{i} u+c u=D_{i} g_{i}+\sum_{k=1}^{m} f_{k}
$$

- $p, q \in(1, \infty), u, D u \in L_{p, q}\left(\Omega_{T}\right)$
- $a^{i} \in L_{\ell_{1}, r_{1}}\left(\Omega_{T}\right), b^{i} \in L_{\ell_{2}, r_{2}}\left(\Omega_{T}\right), c \in L_{\ell_{3}, r_{3}}\left(\Omega_{T}\right)$
- $g_{i} \in L_{p, q}\left(\Omega_{T}\right), f_{k} \in L_{p_{k}, q_{k}}\left(\Omega_{T}\right)$,

Then, the above equation is solvable whenever

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f
$$

and its dual problem is solvable when $g_{i}, f \in L_{p, q}\left(\Omega_{T}\right)$ so that $u, D u \in L_{p, q}\left(\Omega_{T}\right)$ ($a^{i j}$ need an appropriate regularity condition).

Boundary condition: Dirichlet or conormal derivative condition.

Conditions on the coefficients

For simplicity, assume that $a^{i}=c=0$.
$b^{i} \in L_{\ell_{2}, r_{2}}\left(\Omega_{T}\right)$, where $\ell_{2} \in(n, \infty]$ and $r_{2} \in[2, \infty)$ such that

$$
\frac{n}{\ell_{2}}+\frac{2}{r_{2}} \leq 1
$$

$\left\{\begin{array}{l}\frac{p}{p-1} \leq \ell_{2} \quad \text { and } \quad \frac{q}{q-1} \leq r_{2} \\ \frac{p}{p-1} \leq \ell_{2} \quad \text { and } \quad \frac{q}{q-1}<r_{2} \quad \text { if } \quad \frac{n}{\ell_{2}}+\frac{2}{r_{2}}=1\end{array}\right.$
$\ell_{2}=n$, then $r_{2}=\infty$. In this case $\left\|b^{i}\right\|_{L_{\ell_{2}, r_{2}}}$ needs to be small.

Solution to parabolic equations in divergence form

u is said to satisfy

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u+a^{i} u\right)+b_{i} D_{i} u+c u=D_{i} g_{i}+f
$$

if for any $\varphi \in C_{0}^{\infty}((0, T) \times \Omega)$, we have
$\int_{\Omega_{T}}\left(u \varphi_{t}-a^{i j} D_{j} u D_{i} \varphi-a^{i} u D_{i} \varphi+b^{i} D_{i} u \varphi+c u \varphi\right) d x d t=\int_{\Omega_{T}}\left(f \varphi-g_{i} D_{i} \varphi\right) d x d t$
$\square \in \mathscr{H}_{p}^{1}\left(\Omega_{T}\right)=\left\{u, D u \in L_{p}\left(\Omega_{T}\right), u_{t} \in \mathbb{H}_{p}^{-1}\left(\Omega_{T}\right)\right\}$ for $g_{i}, f \in L_{p}\left(\Omega_{T}\right)$.
$\cdot v \in \mathbb{H}_{p}^{-1}\left(\Omega_{T}\right)$ if there exist $g_{i}, f \in L_{p}\left(\Omega_{T}\right)$ such that $v=D_{i} g_{i}+f$ in the distribution sense.
$u \in H_{p}^{1}\left(0, T ; H_{p}^{-1}(\Omega)\right) \cap L_{p}\left(0, T ; H_{p}^{1}(\Omega)\right)$

To prove main results

A simple case: $a^{i}=c=0$

$$
\begin{gathered}
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)+b^{i} D^{i} u=D_{i} g_{i}+f \\
\Rightarrow-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+F, \text { where } F=f-b^{i} D_{i} u .
\end{gathered}
$$

However, it is not possible to have $F \in L_{p, q}\left(\Omega_{T}\right)$ unless $b^{i} \in L_{\infty}\left(\Omega_{T}\right)$.
-Thus, we first solve equations

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+\sum_{k=1}^{m} f_{k},
$$

where $u, D u \in L_{p, q}\left(\Omega_{T}\right) f_{k} \in L_{p_{k}, q_{k}}\left(\Omega_{T}\right), p_{k} \leq p, q_{k} \leq q$.

Equations with the right-hand side having lower summability

$$
\begin{gathered}
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+\sum_{k=1}^{m} f_{k}, \\
u, D u \in L_{p, q}\left(\Omega_{T}\right), g \in L_{p, q}\left(\Omega_{T}\right), f_{k} \in L_{p_{k} q_{k}}\left(\Omega_{T}\right), p_{k}<p, q_{k}<q .
\end{gathered}
$$

Not as easy as the elliptic case!
For each $t \in[0, T]$, find $\operatorname{div} \Phi(t, x)=f(t, x)$: no increase in time summability! Thus, not applicable if $q_{k}<q$.

Find $w \in W_{p_{k} q_{k}}^{1,2}\left(\Omega_{T}\right)$ such that $f=\Delta w-w_{t}$ in Ω_{T}. Then write

$$
(u-w)_{t}+D_{i}\left(a^{i j} D_{j}(u-w)\right)=D_{i}\left(g_{i}+D_{i} w-a^{i j} D_{j} w\right)
$$

and solve for $u-w$: If the domain is not good enough, then one cannot solve the non-divergence type equation $f=\Delta w-w_{t}$.

Equations with the right-hand side having lower summability

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+\sum_{k=1}^{m} f_{k}
$$

where $p, q \in(1, \infty), u, D u \in L_{p, q}\left(\Omega_{T}\right), f_{k} \in L_{p_{k}, q_{k}}\left(\Omega_{T}\right), p_{k} \leq p, q_{k} \leq q$.
What are possible $\left(p_{k}, q_{k}\right)$?
Non-divergence $-u_{t}+\Delta u=D_{i} g_{i}+f$, where $D_{i} g_{i}, f \in L_{p_{k}, q_{k}}\left(\Omega_{T}\right)$.
$\Rightarrow u \in W_{p_{k}, q_{k}}^{1,2}\left(\Omega_{T}\right)=\left\{u, D u, D^{2} u, u_{t} \in L_{p_{k}, q_{k}}\left(\Omega_{T}\right)\right\}$.
\Rightarrow To have $D u \in L_{p, q}\left(\Omega_{T}\right)$, we need $1+\frac{n}{p}+\frac{2}{q} \geq \frac{n}{p_{k}}+\frac{2}{q_{k}}$.

Equations with the right-hand side having lower summability

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+\sum_{k=1}^{m} f_{k}
$$

in Ω_{T} with the Dirichlet or conormal derivative boundary condition using the duality argument and a parabolic Sobolev embedding.
$1+\frac{n}{p}+\frac{2}{q} \geq \frac{n}{p_{k}}+\frac{2}{q_{k}}, p_{k} \in[1, p], q_{k} \in[1, q]$

- $\left(p_{k}, q_{k}, p\right) \neq(1, q, n /(n-1))$ for $n \geq 2$.
$. q_{k}>1$ if $1+\frac{n}{p}+\frac{2}{q}=\frac{n}{p_{k}}+\frac{2}{q_{k}}$.

Parabolic Sobolev embedding

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+\sum_{k=1}^{m} f_{k}
$$

$\Rightarrow u, D u \in L_{p, q}\left(\Omega_{T}\right)$,

$$
u_{t}=D_{i}\left(a^{i j} D_{j} u-g_{i}\right)-\sum_{k=1}^{m} f_{k}=D_{i} G_{i}+F_{k}
$$

That is, we need to have a Sobolev embedding for u such that

$$
u, D u \in L_{p, q}\left(\Omega_{T}\right), u_{t}=D_{i} G_{i}+F_{k},
$$

where $G_{i} \in L_{p, q}\left(\Omega_{T}\right), F_{k} \in L_{p_{k}, q_{k}}\left(\Omega_{T}\right)$.

Parabolic Sobolev embedding

$u, D u \in L_{p, q}\left(\Omega_{T}\right), u_{t}=D_{i} G_{i}+F_{k}, G_{i} \in L_{p, q}\left(\Omega_{T}\right), F_{k} \in L_{p_{k}, q_{k}}\left(\Omega_{T}\right)$.
Then, for $\left(p_{0}, q_{0}\right)$, we have

$$
\|u\|_{p_{0}, q_{0}} \leq N\left(\||u|+|D u|+|g|\|_{p, q}+\sum_{k=1}^{m}\left\|f_{k}\right\|_{p_{k}, q_{k}}\right)
$$

where

$$
\text { If } q_{0}=q, \text { then } \frac{n}{p} \leq 1+\frac{n}{p_{0}}, \quad\left(p, p_{0}\right) \neq(n(\geq 2), \infty)
$$

$\left(p_{k}, q_{k}\right)$ are arbitrary.

Parabolic Sobolev embedding

$$
\|u\|_{p_{0}, q_{0}} \leq N\left(\||u|+|D u|+|g|\|_{p, q}+\sum_{k=1}^{m}\left\|f_{k}\right\|_{p_{k}, q_{k}}\right)
$$

If $q_{0}>q$, then $\frac{n}{p}+\frac{2}{q} \leq 1+\frac{n}{p_{0}}+\frac{2}{q_{0}}$ and
$1<q<q_{0}<\infty \quad$ if $\frac{n}{p}+\frac{2}{q}=1+\frac{d}{p_{0}}+\frac{2}{q_{0}}$
($\left.p_{k}, q_{k}\right)$ are real numbers such that

$$
\begin{aligned}
& p_{k} \in\left[1, p_{0}\right], q_{k} \in\left[1, q_{0}\right], \frac{n}{p_{k}}+\frac{2}{q_{k}} \leq 2+\frac{n}{p_{0}}+\frac{2}{q_{0}}, \\
& 1=q_{k}<q_{0}=\infty \text { or } 1<q_{k}<q_{0}<\infty \text { if } \frac{n}{p_{k}}+\frac{2}{q_{k}}=2+\frac{n}{p_{0}}+\frac{2}{q_{0}}
\end{aligned}
$$

Remark

$H_{p}^{1}\left(0, T ; H_{q}^{-1}(\Omega)\right) \cap L_{p}\left(0, T ; H_{q}^{1}(\Omega)\right)$, but if $u_{t}=D_{i} g_{i}+\sum_{k=1}^{m} f_{k}$, then $u \in H_{p}^{1}\left(0, T ; H_{q}^{-1}(\Omega)\right) \cap L_{p}\left(0, T ; H_{q}^{1}(\Omega)\right)$?
-If is easy if $\Omega=\mathbb{R}^{n}$ because if $u, D u \in L_{p}\left(\Omega_{T}\right)$ and $u_{t}=D_{i} g_{i}+f$, where $g_{i}, f \in L_{p}\left(\Omega_{T}\right)$, then

$$
(1-\Delta)^{-1 / 2} u \in W_{p}^{1,2}\left(\Omega_{T}\right)
$$

- When the Dirichlet boundary condition is considered, I just extended u to be zero outside the domain and used the embedding for $\Omega=\mathbb{R}^{n}$, just as in the elliptic case $u \in W_{p}^{1}(\Omega)$
with $\left.u\right|_{\partial \Omega}=0$, then one can use embeddings for the zero extension of u in \mathbb{R}^{n}. However, it is wrong!

Remark

EIn the elliptic case, if $u \in W_{p}^{1}(\Omega)$ and $\left.u\right|_{\partial \Omega}=0$, then
$\bar{u} \in W_{p}^{1}\left(\mathbb{R}^{n}\right)$, where $\bar{u}= \begin{cases}u & x \in \Omega, \\ 0 & x \in \Omega^{c} .\end{cases}$
If $u \in \mathscr{H}_{p}^{1}\left(\Omega_{T}\right)=\left\{u \in L_{p}\left(\Omega_{T}\right), u, D u, u_{t} \in \mathbb{H}_{p}^{-1}\left(\Omega_{T}\right)\right\}$ with zero lateral boundary condition, then the zero extension \bar{u}, where

$$
\bar{u}(t, x)=\left\{\begin{aligned}
u(t, x) & \text { for }(t, x) \in(0, T) \times \Omega, \\
0 & \text { for }(t, x) \in(0, T) \times \Omega^{c},
\end{aligned}\right.
$$

is in the same class of functions? No!

Parabolic Sobolev embedding

$$
\|u\|_{p_{0}, q_{0}} \leq N\left(\||u|+|D u|+|g|\|_{p, q}+\sum_{k=1}^{m}\left\|f_{k}\right\|_{p_{k}, q_{k}}\right)
$$

Mollifications
-Reifenberg flat domain
Remark about an endpoint case ($q=1$) needs additional restrictions!

- For $q_{0}=\infty$, see Alkhutov and Gordeev 2008, Agresti, Lindemulder, Veraar 2021.

Proof of the main results

$$
-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)+b^{i} D^{i} u=D_{i} g_{i}+f
$$

- Move the lower-order terms to the right-hand side.
- Use the solvability of equations without lower-order terms, but with the right-hands side having lower summability.
- Parabolic Sobolev embedding to write

$$
\left\|b_{i} D_{u}\right\|_{p_{k}, q_{k}} \leq\left\|b^{i}\right\|_{\ell_{2}, r_{2}}\|D u\|_{p, q},
$$

then absorb to the left-hand side of $\left\|b^{i}\right\|_{\ell_{2}, r_{2}}$ is small.

- Divide the time interval into short intervals. This is why we do not deal with $\left\|b^{i}\right\|_{n, \infty}$ unless this is sufficiently small.

Parabolic equations with non-local time derivative

- Parabolic equations with local time derivative

$$
\begin{aligned}
& \cdot-u_{t}+a^{i j} D_{i j} u=f \\
& \cdot-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f
\end{aligned}
$$

- Parabolic equations with non-local time derivative

$$
\begin{aligned}
& -\partial_{t}^{\alpha} u+a^{i j} D_{i j} u=f \\
& \cdot-\partial_{t}^{\alpha} u+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f
\end{aligned}
$$

Bounded lower-order coefficients or they are zero.
-Anomalous diffusions

Fractional time derivative

α-th integral of u

$$
I^{\alpha} u(t, x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} u(s, x) d s
$$

- Caputo fractional derivative of order $\alpha \in(0,1)$

$$
\begin{aligned}
& \partial_{t}^{\alpha} u=\partial_{t} I_{0}^{1-\alpha}(u(\cdot, x)-u(0, x)) \\
& \quad=\frac{1}{\Gamma(1-\alpha)} \partial_{t} \int_{0}^{t}(t-s)^{-\alpha}[u(s, x)-u(0, x)] d s
\end{aligned}
$$

- 0 integral then 1 derivative $=1$ derivative .
- $1-\alpha$ integral then 1 derivative $=\alpha$ derivative.

Objective

For the usual elliptic and parabolic equations

$$
\begin{aligned}
& \text { - } a^{i j} D_{i j} u=f, \quad D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f \\
& \cdot-u_{t}+a^{i j} D_{i j} u=f, \quad-u_{t}+D_{i}\left(a^{i j} D_{j} u\right)=D_{i} g_{i}+f
\end{aligned}
$$

there are many unique solvability results in Sobolev spaces when the coefficients $a^{i j}$ are very irregular.

We would like to deal with irregular coefficients as those for the usual parabolic equations in Sobolev spaces for time fractional parabolic equations.

- $a^{i j}=a^{i j}\left(t, x_{1}, x^{\prime}\right)$ is measurable in $\left(t, x_{1}\right)$ and has small mean oscillations in x^{\prime}

Equations with rough $a^{i j}$
 Counterexamples

$$
a^{i j} D_{i j} u=f, \quad-u_{t}+a^{i j} D_{i j} u=f
$$

-There are counterexamples when $a^{i j}(x)$ have no regularity assumptions.

- Meyers 1963, Piccinini and Spagnolo 1972, divergence, $p \neq 2$
- Ladyzhenskaya and N. N. Ural'ceva, 1973, non-divergence
- Dong and K. 2014
- Parabolic case: Krylov 2016. $n=1, a^{i j}=a^{i j}(t, x)$.

$$
p \in(1,3 / 2) \cup(3, \infty)
$$

Brief history

$$
a^{i j} D_{i j} u=f, \quad-u_{t}+a^{i j} D_{i j} u=f
$$

- $a^{i j}$ have vanishing mean oscillations (VMO coefficients)

$$
f_{B_{r}(x)}\left|a^{i j}(y)-\oint_{B_{r}(x)} a^{i j}(y)\right| d x \rightarrow 0 \text { as } r \searrow 0
$$

- F. Chiarenza, M. Frasca, and P. Longo 1991, elliptic.
- M. Bramanti and M. C. Cerutti 1993, parabolic.
- Di Fazio 1996
- Byun and Wang 2004, BMO (small bounded mean oscillation)

Brief history

Krylov 2007, $a^{i j}=a^{i j}(t, x)$: measurable in time and VMO in x.

- Mean oscillation estimates for perturbation.

Krylov and K. 2007, $a^{i j}\left(x_{1}, x^{\prime}\right)$ is measurable in x_{1} and VMO in $x^{\prime} \in \mathbb{R}^{n-1}$. Elliptic.

- G. Chiti 1976, $p=2$
- There are many results for equations with rough coefficients. For instance, $a^{i j}\left(t, x_{1}, x^{\prime}\right)$: measurable in $\left(t, x_{1}\right)$ and VMO in x^{\prime}, where $x_{1} \in \mathbb{R}$ and $x^{\prime} \in \mathbb{R}^{d-1}$.

Variably partially VMO coefficients

KKrylov 2009, variably partially VMO elliptic, non-divergence type, $p>2$.

- $a^{i j}(x)$ can be measurable in one direction (measurable direction), but the direction can differ depending on x.

- There appeared many results for equations with such coefficients (also called, for instance, (σ, R)-vanishing of codimension 1), but Krylov's coefficients are more general (the involved map is not necessarily linear).

Some references for fractional equations

EZacher 2005, 2009, 2013: Non-divergence type fractional parabolic and Voltera type equation

$$
u(t, x)+\int_{0}^{t} a(t-s) A u(s, x) d s=f(t, x)
$$

where A is a time independent operator. Divergence type fraction parabolic equations in the Hilbert space setting, De Giorgi-Nash type theorem
-M. Allen, L. Caffarelli, and A. Vasseur, 2016: De Giorgi-Nash-Moser type Holder estimates for parabolic equations with fractional operators in both t and x.
I. Kim, K.-H. Kim, S. Lim, 2017: $a^{i j}(t, x)$ are continuous in x and piecewise continuous in $t . \alpha \in(0,2) . L_{q}\left(L_{p}\right)$-estimates.

Main results

Dong and K. 2019
$a^{i j}(t, x)$ is measurable in t and has small mean oscillations in x, then, for $f \in L_{p}\left(\mathbb{R}_{T}^{n}\right)$ there exists a unique solution u satisfying

$$
-\partial_{t}^{\alpha} u+a^{i j} D_{i j} u=f
$$ in $\mathbb{R}_{T}^{n}=(0, T) \times \mathbb{R}^{n}$.

The initial condition is zero.
EThere are other results for coefficients measurable in one variable as well as for divergence type equations. Weights are also considered.

Solution spaces as vector valued functions

For non-divergence time fractional parabolic equations ($\alpha \in(0,1)$), for instance, Zacher 2006 considers

$$
H_{p}^{\alpha}\left((0, T), L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left((0, T), H_{p}^{2}\left(\mathbb{R}^{n}\right)\right)
$$

- When the initial trace is zero, ${ }_{0} H_{p}^{\alpha}\left((0, T), L_{p}(\mathbb{R})\right)$ in place of $H_{p}^{\alpha}\left((0, T), L_{p}\left(\mathbb{R}^{n}\right)\right)$
- For $\alpha \in(0,1 / p)$, the initial trace does not make sense. In particular,

$$
H_{p}^{\alpha}\left((0, T), L_{p}\left(\mathbb{R}^{n}\right)\right)={ }_{0} H_{p}^{\alpha}\left((0, T), L_{p}\left(\mathbb{R}^{n}\right)\right)
$$

- For $\alpha>1 / p$, the initial trace is well defined.
- When the initial is non-zero, Zacher 2006 considers $H_{p}^{\alpha}\left((0, T), L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left((0, T), H_{p}^{2}\left(\mathbb{R}^{n}\right)\right)$ except $\alpha=1 / p$.

Solution spaces

What is an appropriate space for fractional parabolic equations including the case $\alpha=1 / p$?

When $p=2, \alpha=1 / 2$, Kubica, Ryszewska, Yamamoto 2020 (if functions have only the time variable) has

- $H_{2}^{\alpha}(0, T)$ for $\alpha \in(0,1 / 2)$
- $\left\{u: u \in H_{2}^{\alpha}(0, T), \int_{0}^{T}|u(t)|^{2} t^{-1} d t<\infty\right\}$ for $\alpha=1 / 2$
- $\left\{u \in H_{2}^{\alpha}(0, T): u(0)=0\right\}$ for $\alpha \in(1 / 2,1)$
as solution spaces with zero initial conditions.

Solution spaces $\mathbb{H}_{p}^{\alpha, 0}\left(\Omega_{T}\right), \mathscr{H}_{p}^{\alpha,-1}\left(\Omega_{T}\right)$

$u \in \mathbb{H}_{p, 0}^{\alpha, 0}\left(\Omega_{T}\right)$ if there exists $f \in L_{p}\left(\Omega_{T}\right)$ such that

$$
\int_{\Omega_{T}} I^{1-\alpha} u \varphi_{t} d x d t=-\int_{\Omega_{T}} f \varphi d x d t
$$

for all $\varphi \in C_{0}^{\infty}([0, T) \times \Omega)$. That is, $\partial_{t} I^{1-\alpha} u=f$.
If $u \in H_{p, 0}^{\alpha, 0}\left(\Omega_{T}\right)$, then in some sense $u(0, x)=0$.
$u \in \Vdash_{p}^{\alpha, 0}\left(\Omega_{T}\right)$ if there exists $u_{0}=u_{0}(x) \in L_{p}(\Omega)$ such that

$$
u-u_{0} \in \mathbb{H}_{p, 0}^{\alpha, 0}\left(\Omega_{T}\right)
$$

Solution spaces $\mathbb{H}_{p}^{\alpha, 0}\left(\Omega_{T}\right), \mathscr{H}_{p}^{\alpha,-1}\left(\Omega_{T}\right)$

$u \in \mathbb{H}_{p}^{\alpha, 0}\left(\Omega_{T}\right)$ if there exists $u_{0}=u_{0}(x) \in L_{p}(\Omega)$ such that

$$
u-u_{0} \in \mathbb{H}_{p, 0}^{\alpha, 0}\left(\Omega_{T}\right)
$$

- For $\alpha \in(0,1 / p), \mathbb{H}_{p, 0}^{\alpha, 0}\left(\Omega_{T}\right)=\mathbb{H}_{p}^{\alpha, 0}\left(\Omega_{T}\right)$.
- For $\alpha \in[1 / p, 1)$, if $u \in \mathbb{H}_{p}^{\alpha, 0}\left(\Omega_{T}\right)$, then there exists a unique $u_{0}(x) \in L_{p}\left(\Omega_{T}\right)$ such that $u-u_{0} \in \mathbb{H}_{p, 0}^{\alpha, 0}\left(\Omega_{T}\right)$.
Similarly, we define $\mathscr{H}_{p}^{\alpha,-1}\left(\Omega_{T}\right)$, but using $H_{p}^{-1}(\Omega)$ instead of $L_{p}(\Omega)$.
If $\alpha \in(1 / p, 1)$, then the initial traces belong to Besov type spaces as in Agresti, Lindemulder, Veraar 2021.

Solution spaces for fractional parabolic equations

- Non-divergence case

$$
\begin{aligned}
& \cdot \mathbb{H}_{p}^{\alpha, 2}\left(\Omega_{T}\right)=\left\{u \in L_{p}\left(\Omega_{T}\right): u \in \mathbb{H}_{p}^{\alpha, 0}\left(\Omega_{T}\right), D u, D^{2} u \in L_{p}\left(\Omega_{T}\right)\right\} \\
& \cdot \mathbb{H}_{p, 0}^{\alpha, 2}\left(\Omega_{T}\right)=\left\{u \in L_{p}\left(\Omega_{T}\right): u \in \mathbb{H}_{p, 0}^{\alpha, 0}\left(\Omega_{T}\right), D u, D^{2} u \in L_{p}\left(\Omega_{T}\right)\right\}
\end{aligned}
$$

[Divergence case

- $\mathscr{H}_{p}^{\alpha, 1}\left(\Omega_{T}\right)=\left\{u \in L_{p}\left(\Omega_{T}\right): u \in \mathscr{H}_{p}^{\alpha,-1}\left(\Omega_{T}\right), D u \in L_{p}\left(\Omega_{T}\right)\right\}$
- $\mathscr{H}_{p, 0}^{\alpha, 1}\left(\Omega_{T}\right)=\left\{u \in L_{p}\left(\Omega_{T}\right): u \in \mathscr{H}_{p, 0}^{\alpha,-1}\left(\Omega_{T}\right), D u \in L_{p}\left(\Omega_{T}\right)\right\}$

Approach

$$
-\partial_{t}^{\alpha} u+a^{i j} D_{i j} u=f
$$

We try to obtain mean oscillation estimates for $D^{2} u$,

$$
\int_{Q_{r}}\left|D^{2} u-\left(D^{2} u\right)_{Q_{r}}\right| d x d t
$$

where $Q_{r}\left(t_{0}, x_{0}\right)=\left(t_{0}-r^{2 / \alpha}, t_{0}\right) \times B_{r}\left(x_{0}\right)$ and $(f)_{Q_{r}}$ is the average of f over Q_{r}.
$u=w+v$, where v satisfies $-\partial_{t}^{\alpha} v+a^{i j} D_{i j} v=0$ in Q_{r}.
-If $\alpha=1$, we have a sufficiently regularity for $D^{2} v$.
However, for $\alpha \in(0,1)$, it is only possible to obtain some increase of summability of $D^{2} v$.

Approach

[Due to the non-local time derivative
$\partial_{t}^{\alpha} v \sim \partial_{t} \int_{0}^{t}(t-s)^{-\alpha} v(s, x) d s$ for $v(0, x)=0$,
it is not possible to obtain a sufficient regularity for solutions to homogeneous equations.

Eonsider homogenous equations not on $Q_{r}\left(t_{0}, x_{0}\right)$, but on infinite cylinder
 $\left(-\infty, t_{0}\right) \times B_{r}\left(x_{0}\right)$.

New decomposition

$$
-\partial_{t}^{\alpha} u+a^{i j} D_{i j} u=f
$$

$u=w+v$, not on a cylinder $\left(t_{0}-r^{2}, t_{0}\right) \times B_{r}\left(x_{0}\right)$, but $\left(-\infty, t_{0}\right) \times B_{r}\left(x_{0}\right)$.

- More precisely, since the time fractional equation is dealt with on $\Omega_{T}=(0, T) \times \Omega$, we consider w, v on $\left(0, t_{0}\right) \times B_{r}\left(x_{0}\right)$ for $t_{0} \in[0, T]$ and extend to be zero for $(-\infty, 0) \times B_{r}\left(x_{0}\right)$.
$\left(\left|D^{2} v\right|^{p_{1}}\right)_{Q_{r / 2}\left(t_{1}, 0\right)}^{1 / p_{1}} \leq N \sum_{j=1}^{\infty} j^{-(1+\alpha)}\left(\left|D^{2} v\right|^{p_{0}}\right)_{Q_{r}\left(t_{1}-(j-1) r^{2 / \alpha}, 0\right)}^{1 / p_{0}}$.

Modified mean oscillation estimates

Then we deal with w as well on $\left(-\infty, t_{0}\right) \times B_{r}\left(x_{0}\right)$.
$\left(\left|D^{2} w\right|^{p_{0}}\right)_{Q_{1 / 2}\left(t_{1}, 0\right)}^{1 / p_{0}} \leq \sum_{k=0}^{\infty} c_{k}\left(|f|^{p_{0}}\right)_{\left(s_{k+1}, s_{k}\right) \times B_{1}}^{1 / p_{0}}$.
Combining the above two estimates, we have

$$
\begin{aligned}
& \left(\left|D^{2} u-\left(D^{2} u\right)_{Q_{k r}\left(t_{0}, x_{0}\right)}\right|\right)_{Q_{r}\left(t_{0}, x_{0}\right)} \leq N \kappa^{-\sigma}\left(\mathcal{S} \mathscr{M}\left|D^{2} u\right|^{p_{0}}\right)^{1 / p_{0}}\left(t_{0}, x_{0}\right) \\
& \quad+N \kappa^{(d+2 / \alpha) / p_{0}} \sum_{k=0}^{\infty} c_{k}\left(|f|^{p_{0}}\right)_{\left(t_{0}-\left(2^{k+2}-2\right)(\kappa r)^{2 / \alpha}, t_{0}\right) \times B_{k r}\left(x_{0}\right)}^{1 / p_{0}}
\end{aligned}
$$

- This approach is also applicable to the usual parabolic equation.

Thank you

