A probabilistic formula for the gradient of solutions of some Hypoelliptic Dirichlet problems

Giuseppe Da Prato (Scuola Normale Superiore) and Luciano Tubaro (Università di Trento)

Edinburgh, June 23, 2022

Giuseppe Da Prato (Scuola Normale Superiore) and Luciano Tu A probabilistic formula for the gradient of solutions of some

Introduction and setting of the problem

Consider the following problem in $H = \mathbb{R}^d$,

 $\begin{cases} D_t u(t,x) = \frac{1}{2} \operatorname{Tr} \left[C D_x^2 u(t,x) \right] + \langle Ax, D_x u(t,x) \rangle, & t \ge 0, x \in \mathbb{R}^d, \\ u(0,x) = \varphi(x) \in \mathbb{R}^d \end{cases}$ (1)

where A and C are $d \times d$ matrices and C is semi–definite positive. We shall assume that

$$\det\left(\int_0^T e^{tA} C e^{tA^*} dt\right) > 0, \quad \forall T > 0.$$
 (2)

(E) (E)

Therefore the operator above is hypoelliptic. We are mainly interested in the case when, besides (2), we have det C = 0; in this case the problem is degenerate. It is well known that, under assumption (2), problem (1) has a unique C^{∞} strict solution, given by

 $u(t,x) = \mathbb{E}[\varphi(X(t,x))], \quad t > 0, \ x \in \mathbb{R}^d,$ (3),

where X(t, x) is the Ornstein–Uhlenbeck process

$$X(t,x) = e^{tA}x + \int_0^t e^{(t-s)A}\sqrt{C} dW(s) =: e^{tA}x + W_A(t),$$

and W is an \mathbb{R}^d -valued Wiener process on a probability space

 $(\Omega, \mathscr{F}, \mathbb{P}).$

▲□ → ▲ 三 → ▲ 三 → りへ(~

This talk is devoted to the regularity of the solution to the following Cauchy–Dirichlet problem,

 $\begin{cases} D_t(t,x) = \frac{1}{2} \operatorname{Tr} \left[CD_x^2 u(t,x) \right] + \langle Ax, D_x u(t,x) \rangle, & t > 0, x \in \mathcal{O}_r, \\ u(t,x) = 0, & t > 0, x \in \partial \mathcal{O}_r, \\ u(0,x) = \varphi(x), & x \in \mathcal{O}_r, \end{cases}$ (5)

where \mathcal{O}_r is an open, bounded subset of \mathbb{R}^d of the form $\mathcal{O}_r = \{g < r\}, g$ being regular and convex, and $\varphi \in B_b(\mathbb{R}^d)$ is bounded and Borel.

同 ト イヨ ト イヨ ト ヨ うくで

A solution of problem (5) is provided by the probabilistic formula

 $u(T, x) = \mathbb{E}\left[\varphi(X(T, x)) \mathbb{1}_{T \leq \tau_x}\right], \quad T > 0, x \in \overline{\mathscr{O}_r},$ where τ_x is the exit time of $X(\cdot, x)$ from $\overline{\mathscr{O}_r}$,

$$\tau_{\mathbf{X}} = \inf\{\mathbf{s} \in [0, T] : \mathbf{e}^{\mathbf{s}\mathbf{A}}\mathbf{X} + \mathbf{W}_{\mathbf{A}}(\mathbf{s}) \in \overline{\mathscr{O}_{\mathbf{r}}}^{\mathbf{c}}\}.$$

In other words,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

By this formula it is hard to show the existence of the gradient of u(T, x) up to the boundary of \mathcal{O}_r .

By using suitable transformations of identity (5) we shall prove, however, the existence of

 $D_x R_T^{\mathcal{O}_r} \varphi$

up to the boundary as well as an explicit formula when φ is just Borel and bounded on $\overline{\mathscr{O}_r}$

▲□ → ▲ 三 → ▲ 三 → りへ(~

Regularity of u(T, x) at the interior of \mathcal{O}_r was proved by

Dynkin, Markov processees, Springer 1965.

Regularity up to the boundary for general hypoelliptic operators has been proved by

Cattiaux, Bull. Sci. Math. (I) and (II), 90-91

using Malliavin calculus; but his results do not cover problem (5), because he requires det C > 0.

We believe that our method should work for more general equations of the form

 $D_t u(t,x) = \frac{1}{2} \operatorname{Tr} \left[C D_x^2 u(t,x) \right] + \langle Ax + b(x), D_x u(t,x) \rangle.$

where $b: \mathbb{R}^d \to \mathbb{R}^d$ is nonlinear and regular.

Example

Let
$$d = 2, x = (x_1, x_2), \ 0 = B_1 = \{x \in \mathbb{R}^2 : |x| < 1\}.$$

$$\begin{cases}
D_t u(t, x_1, x_2) = \frac{1}{2} D_{x_1}^2 u(t, x_1, x_2) + x_1 D_{x_2} u(t, x_1, x_2) \\
u(t, x) = 0, \quad |x| = 1, \\
u(0, x) = \varphi(x), \quad x = (x_1, x_2) \in \mathbb{R}^2.
\end{cases}$$
Then $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$ Consequently
 $Q_t = \int_0^t e^{sA} C e^{sA^*} ds = \int_0^t \begin{pmatrix} 1 & s \\ s & s^2 \end{pmatrix} ds = \begin{pmatrix} t & t^2/2 \\ t^2/2 & t^3/3 \end{pmatrix}.$
Therefore det $C = 0$ but det $Q_t > 0$ for any $t > 0$.

ヘロン 人間と 人間と 人間と

₹ 990

The main result

We fix T > 0 and set $u(T, x) = R_T^{\mathcal{O}_r} \varphi(x)$. Then we start by the previous identity

$$R_T^{\mathscr{O}_r}\varphi(x) = \int_{\{g(e^{sA}x + W_A(s)) \le r, \forall \, 0 \le s \le T\}} \varphi(e^{TA}x + W_A(T)) \, d\mathbb{P}.$$
(5)

We make the change of variables

$$\Omega \to X = L^2(0, T; \mathbb{R}^d), \quad \omega \to W_A(\cdot)(\omega),$$

$$R_{T}^{\mathscr{O}_{r}}\varphi(x) = \int_{\{g(e^{sA}x+h(s))\leq r, \forall 0\leq s\leq T\}} \varphi(e^{TA}x+h(T)) N_{\mathbb{Q}_{T}}(dh),$$
(6)
where $N_{\mathbb{Q}_{T}}$ is the law of $W_{A}(\cdot)$ in X , which is Gaussian as well known.

直 とう ゆう とう とう

1

To show that $R_T^{\mathscr{O}_r}\varphi$ is differentiable, we shall first eliminate $e^{TA}x$ from the argument of φ using the Cameron–Martin formula.

The obvious translation $h \to h - e^{\cdot A}x$ does not work, because the measures $N_{e^{\cdot A}x,\mathbb{Q}_{T}}$ and $N_{\mathbb{Q}_{T}}$ are singular for $x \neq 0$.

For this reason we construct another translation $h \to h - a(x, \cdot)$ such that $a(x, \cdot)$ belongs to $\mathbb{Q}_T(X)$ for all $x \in H$ and:

$$a(x,T) = e^{TA}x, \quad \forall x \in H.$$

With such a translation $h \rightarrow h - a(x, \cdot)$, we shall find

$$\varphi(e^{TA}x + h(T)) \to \varphi(h(T))$$

so that *x* will disappear from φ .

▲□ → ▲ □ → ▲ □ → ▲ □ → ● ●

$a(x, \cdot)$ is provided by the following simple lemma.

Lemma

For all T > 0 the matrix

$$V:=\int_0^T r\,e^{rA}Ce^{rA^*}\,dr$$

is non singular. Moreover, setting

$$v(x,t) := e^{(T-t)A^*} V^{-1} e^{TA} x, \quad t \in [0,T], \, x \in X.$$

and

$$a(x,\cdot) := \mathbb{Q}_T v(x,\cdot), \quad x \in H,$$

it results

$$a(x, T) = e^{TA}x, \quad \forall x \in H,$$

as required.

くロト (過) (目) (日)

ъ

Since measures $N_{a(x,\cdot),\mathbb{Q}_T}$ and $N_{\mathbb{Q}_T}$ are equivalent, by the Cameron–Martin Theorem we have

 $\frac{dN_{a(x,\cdot),\mathbb{Q}_T}}{dN_{\mathbb{Q}_T}}(h) = \exp\left\{-\frac{1}{2}|\mathbb{Q}_T^{-1/2}a(x,\cdot)|_X^2 + \langle \mathbb{Q}_T^{-1/2}a(x,\cdot), \mathbb{Q}_T^{-1/2}h\rangle_X\right\},\,$

After some simple computations, we can write

$$\frac{dN_{a(x,\cdot),\mathbb{Q}_{T}}}{dN_{\mathbb{Q}_{T}}}(h) = \exp\left\{-\frac{1}{2}F(x) + G(x,h)\right\}, \quad x \in H, \ h \in X,$$

where

$$F(x) := \langle v(x,t), a(x,\cdot) \rangle_X$$

and,

$$G(x,h) = \langle v(x,t),h\rangle_X.$$

Note that both F and G are regular.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Now our identity becomes

 $R_T^{\mathscr{O}_r}\varphi(x) = \int_{\{M(h+d(x,\cdot)\leq r\}} \varphi(h(T)) \exp\left\{-\frac{1}{2}F(x) + G(x,h)\right\} N_{\mathbb{Q}_T}(dh),$

where for all $x \in \overline{\mathscr{O}_r}$, we have:

$$d(x,t) = e^{tA}x - a(x,t), \quad t \in [0,T],$$

and

 $M(h+d(x,\cdot)) = \sup_{t\in[0,T]} \{g(h(t)+d(x,t))\}, \quad h \in X = L^2(0,T]; \mathbb{R}^d).$

Note that the variable x does not appear anymore in the argument of φ but only in the domain of integration of (7).

Remark

One can show that the measure $N_{\mathbb{Q}_T}$ is concentrated on $E := C([0, T]; \mathbb{R}^d)$.

Moreover, its Cameron–Martin space is still given by $\mathbb{Q}_{T}^{1/2}(X)$.

As a consequence, integrations with respect to N_{Q_T} can be performed equivalently both in *E* and in *X*, giving the same results.

Giuseppe Da Prato (Scuola Normale Superiore) and Luciano Tu A probabilistic formula for the gradient of solutions of some

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Since the mapping $x \to M(h + d(x, \cdot))$ is continuous on *E* the semigroup $R_T^{\mathcal{O}_r}$, T > 0, is strong Feller that is

 $\varphi \in \mathcal{B}_b(\overline{\mathscr{O}_r}) \Rightarrow \mathcal{R}_T^{\mathscr{O}_r} \varphi \in \mathcal{C}_b(\overline{\mathscr{O}_r}), \quad \forall \ T > 0.$

More difficult is to show that $R_T^{\mathscr{O}_r}\varphi$ is *x*-differentiable for all $\varphi \in B_b(\overline{\mathscr{O}_r})$ and all T > 0.

As it is expected, differentiation of $R_T^{\mathcal{O}_T} \varphi$ will produce infinite dimensional surface integrals which, unfortunately, cannot be handled by the classical theory of

Airault-Malliavin, Bull. Sci. Math. 88

To overcome this difficulty we shall introduce an approximation $R_{Tn}^{\mathscr{O}_r}\varphi$ of $R_{T}^{\mathscr{O}_r}\varphi$ defined by finite dimensional integrals.

More precisely, we shall replace any function h from E by a suitable step function.

Let

$$\sigma_n := \{t_j = j T 2^{-n}, \quad j = 0, 1, \dots, 2^n\}, \quad n \in \mathbb{N},$$

be a decomposition of [0, T]; then the linear mapping

 $E = C([0, T]; H) \rightarrow H^{2^n}, \quad h \rightarrow (h(t_1), h(t_2), \cdots, h(t_{2^n})),$

has a Gaussian law, say $N_{\mathbb{Q}_{T,n}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Now we define

$$R_{T,n}^{\mathscr{O}_r}\varphi(x) = \int_{\{M_n(\xi+d(x,\cdot))\leq r\}}\varphi(\xi_{2^n})\exp\{-\frac{1}{2}F(x)+G^n(x,\xi)\}N_{\mathbb{Q}_{T,n}}(d\xi),$$

where

 $M_n(\xi+d(x,\cdot)) = \max \{g(\xi_j + d(x,t_j)), t_j = j T 2^{-n}, j = 0, 1, \dots, 2^n\}$

and

$$G^{n}(x,\xi) = \sum_{j=1}^{2^{n}} (v(x,t_{j}) \cdot \xi_{j}) (t_{j} - t_{j-1}), \quad \xi \in H^{2^{n}},$$

recall that $G(x, h) = \langle v(x, t), h \rangle_X$.

Now we can differentiate $R_{T,n}^{\mathscr{O}_r}\varphi(x)$ in any direction $y \in \mathbb{R}^d$.

$$D_{x}R_{T,n}^{\mathscr{O}_{r}}\varphi(x)\cdot y =: I_{1}(n,x,y) + I_{2}(n,x,y)$$

where

0

$$I_1(n, x, y) = \int_{\{M_n(h+d(x, \cdot)) \le r\}} \varphi(h(T)) \exp\left\{-\frac{1}{2}F(x) + G^n(x, h)\right\}$$

$$\times \left(-\frac{1}{2}F_{x}(x)y+G_{x}^{n}(x,h)y-G_{h}^{n}(x,h)\cdot(d_{x}(x,\cdot)y)\right) N_{\mathbb{Q}_{T}}(dh).$$
(8)

$$I_{2}(n, x, y) = \int_{\{M_{n}(h+d(x, \cdot)) \leq r\}} \varphi(h(T)) \exp\left\{-\frac{1}{2}F(x) + G^{n}(x, h)\right\}$$
$$\times \langle \mathbb{Q}_{T,n}^{-1/2}(d_{x}(x, \cdot)y), \mathbb{Q}_{T,n}^{-1/2}h \rangle_{H^{2^{n}}} N_{\mathbb{Q}_{T}}(dh).$$
(9)

프 에 에 프 어 - -

ъ

Letting $n \to \infty$ in $I_1(n, x, y)$ is easy, just by using the Dominated Convergence Theorem, whereas for $I_2(n, x, y)$ there is a problem due to the factor

 $\langle \mathbb{Q}_{T,n}^{-1/2}(d_x(x,\cdot)y), \mathbb{Q}_{T,n}^{-1/2}h\rangle_{H^{2^n}}, \qquad \text{(bad term)}$

that will converge as $n \to \infty$ to

 $\langle \mathbb{Q}_T^{-1/2}(d_x(x,\cdot)y), \mathbb{Q}_T^{-1/2}h\rangle_X.$

But this term is not meaningful because $d_x(x, \cdot)y$ does not belong to the Cameron–Martin space of $N_{\mathbb{Q}_T}$.

So, we shall provide a different expression of $I_2(n, x, y)$, using a suitable integration by parts formula as in

DP-Lunardi-Tubaro, Trans. AMS, 2018

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Lemma

The following identity holds

 $I_2(n, x, y) = \int_{\{M_n(h+d(x, \cdot)) \le r\}}$ $\times \varphi(h(T)) D_h \exp\left\{-\frac{1}{2} F(x) + G^n(x,h)\right\} \cdot (d_x(x,\cdot)y) N_{\mathbb{O}_T}(dh)$ $+\lim_{\epsilon\to 0}\frac{1}{2\epsilon}\int_{\{r-\epsilon\leq M_n(h+d(x,\cdot))\leq r+\epsilon\}}$ $\times \varphi(h(T))M'_{p}(h+d(x,\cdot))\cdot (d_{x}(x,\cdot)y)N_{\mathbb{O}_{T}}(dh).$ (10)

Giuseppe Da Prato (Scuola Normale Superiore) and Luciano Tu A probabilistic formula for the gradient of solutions of some

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

In identity (10) the bad term disappeared.

The price to pay, however, is that we have to compute the limit $\epsilon \rightarrow 0$ in identity (10) and then let $n \rightarrow \infty$.

This will require, as we shall see, that

$$rac{dN_{\mathbb{Q}_T}\circ (M(h+d(x,\cdot)))^{-1}}{d\ell}(s)=D_r^+\Lambda_x(s)=:
ho(x,s),$$

$$\frac{dN_{\mathbb{Q}_{T}}\circ (M_n(h+d(x,\cdot)))^{-1}}{d\ell}(s)=D_r^+\Lambda_{x,n}(s)=:\rho_n(x,s)$$

where ℓ is the Lebesgue measure, $\rho(x, s)$ and $\rho_n(x, s)$ are locally integrable and $\rho_n \rightarrow \rho$.

This will require the Ehrhard inequality.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

The Erhahrd Inequality

Let *X* be a separable Hilbert space, μ a gaussian measure in *X*, $A \subset X$, $B \subset X$ convex. Set

$$\Phi(r)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{r}e^{-\frac{1}{2}x^{2}}\,dx,\quad r\in\mathbb{R}.$$

Then the following concavity inequality holds

 $\Phi^{-1}[\mu((1-t)A+tB)] \ge (1-t)\Phi^{-1}[\mu(A)]+t\Phi^{-1}[\mu(B)], \quad \forall \ t \in [0,1].$

As a consequence if $g: X \to \mathbb{R}$ is convex and

$$F(r) := \mu(g \le r) = \int_{g \le r} d\mu,$$

it follows that $\Phi^{-1} \circ F$ is concave, so that F is absolutely continuous and posseses right and left derivatives. See e.g.

Bogachev, Gaussian measures Th. 4.2.2

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Using the Ehrhard inequality

Define

$$\Lambda_x(s) := N_{\mathbb{Q}_T}(M(h+d(x,\cdot)) \leq s), \quad s \geq 0.$$

$$\Lambda_{n,x}(s) := N_{\mathbb{Q}_T}(M_n(h+d(x,\cdot)) \leq s), \quad s \geq 0.$$

Since *g* is convex, mappings $M(\cdot + d(x, \cdot))$ and $M_n(\cdot + d(x, \cdot))$ are convex as well. So, by the Ehrhard inequality we see that the real functions

$$[0, +\infty) \rightarrow \mathbb{R}, \ s \rightarrow S_{\chi}(s) = \Phi^{-1}(\Lambda_{\chi}(s)),$$

$$[0, +\infty) \rightarrow \mathbb{R}, \ s \rightarrow S_{n,x}(s) = \Phi^{-1}(\Lambda_{n,x}(s)),$$

are concave. As a consequence, they are differentiable at any s > 0 up to a discrete set where there exist the left and the right derivative; we shall denote by $D_r^+ \Lambda_x(s)$ and $D_r^+ \Lambda_{n,x}(s)$ the right derivatives at any discontinuity point.

It follows that the measures

$$N_{\mathbb{Q}_T} \circ (M(h+d(x,\cdot)))^{-1}$$

and

$$N_{\mathbb{Q}_T} \circ (M_n(h+d(x,\cdot)))^{-1}$$

are absolutely continuous with respect to the Lebesgue measure ℓ in $\mathbb R$ and it results

$$\frac{dN_{\mathbb{Q}_T} \circ (M(h+d(x,\cdot)))^{-1}}{d\ell}(s) = D_r^+ \Lambda_x(s) =: \rho(x,s)$$

 ℓ in \mathbb{R} and

$$\frac{dN_{\mathbb{Q}_{\mathcal{T}}}\circ (M_n(h+d(x,\cdot)))^{-1}}{d\ell}(s)=D_r^+\Lambda_{x,n}(s)=:\rho_n(x,s)$$

伺き くほき くほう

Now the following lemma can be proved using the fact that $\Lambda_x(s)$ and $\Lambda_{n,x}(s)$ are increasing on *s* and decreasing on *n* and the selection principle of Helly.

Lemma

There exists a > 0 such that $\lim_{n \to \infty} \rho_n(x, s) = \rho(x, s) \quad \forall x \in \overline{\mathscr{O}_r}, \quad s \in [r - a, r + a].$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Now, we can prove the existence of the limit

$$M_{2,2}(n,x,y) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{\{r-\epsilon \le M_n(h+d(x,\cdot)) \le r+\epsilon\}}$$

 $\times \varphi(h(T))M'_n(h+d(x,\cdot))\cdot (d_x(x,\cdot)y)N_{\mathbb{Q}_T}(dh),$

that we write as

$$M_{2,2}(n,x,y) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{X} \mathbb{E}_{N_{\mathbb{Q}_{T}}} \left[\mathbb{1}_{\{r-\epsilon \leq M_{n}(h+d(x,\cdot)) \leq r+\epsilon\}} \right]$$

 $\times \varphi(h(T))M'_n(h+d(x,\cdot))\cdot (d_x(x,\cdot)y)\big|M_n(h+d(x,\cdot))\big]N_{\mathbb{Q}_T}(dh),$

that is

$$M_{2,2}(n,x,y) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{r-\epsilon}^{r+\epsilon} \mathbb{E}_{N_{\mathbb{Q}_T}} \left[\varphi(h(T)) M'_n(h+d(x,\cdot)) \cdot (d_x(x,\cdot)y) \right]$$

同 ト イヨ ト イヨ ト ヨ うくで

 $|M_n(h+d(x,\cdot))=s]\rho_{n,x}(s)\,ds.$

It results

 $M_{2,2}(n, x, y) = \mathbb{E}_{N_{\mathbb{Q}_T}}[\varphi(h(T)) (M'_n(h + d(x, \cdot)) \cdot (d_x(x, \cdot)y) \\ \times \mathbb{E}[|M_n(h + d(x, \cdot)) = r] \rho_{n,x}(r).$

Finally, letting $n \to \infty$ we obtain the main result.

For all $\varphi \in B_b(\overline{\mathscr{O}_r})$ there exists the gradient of $R_T^{\mathscr{O}_r}\varphi$ in all direction $y \in \mathbb{R}^d$ and it results

$$D_{x}R_{T}^{\mathcal{O}_{r}}\varphi(x)\cdot y = \int_{\{M(h+d(x,\cdot))\leq r\}}\varphi(h(T))\exp\left\{-\frac{1}{2}F(x) + G(x,h)\right\}$$
$$\times \left(-\frac{1}{2}F_{x}(x)y + G_{x}(x,h)y\right) N_{\mathbb{Q}_{T}}(dh)$$
$$+\mathbb{E}\left[\varphi(h(T))\left(M'(h+d(x,\cdot))\cdot (d_{x}(x,\cdot)y)M(h+d(x,\cdot)) = r\right]\rho_{x}(r).$$

★ E ► ★ E ► E

References

- H. Airault and P. Malliavin. *Intégration géométrique sur l'espace de Wiener*, Bull. Sci. Math. **112**, 3–52, 1988.
- V.I. Bogachev, *Gaussian Measures*, A.M.S. 1998.
- P. Cattiaux, *Calcul stochastique et opèrateurs dègènèrès du second ordre*, Bull. Sciences. Math.(I) et (II), 1990-91.
- G. Da Prato, A. Lunardi and L. Tubaro, Trans. Amer. Math. Soc. **370**, 5795–5842, 2018.
- G. Da Prato and L. Tubaro, European. J. Math.
- E. B. Dynkin, *Markov processes I, II*, Springer–Verlag, 1965.
- R. R. Phelps, Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pac. J. Math., 77, 523-531, 1978.

・ 回 ト ・ ヨ ト ・ ヨ ト

æ