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Modelling hyperbolic space

We work in Rd+1
, and model (d+ 1)-dimensional hyperbolic space with the ball

Dd+1 = {z ∈ Rd+1 | |z| < 1}

equipped with the hyperbolic metric dH defined by

dt =
2|dz|

1− |z|2 .

This is referred to as the Poincaré ball model. Denote the ’boundary at infinity’ of Dd+1

by

Sd = {z ∈ Rd+1 | |z| = 1}.
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Modelling hyperbolic space

We will also make use of the upper half-space model Hd+1 = Rd × (0,∞) with boundary

Rd × {0} and equipped with the analogous metric, noting that we can move between

these models by applying a Möbius transformation (the Cayley transformation).
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Isometries and Kleinian Groups

The (orientation preserving) isometries of (Dd+1, dH) form a group, written as Con+(d).

Con+(d) = Stab(Dd+1) ≤ Möb+(Rd+1
)

Definition

A subgroup Γ < Con+(d) is called Kleinian if it is discrete.

Kleinian groups act ‘properly discontinuously’ on Dd+1, but this may fail on parts of the

boundary.
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Limit Sets

Definition

Let Γ ≤ Con+(d) be a Kleinian group. Then the limit set of Γ, denoted as L(Γ), is

L(Γ) = Γ(0) \ Γ(0)

where closure is with respect to the Euclidean metric.

Limit sets capture where the Kleinian group fails to be discontinuous on the boundary.

It is easy to show that limit sets are closed, Γ-invariant, and (assuming they contain at

least 3 points) perfect.
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Limit Sets

Figure: A Kleinian limit set
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Parabolic elements and horoballs

An isometry is said to be parabolic if it has precisely one fixed point in Sd. We will

assume throughout that Γ contains parabolic elements and write P to denote the set of

parabolic fixed points.

It is known that we can fix a standard set of horoballs (Euclidean balls in Dd+1 which are

tangent at some p ∈ P ) {Hp}p∈P such that they are all pairwise disjoint, do not contain

0, and given any p ∈ P and g ∈ Γ, we have g(Hp) = Hg(p).
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Geometric Finiteness and Poincaré Exponent

We restrict our attention to non-elementary geometrically finite Kleinian groups.

Definition
A Kleinian group Γ is said to be geometrically finite if, roughly speaking, it has a

fundamental domain with finitely many sides.

We write δ to denote the Poincaré exponent, which is defined by

δ = inf

{
s > 0 |

∑
g∈Γ

e−sdH(0,g(0)) < ∞

}
.

δ turns out to be closely related to the dimension theory of L(Γ), with

dimHL(Γ) = dimBL(Γ) = δ.
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The Patterson-Sullivan Measure

Limit sets of geometrically finite Kleinian groups are known to support ergodic conformal

measures with maximal Hausdorff dimension.

These are often referred to as Patterson-Sullivan measures, and as much of the theory is

the same for this family of measures, we will simply fix one and refer to the

Patterson-Sullivan measure, which we will denote by µδ.
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Counting horoballs

Question: is it possible to count horoballs of certain sizes? E.g. given r > 0, how many

horoballs of radius ≈ r should we expect to see?

Theorem (Stratmann-Velani ’95)

There exists τ ∈ (0, 1) such that for all sufficiently large k ∈ N, we have

#
{
p ∈ P | τk+1 ≤ |Hp| < τk

}
≈ τ−kδ.

So roughly speaking, given sufficiently small r > 0, we would expect to see ≈ r−δ

horoballs of that size.
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Counting horoballs

Our interest lies in trying to find localisations of the previous result e.g. considering

horoballs not across the whole limit set, but instead in a ball B(z,R).

This naturally

breaks into three cases:

Horoballs with radius ≲ R2.

Horoballs with radius ≥ R.

Intermediate horoballs which lie between the above two cases.

The second case is trivial, clearly any ball B(z,R) can only have at most 1 such horoball

due to disjointness.
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Small horoballs

z Sd

R
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Small horoballs

z Sdp
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Small horoballs

z Sdp

≈ R

≈ R2
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Upper bound

For the other cases, we always have the following upper bound.

Theorem (Fraser-S’)

Let τ ∈ (0, 1), z ∈ L(Γ), and R ∈ (0, 1). If k ∈ N is such that τk ≲ R, then

#
{
p ∈ P ∩B(z,R) | τk+1 ≤ |Hp| < τk

}
≲τ τ−kδµδ(B(z,R)).

Moreover, if k ∈ N is such that τk+1 > 2R, then

#
{
p ∈ P ∩B(z,R) | τk+1 ≤ |Hp| < τk

}
≤ 1.

Liam Stuart (University of St. Andrews) 15/37



Small horoballs

For the first case, this upper bound turns out to be sharp.

Theorem (Fraser-S’)

For all sufficiently small τ ∈ (0, 1) there exists C ∈ (0, 1) such that for all z ∈ L(Γ), all

sufficiently small R > 0 and all k ∈ N such that τk < CR2, we have

#
{
p ∈ P ∩B(z,R) | τk+1 ≤ |Hp| < τk

}
≈τ τ−kδµδ(B(z,R)).
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Small horoballs

Proof sketch: A result of Stratmann and Velani says that there exists a constant κ > 0

such that for sufficiently small r > 0,

L(Γ) ⊆
⋃
p∈P

|Hp|≥r

Π

(
κ

√
r

|Hp|
Hp

)

with multiplicity ≲ 1. For notational convenience we write λp = κ
√

r
|Hp|

Sd

Hp

λpHp
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Small horoballs

In particular, this means that B(z,R) can be covered efficiently by projecting horoballs

associated to parabolic points which lie in B(z,R). The condition on R also guarantees

that large horoballs (radius ≥ R) contribute negligibly to this cover.

This gives

µδ(B(z,R)) ≈
∑

p∈P∩B(z,R)
r≤|Hp|<R

µδ (Π (λpHp)) .

Following the Stratmann-Velani argument regarding horoballs, this allows us to show

that for all sufficiently large α > 0, we have∑
p∈P∩B(z,R)
r≤|Hp|<αr

1 ≈ r−δµδ(B(z,R))

and the result follows provided we can choose α = 1/τ , which is possible dependant on

various fixed constants used throughout the proof.
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Intermediate horoballs

The case when considering intermediate-sized horoballs is a bit trickier. First, note that

depending on the choice of z ∈ L(Γ), B(z,R) may not contain any intermediate

horoballs.

z Sdp

≈ R

≈ R2

Therefore, we need to impose a proximity condition on z which ensures it is sufficiently

far away from large horoballs.

Is this enough to ensure that intermediate-sized horoballs will appear?
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Rank

To state the intermediate result, we require the notion of ‘rank’. Given p ∈ P , we write

k(p) to denote the rank of p, i.e. the largest integer n such that there is a subgroup of

Stab(p) isomorphic to Zn.

This will necessarily be generated by k(p) parabolic elements

all fixing p, and so due to discreteness we have 1 ≤ k(p) ≤ d. We write

kmin = min{k(p) | p ∈ P}

kmax = max{k(p) | p ∈ P}.
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Intermediate horoballs

Theorem (Fraser-S’)

For all sufficiently small τ ∈ (0, 1), all sufficiently small R > 0 and all k ∈ N such that

R2 < τk < R and z ∈ L(Γ) for which there exists p0 ∈ P with

τk/2 ≲ |z − p0| ≲
√

R|Hp0 |

we have

#
{
p ∈ P ∩B(z,R) | τk+1 ≤ |Hp| < τk

}
≳τ τ−kδµδ(B(z, τk/2))

(
R

τk/2

)k(p0)

.

In particular, if δ = kmin = kmax, then

#
{
p ∈ P ∩B(z,R) | τk+1 ≤ |Hp| < τk

}
≈τ

(
R

τk

)δ

.
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Intermediate horoballs

Proof sketch for d = 1: Switch to the upper half plane model H2 = {x+ iy | y > 0}.
We may assume without loss of generality that 0 ∈ P which will be fixed by some

parabolic g ∈ Γ.

The idea now is to ‘pull’ horoballs into our target set B(z,R) using the map g.

z z + (2/
√
C)τk/2

R
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Intermediate horoballs

Proof sketch for d = 1: Switch to the upper half plane model H2 = {x+ iy | y > 0}.
We may assume without loss of generality that 0 ∈ P which will be fixed by some

parabolic g ∈ Γ.

The idea now is to ‘pull’ horoballs into our target set B(z,R) using the map g.
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R R
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Intermediate horoballs

The case when d ≥ 2 is trickier, but we can simplify a bit by mapping p0 to ∞ by

applying a circle inversion. In this case, p0 will have k(p0) parabolic maps fixing it which

will take the form

fi(z) = Aiz + ti

where Ai is a finite order rotation matrix.
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Proximity limits

We can also ask the converse question, i.e. how close to a large horoball does z need to

be to stop intermediate horoballs from appearing?

Theorem (Fraser-S’)

Let λ ∈ (1, 2), z ∈ L(Γ), and R > 0. If there exists p0 ∈ P with

|Hp0 |R
λ > R2λ + (|z − p0|+R)2,

then

#
{
p ∈ P ∩B(z,R) | Rλ ≤ |Hp|

}
≤ 1.

In particular, this condition guarantees

Rλ/2 ≥ |z − p0|

which forbids the assumption of the previous theorem with τk = Rλ.
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Proximity limits

z
p0

|z − p0|+R

> |Hp0 |/2−Rλ
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Diophantine approximation applications

Consider the group Γ = PSL(2,Z) acting on the upper half plane H2.

It is an easy exercise to show that L(Γ) = R ∪ {∞}, P = Q ∪ {∞}, and given coprime

p ∈ Z, q ∈ N, we can choose an appropriate ‘top representation’ to ensure that

|Hp/q| = 1/q2.

This can be viewed as a special case of Diophantine approximation on Kleinian groups,

where we ask how well points in L(Γ) can be approximated by points in P . In this

setting, our notion of ‘cost’ is the radius of the horoball of the parabolic point.
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Diophantine approximation applications
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Figure: An illustration of the horoballs in the case where |Hp/q| = 1/q2.
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Diophantine approximation applications

Corollary

For all sufficiently small τ ∈ (0, 1), there exists C ∈ (0, 1) such that for all sufficiently

small R > 0, all z ∈ R, and for all k ∈ N such that τk < CR2, we have∑
q∈N:

τ−k<q2≤τ−k−1

# {p ∈ Z | gcd(p, q) = 1, |p/q − z| ≤ R} ≈ τ−kR.
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Diophantine approximation applications

Corollary

For all sufficiently small τ ∈ (0, 1), all sufficiently small R > 0 and all k ∈ N such that

R2 < τk < R and z ∈ R for which there exist coprime p0 ∈ Z and q0 ∈ N with

τk/2 ≲ |z − p0/q0| ≲ q−1
0

√
R

we have ∑
q∈N:
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Diophantine approximation applications

Corollary

Let λ ∈ (1, 2), z ∈ R, and R > 0. If there exist coprime p0 ∈ Z and q0 ∈ N such that

Rλ

q20
> R2λ + (|z − p0/q0|+R)2,

then

#
{
p ∈ Z, q ∈ N | gcd(p, q) = 1, |p/q − z| ≤ R, Rλ ≤ 1/q2

}
≤ 1.
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Dimension theory applications

One feature of the Patterson-Sullivan measure is that it is an example of a conformal

measure. For s > 0, we say that a Borel probability measure µ is s-conformal for Γ if for

any g ∈ Γ and for any measurable A ⊂ Sd,

µ(g(A)) =

∫
A

|g′|sdµ.

In the case of the Patterson-Sullivan measure, we have s = δ.
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Dimension theory applications

However, Sullivan (’87) was also able to show that, provided Γ contains parabolic

elements, given any s > δ, there exists an s-conformal measure µs supported on L(Γ).

In

this case, µs is a purely atomic measure supported on the parabolic points of L(Γ), i.e.

µs(B(z,R)) =
∑

p∈P∩B(z,R)

µs({p}).

Also, the measure of a point can be related to the radius of its associated horoball, and

as many notions of dimensions of measures involve estimating measures of balls,

calculating the dimensions of µs is related to counting horoballs of certain sizes.
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Thank you for listening!

Figure: An Apollonian gasket viewed as the limit set of a Kleinian group acting on H3.
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