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Post-quantum schemes

Some ideas for post-quantum KEM/signatures:

I Code-based encryption: uses error correcting codes.
Short ciphertexts, large public keys.

I Hash-based signatures: uses hard-to-invert functions.
Well-studied security, small public keys.

I Isogeny-based encryption and signatures: based on
finding maps between (elliptic) curves.
Smallest keys, slow encryption.

I Lattice-based encryption and signatures: based on finding
short vectors in high-dimensional lattices.
Fastest encryption, huge keys.

I Multivariate signatures: based on solving simulateneous
multivariate equations.
Uncertain security, large public keys, slow.
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Zoo of lattice- and isogeny-based KEMs

Kyber

NTRU

SABER

NTRUPrime

SIKE SIKE compressedECC

time

memory

CSIDH

FrodoKEM, RSA
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Zoo of lattice- and isogeny-based signatures

CSI-FiSh?

SQISign

Falcon

Dilithium

ECC

time

memory

3 / 29



Applications (non-exhaustive list)

Lattices Isogenies
KEM X X

Signatures X X
NIKE (×) X
FHE X ×
IBE X ×

Threshold X X
OPRF X X
VDF (×) (X)
VRF (X) (X)
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Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

We’re going to do maths.
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The beauty and the beast

Components of the isogeny graphs look like this:

S = {3, 5, 7}, q = 419 S = {2, 3}, q = 4312
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The beauty and the beast

For key exchange/KEM, there are two families of systems:

q = p

CSIDH ["si:saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org
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Isogeny graphs at the CSIDH
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

I Idea to replace DLP: replace exponentiation

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H that acts via

isogenies.
I The action of h ∈ H on S moves the elliptic curves one step

around one of the cycles.
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Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Diffie and Hellman go to the CSIDH

Alice Bob
[+,−,+,−] [+,+,−,+]
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.

I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

I Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.
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Representing nodes of the graph

I Every node of G`i is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!
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Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.
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Quantum Security
Original proposal in 2018 paper: Fp ≈ 512 bits.

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).

I [BLMP19] computes one query (i.e. CSIDH-512 group
action) using 765325228976 ≈ 0.7 · 240 nonlinear bit
operations.

I Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 216 queries using 240 bits of quantum
accessible classical memory.

I For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 256 qubit operations.

I Overheads from error correction, high quantum memory
etc., not yet understood.
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Venturing beyond the CSIDH

A selection of advances since original publication (2018):
I CSURF [CD19]: exploiting 2-isogenies.
I sqrtVelu [BDLS20]: square-root speed-up on computation

of large-degree isogenies.
I Radical isogenies [CDV20]: significant speed-up on

isogenies of small-ish degree.
I Some work on different curve forms (e.g. Edwards, Huff).
I Knowledge of End(E0) and End(EA) breaks CSIDH in

classical polynomial time [Wes21].
I The SQALE of CSIDH [CCJR22]: carefully constructed

CSIDH parameters less susceptible to Kuperberg’s
algorithm.

I CTIDH [B2C2LMS2]: Efficient constant-time CSIDH-style
construction.
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Now:

SIDH
Supersingular Isogeny Diffie–Hellman
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Diffie-Hellman: High-level view

g ga

gb ga∗b

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.
I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.
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SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!
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SIDH in one slide
Public parameters:

I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (PA,QA) and (PB,QB) of E[2n] and E[3m]

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈PA + [a]QA〉
compute ϕA : E→ E/A

B := 〈PB + [b]QB〉
compute ϕB : E→ E/B

E/A, ϕA(PB), ϕA(QB) E/B, ϕB(PA), ϕB(QA)

A′ := 〈ϕB(PA) + [a]ϕB(QA)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(PB) + [b]ϕA(QB)〉
s := j

(
(E/A)/B′

)
Break it by: given public info, find secret key–ϕA or just A.
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Security

Hard Problem:
Given

I supersingular public elliptic curves E0/Fp2 and EA/Fp2

connected by a secret 2n-degree isogeny ϕA : E0 → EA,
and

I the action of ϕA on the 3m-torsion of E0,
find the secret key recover ϕA.

I Knowledge of End(E0) and End(EA) is sufficient to
efficiently break it.

I Active attacker can recover secret.
I In SIDH, End(E0) is fixed and 3m ≈ 2n ≈ √p.
I If 3m > 2n or 3m, 2n >

√p, security claims are weakened.
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Security of SIKE

I Best known attacks on SIKE, where E0/Fp : y2 = x3 + x and
2n ≈ 3m are on the Isogeny Problem:

I The isogeny problem: given two elliptic curves, find an
isogeny between them.

I Best classical attack: meet-in-the-middle O(p1/4).
I Best quantum attack: meet-in-the-middle + Grover

O(p1/4), but slightly better in practise.
I No commutative group action to exploit here∗
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What about signatures?
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CSI-FiSh (S ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren ‘19)
Identification scheme from H × S→ S:

Prover Public Verifier
E ∈ S, li ∈ H

si ← $Z
sk =

∏
li

si ,

pk = sk ∗ E
pk // pk

c← $ {0, 1}c
ppti ← $Z

esk =
∏

li
ti ,

epk1 = esk ∗ E,

epk2 = esk · sk−c pk,epk1,epk2

.. check:

epk1 = epk2 ∗ ([skc] ∗ E).
After k challenges c, an imposter succeeds with prob 2−k.
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SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find a ∈ H such that

a ∗ E = E′.

SQISign is a newer signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof
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Summary and overview

I SIKE ‘11 KEM. Best-studied, in NIST, fast-ish, small,
torsion-point attacks most likely attack avenue.

I CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), slow, known quantum attack needs further
study, other attack avenues non-obvious.

I CSI-FiSh ‘19 Digital signature. Small-ish, flexible, slow,
known quantum attack reduces security below NIST Level
I, hard to scale up.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.
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Thank you!
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