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The microscopic model

• For N ≥ 1, consider a microscopic model of the wave dynamics

∂2
t u+ |Dx|2αu+N−θΠNV

′(u) = 0, (t, x) ∈ R× T2
N , α ≤ 1,

where θ > 0 , |Dx|2α = (−∆)α and

T2
N ≡ (R/2πN)2, V (u) =

m∑
j=0

aju
2j, m ≥ 2, am > 0.

• ΠN is a Dirichlet projector defined as

ΠN

( ∑
k∈Z2

f̂(k/N) ei
k·x
N

)
=

∑
|k|≤N

f̂(k/N) ei
k·x
N .

• We will consider smooth Gaussian initial data of amplitude ∼ 1,
spatially localized in a box of size ∼ N2 and frequency localized in
a box of size ∼ 1/N2 (behaving essentially as f(x/N), where f is a
Schwartz function on R2).

• The question we study : Understand how the weak nonlinear
interaction N−θΠNV

′(u) modifies the free evolution for N � 1.
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The initial data

• Consider the equation

∂2
t u+ |Dx|2αu+N−θΠNV

′(u) = 0, (t, x) ∈ R× T2
N

with gaussian initial data

u(0, x) = φN(x) , (∂tu)(0, x) = ψN(x),

where

φN(x) =
1

(2π)2
Nα−1 ∑

|k|≤N

gk(ω)

〈k〉α
ei
k·x
N ,

with 〈k〉α := (1 + |k|2α)
1
2 and

ψN(x) =
1

(2π)2
N−1 ∑

|k|≤N
hk(ω) ei

k·x
N .

• Here gk and hk are standard complex Gaussians such that gk = g−k,
hk = h−k and otherwise independent.
• The initial position φN(x) and the initial speed ψN(x) are gaussians
with variances ∼ 1, independent of x.

2



Assumptions on the potential

• Note that φN has a stationary Gaussian distribution. More precisely

φN(x) ∼ N (0, σ2
N) , ∀x ∈ T2

N ,

where for α < 1

σ2
N =

1

4π2N2(1−α)

∑
|k|≤N

1

〈k〉2α
=

1

4π2

∫
|ξ|<1

1

|ξ|2α
dξ︸ ︷︷ ︸

σ2

+O(N−2(1−α)) .

• Let µ = N (0, σ2), and

〈V 〉(z) :=
∫
R
V (z + y)µ(dy)

be the average of V under µ. Our main assumption on the polynomial

V is the criticality and the positivity of its averaged version 〈V 〉.
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Assumptions on the potential (sequel)

More precisely, we suppose that V is an even polynomial, given by

V (z) =
2m∑
j=0

ajz
2j , m ≥ 2

and we assume that the averaged polynomial

〈V 〉(z) :=
∫
R
V (z + y)µ(dy) =

m∑
j=0

ajz
2j

satisfies

1. 〈V 〉′′(0) = 0.

2. 〈V 〉(z)− 〈V 〉(0) > 0 for all z 6= 0.

With these hypothesis, later when we rescale to the unit torus, we
obtain directly the renormalized version of the equation.
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Assumptions on the potential (sequel)

• We have that

〈V 〉(z) =
m∑
j=0

ajz
2j

where

aj =
1

(2j)!
E
[
V (2j)

(
N (0, σ2)

)]
,

and we can compute

aj =
1

(2j)!

m∑
k=j

(2k)!

(2k − 2j)!!
· ak · σ2(k−j) .

• Then the the first assumption is a1 = 0 and the second one is

m∑
j=2

aj z
2(j−2) > 0, ∀ z ∈ R.

• If we fix a2 > 0, ... ,am > 0, we can find a1 < 0 such that our
assumptions on V are satisfied. For example:

V (z) = z6 − 45σ2z2.
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The macroscopic model

• Define the rescaled process uN on R× T2 by

uN(t, x) := N1−αu(Nαt,Nx) .

• The spatial domain of uN becomes the standard torus T2 and the

equation for uN then becomes

∂2
t uN + |Dx|2αuN +N1+α−θΠNV

′(Nα−1uN) = 0

with initial datum

uN(0, x) = N1−αφN(Nx) =
1

(2π)2

∑
|k|≤N

gk(ω)

〈k〉α
eik·x

and

∂tuN(0, x) = NψN(Nx) =
1

(2π)2

∑
|k|≤N

hk(ω) eik·x.
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The macroscopic model

• In order for the cubic power in the macroscopic dynamics

∂2
t uN + |Dx|2αuN +N1+α−θΠNV

′(Nα−1uN) = 0

to have O(1) coefficient, one necessarily needs to set α and θ such

that

1 + α− θ = 3(1− α) ⇐⇒ θ = 4α− 2 .

• Therefore we expect that under such a scaling at macroscopic level

the dynamics is governed by a ”cubic equation” (even of there is no

cubic term in the polynomial V ′ !).

• The criticality condition on the averaged potential assures that the

linear term has a limit.
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Solving the cubic equation

• Consider

∂2
t uN + |Dx|2αuN + ΠN(uN)3 = 0,

posed on T2 with gaussian initial data

(uN(0, x), ∂tuN(0, x)) =
1

(2π)2

∑
|k|≤N

(
gk(ω)

〈k〉α
eik·x , hk(ω) eik·x

)
. (1)

Theorem 1

There is a divergent sequence (cN)N≥1 such that the solutions of

∂2
t uN + |Dx|2αuN + ΠN

(
(uN)3 − cNuN

)
= 0

with initial data (1) converge almost surely in the sense of distribution

on R× T2, as N →∞.
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The full model

• We now consider the full macroscopic problem

∂2
t u+ |Dx|2αu+N3(1−α)ΠNV

′(Nα−1u) = 0.

• We have that

N3(1−α)ΠNV
′(Nα−1u) = ΠN

(
N4(1−α)V (Nα−1u)

)′
= ΠN(V ′N(u)),

where

VN(u) := N4(1−α)V (Nα−1u).

Therefore, we have

V ′N(u) =
m∑
j=1

(2j)aj,NN
−(2j−4)(1−α)H2j−1(uN ; σ̃2

N),

where aj,N → aj and H`(x;σ) denotes the Hermite polynomial of de-
gree ` and

σ̃2
N :=

1

4π2

∑
k∈Z2,|k|≤N

1

〈k〉2α
∼ N2(1−α) if 0 < α < 1 .

Moreover, the limit of N2(1−α)a1,N exists.
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Main result

Theorem 2 (Weak Universality for the cubic wave dynamics)

Let 1 > α > 8
9 and σ < α−1 and suppose that V satisfies our assump-

tions. Let uN be the solution of

∂2
t uN + |Dx|2αuN + ΠNV

′
N(uN) = 0,

with initial data

(uN(0, x), ∂tuN(0, x)) =
1

(2π)2

∑
|k|≤N

(gk(ω)

〈k〉α
eik·x , hk(ω) eik·x

)
. (2)

There is λ > 0 (λ = 4a2) and a divergent sequence (cN)N≥1 such that

the solutions of

∂2
t vN + |Dx|2αvN + ΠN(λ(vN)3 − cNvN) = 0

with initial data (2) converge almost surely in the sense of distribution

on R× T2, as N →∞ and satisfy

lim
N→∞

‖uN − vN‖C([−T,T ],Hσ(T2)) = 0, ∀T > 0.
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Comments

• This type of weak universality was first studied by Hairer-Quastel in

deriving the KPZ equation from a large class of microscopic growth

models. It has later been extended in various directions in the setting

of parabolic singular stochastic PDEs (Hairer-Xu, Furlan-Gubinelli...).

• A key feature in this type of this problem is that every term in the

expansion of the nonlinearity has the same size and hence the constant

λ of this limiting equation depends on the whole nonlinearity rather

than the naive guess of the corresponding power only. Few results

for dispersive models fitting in this situation.
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• For V of high degree, the data is of supercritical regularity, even

with respect to the threshold of probabilistic well-posedness proposed

by Deng-Nahmod-Yue.

• Our techniques can be used to extend the weak universality result

of Gubunelli-Koch-Oh for the 2D stochastic nonlinear wave equation

to the stochastic nonlinear fractional wave equation with space-time

white noise, formally written as

∂2
t u+ |Dx|2αu+ ∂tu+ λu�3 = ξ, (t, x) ∈ R+ × T2

when 1 > α > 8
9. Gubunelli-Koch-Oh treat the case α = 1.

• The weak universality result of Gubunelli-Koch-Oh is a consequence

of the almost sure global well-posedness for the two-dimensional non-

linear wave equation (α = 1) with any order nonlinearity, while for the

fractional wave equation with α < 1, the situation is radically different.
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The Gibbs measure

• Let µ be the gaussian measure induced by the map

ω 7−→
1

(2π)2

∑
k∈Z2

gk(ω)

〈k〉α
eik·x .

• Let νN be the probability measure given by

νN(dφ) =
1

ZN
e
−
∫
T2

(
VN(ΠNφ)−1/2((ΠNφ)2−σ̃2

N)
)

dx
µ(dφ) .

The measure νN is well defined as long as am > 0.

• If λ := 4a2 > 0, then for any c ∈ R the measure

ν(c)(dφ) =
1

Z
e−λ

∫
T2 φ

�4dx+c
∫
T2 φ

�2dxµ(dφ)

is also well-defined, where φ�k denotes the k-th Wick power of φ with

respect to the Gaussian structure induced by µ.
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The Gibbs measure (sequel)

Theorem 3

Let α ∈ (3
4,1). Suppose that V satisfies our assumptions. Then

sup
N
| logZN | < +∞

and there exists c ∈ R such that νN converges to ν(c) in total variation.

In particular, νN(A) converges to ν(c)(A) for every Borel set A.

• The restriction α > 3
4 is natural in the sense that in this range,

one can define the φ4 measure by an absolutely continuous density

with respect to the Gaussian measure µ. The fourth Wick power φ�4

fails to exist under µ when α = 3
4, in which case one expects to end

up with a measure (after further renormalizations) that is mutually

singular with respect to µ.
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On the optimality of our assumptions

Proposition 4

If there exists θ ∈ R such that

m∑
j=1

ajθ
2(j−2) < 0

then there exists c > 0 such that logZN > cN4(1−α) for all N . Conse-
quently, the Radon-Nikodym density dνN

dµN
cannot converge in L1 with

respect to µ.

• The proof for both positive and negative results for the measure
convergence uses Barashkov-Gubinelli’s approach based on the Boué-
Depuis variational formula.

• When am > 0, it is very likely that the sequence of measures

νN(dφ) =
1

ZN
e−
∫
T2 VN(ΠNφ)−1/2(ΠNφ)2−σ̃N2

µ(dφ)

do not converge.
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Mains ingredients for the convergence of the dynamics

• Compare to the parabolic equations, the wave group does not have
nice mapping properties on L∞ type spaces. Hence, the heuristic rea-
soning that negative powers of N balance out high powers of singular
objects needs more involved justification.

• Globalisation argument: In the parabolic setting, the global-in-time
convergence follows from the global well-posedness of the limiting
equation and stability. However in the current dispersive setting, even
though the limiting equation is globally wellposed, the stability prop-
erties are not good enough here, and we need to make an essential
use of invariant measure to get global convergence.

• Our argument contains two main ingredients :

1. Bourgain-Bulut type argument: A priori bounds resulting from
the invariance of the Gibbs measures associated both to the cubic
equation and to the full model.

2. Dispersive effects giving L2
t L
∞
x local bounds.
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Basic ideas behind the proof

• We have for any δ > 0,

‖ΠNφ‖L∞x ≤ CδN
1−α+δ

in a set of residual probability . e−cN
2
. Thanks to the invariant

measure considerations, we can propagate this information to the full

solution uN .

• This information is not enough to treat terms like

u3
N

(
N−(1−α)uN

)2k+1
= N−(1−α)u4

N

(
N−(1−α)uN

)2k
.

We need to combine a L2
t L
∞
x type control coming from Strichartz

estimates. This leads to the local convergence.

• The global in time convergence crucially relies on the a priori bounds

on the global cubic dynamics. These bounds are again relying on

invariant measure considerations but this time for the limit dynamics.
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Perspectives and open problems

• Other dispersive models: NLS, Φ4
3 NLW, quasi-linear equations,...

• More general initial data?
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Thank you !
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