Fluids, diffeomorphisms, geodesics, and generalized flows

Boris Khesin

(University of Toronto)

joint with Anton Izosimov (Univ. of Arizona / Univ. of Glasgow)

"Geometry and Integrability" ICMS, Edinburgh, May 12 – 16, 2025

The best paper title ever?

æ

The best paper title ever?

Arnold Mathematical Journal (2018) 4:169–177 https://doi.org/10.1007/s40598-018-0087-0

RESEARCH CONTRIBUTION

Conway River and Arnold Sail

K. Spalding¹ · A. P. Veselov^{1,2}

臣

<ロ> <四> <四> <日> <日</p>

The best paper title ever?

Arnold Mathematical Journal (2018) 4:169–177 https://doi.org/10.1007/s40598-018-0087-0

RESEARCH CONTRIBUTION

Conway River and Arnold Sail

K. Spalding¹ · A. P. Veselov^{1,2}

Abstract

We establish a simple relation between two geometric constructions in number theory: the Conway river of a real indefinite binary quadratic form and the Arnold sail of the corresponding pair of lines.

臣

Constructing bridges and tunnels...

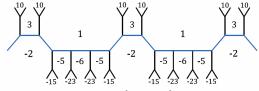
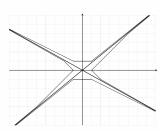


Fig. 3 Conway river for the quadratic form $Q = x^2 - 2xy - 5y^2$

Boris Khesin

Fig. 2 Arnold and the sails for a pair of lines



Arnold's setting for the Euler equation

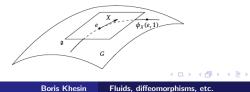
M — a Riemannian manifold with volume form μ ν — velocity field of an inviscid incompressible fluid filling MThe classical *Euler equation* (1757) on ν :

 $\partial_t \mathbf{v} + \nabla_{\mathbf{v}} \mathbf{v} = -\nabla \mathbf{p}.$

Here div v = 0 and v is tangent to ∂M . $\nabla_v v$ is the Riemannian covariant derivative.

Theorem (Arnold 1966)

The Euler equation is the geodesic flow on the group $G = \text{Diff}_{\mu}(M)$ of volume-preserving diffeomorphisms w.r.t. the right-invariant L^2 -metric $E(v) = \frac{1}{2} \int_{M} (v, v) \mu$ (fluid's kinetic energy).



Application: Other groups and energies

Group	Metric	Equation
<i>SO</i> (3)	$\langle \omega, A\omega \rangle$	Euler top
$E(3) = SO(3) \ltimes \mathbb{R}^3$	quadratic forms	Kirchhoff equation for a body in a fluid
SO(n)	Manakov's metrics	<i>n</i> -dimensional top
$\operatorname{Diff}(S^1)$	L^2	Hopf (or, inviscid Burgers) equation
$\operatorname{Diff}(S^1)$	$\dot{H}^{1/2}$	Constantin-Lax-Majda-type equation
Virasoro	L^2	KdV equation
Virasoro	H^1	Camassa–Holm equation
Virasoro	\dot{H}^1	Hunter–Saxton (or Dym) equation
$\operatorname{Diff}_{\mu}(M)$	L^2	Euler ideal fluid
$\operatorname{Diff}_{\mu}(M)$	H^1	averaged Euler flow
$\operatorname{Symp}_{\mathcal{O}}(M)$	L^2	symplectic fluid
Diff(M)	L^2	EPDiff equation
$\operatorname{Diff}_{\mu}(M)\ltimes\operatorname{Vect}_{\mu}(M)$	$L^2 \oplus L^2$	magnetohydrodynamics
$C^{\infty}(S^1, SO(3))$	H^{-1}	Heisenberg magnetic chain

Remark These are Hamiltonian systems on \mathfrak{g}^* with the quadratic Hamiltonian=kinetic energy for the Lie-Poisson bracket.

There are suitable functional-analytic settings of Sobolev (H^s for s > 1 + n/2) and tame Fréchet (C^{∞}) spaces.

5

э

Exterior geometry of $\operatorname{Diff}_{\mu}(M) \subset \operatorname{Diff}(M)$

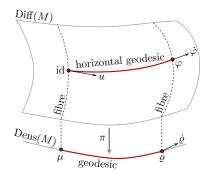
Dens(M) — the space of smooth density functions ("probability densities") on M:

$$\mathrm{Dens}(M) = \{ \rho \in C^{\infty}(M) \mid \rho > 0, \int_{M} \rho \mu = 1 \}$$

Note:

Dens(M) = Diff(M)/Diff_{μ}(M), the space of (left) cosets of Diff_{μ}(M), with the projection π : Diff(M) \rightarrow Dens(M).

For a density $\varrho := \rho \mu$ the fiber is $\pi^{-1}(\varrho) = \{ \varphi \in \operatorname{Diff}(M) \mid \varphi_* \mu = \varrho \}.$



Remark Compare "the dimensions" of the fiber and the base:

Define an L^2 -metric on Diff(M) by

$$\mathcal{G}_{\varphi}(\dot{arphi},\dot{arphi}) = \int_{M} |\dot{arphi}|^2_{arphi} \mu.$$

For a flat M this is a flat metric on Diff(M).

It is right-invariant for the $\text{Diff}_{\mu}(M)$ -action (but not Diff(M)-action): $G_{\varphi}(\dot{\varphi}, \dot{\varphi}) = G_{\varphi \circ \eta}(\dot{\varphi} \circ \eta, \dot{\varphi} \circ \eta)$ for $\eta \in \text{Diff}_{\mu}(M)$.

The Euler geodesic property for a flat M

Let a flow $(t,x) \mapsto g(t,x)$ be defined by its velocity field v(t,x):

$$\partial_t g(t,x) = v(t,g(t,x)), \ g(0,x) = x.$$

The chain rule immediately gives the acceleration

$$\partial_{tt}^2 g(t,x) = (\partial_t v + \nabla_v v)(t,g(t,x)).$$

Geodesics on Diff(M) are straight lines, $\partial_{tt}^2 g(t, x) = 0$, which is equivalent to the *Burgers equation*

$$\partial_t v + \nabla_v v = 0.$$

The Euler equation $\partial_t v + \nabla_v v = -\nabla p$ is equivalent to

$$\partial_{tt}^2 g(t,x) = -(\nabla p)(t,g(t,x)),$$

which means that the acceleration $\partial_{tt}^2 g \perp_{L^2} \text{Diff}_{\mu}(M)$.

Hence the flow g(t, .) is a geodesic on the submanifold $\operatorname{Diff}_{\mu}(M) \subset \operatorname{Diff}(M)$ for the L^2 -metric.

크

Geometry of Diff(M) (cont'd)

Theorem (Otto 2000)

The left coset projection π is a Riemannian submersion with respect to the L^2 -metric on Diff(M) and the Kantorovich-Wasserstein metric on Dens(M).

Definition of the Kantorovich-Wasserstein L²-metric

The *KW distance* between $\mu, \nu \in \text{Dens}(M)$:

Wass²(
$$\mu, \nu$$
) := inf{ $\int_{\mathcal{M}} \operatorname{dist}^{2}_{\mathcal{M}}(x, \varphi(x)) \mu \mid \varphi_{*}\mu = \nu$ }.

The corresponding *Riemannian metric* on Dens(M):

$$ar{G}_{
ho}(\dot{
ho},\dot{
ho}) = \int_{M} |
abla heta|^2
ho \mu, \quad ext{for } \dot{
ho} + ext{div}(
ho
abla heta) = 0,$$

where $\dot{\rho} \in C_0^{\infty}(M)$ is a tangent vector to Dens(M) at the point $\rho\mu$.

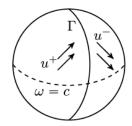
크

Flows with vortex sheets have jump discontinuities in the velocity (the velocity tangential component jumps, while the normal component is continuous)

The Euler equations for a fluid flow discontinuous along a vortex sheet $\Gamma \subset M$ are

$$\begin{cases} \partial_t u^+ + \nabla_{u^+} u^+ = -\nabla p^+, \\ \partial_t u^- + \nabla_{u^-} u^- = -\nabla p^-, \\ \partial_t \Gamma = u_{normal} \end{cases}$$

where $u = \chi_{\Gamma}^{+} u^{+} + \chi_{\Gamma}^{-} u^{-}$ is the fluid velocity, div $u^{\pm} = 0$, u_{normal} is the normal to Γ component of u, while the pressure psatisfies $p^{+}|_{\Gamma} = p^{-}|_{\Gamma}$.



Vortex sheets as geodesics

Consider the space VS(M) of vortex sheets (of a given topological type) in M, i.e. the space of hypersurfaces which bound fixed volume in M. Define the following (weak) metric on VS(M). A tangent vector to a point $\Gamma \in VS(M)$ can be regarded as a vector field v attached at the vortex sheet $\Gamma \subset M$ and normal to it. Then its square length is set to be

 $\langle\!\langle v, v
angle\!
angle_{\mathrm{vs}} := \inf \left\{ \langle u, u
angle_{L^2(M)} \mid \operatorname{div} u = 0 \text{ and } (u, \nu) \nu = v \text{ on } \Gamma \right\}$

where $\langle u, u \rangle_{L^2} := \int_M (u, u) \mu$ is the squared L^2 -norm of a vector field u on M, and ν is the unit normal field to Γ .

Theorem (Loeschcke-Otto 2012)

Geodesics with respect to the metric $\langle\!\langle \ , \ \rangle\!\rangle_{vs}$ on the space VS(M) describe the motion of vortex sheets in an incompressible flow which is globally potential outside of the vortex sheet (i.e. $u^{\pm} = \nabla f^{\pm}$).

Question: How to unify Arnold's and Loeschcke-Otto's geodesic approaches? Note: The metric $\langle\!\langle \ , \ \rangle\!\rangle_{vs}$ makes VS(M) into an interesting shape space!

Heuristics for the space of vortex sheets

Loot at the same submersion picture with the following replacements: the projection

 $\operatorname{Diff}(M) \to \operatorname{Dens}(M)$, change to

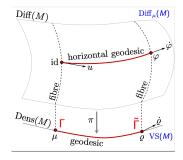
 $\operatorname{Diff}_{\mu}(M) \to \operatorname{VS}(M),$

the fiber $\operatorname{Diff}_{\mu}(M)$ change to $\operatorname{Diff}_{\mu,\Gamma}(M) = \{\varphi \in \operatorname{Diff}_{\mu}(M) \mid \varphi(\Gamma) = \Gamma\}.$

"Theorem": The projection π : Diff_µ(M) \rightarrow VS(M) is a Riemannian submersion of the L^2 -metric on Diff(M) to the metric $\langle\!\langle , \rangle\!\rangle_{vs}$ on VS(M).

"**Proof**": This is the definition of $\langle \langle , \rangle \rangle_{vs}$. "**Corollary**": Arnold implies Loeschcke-Otto, as horizontal(=potential) geodesics project to geodesics on the base VS(*M*).

Problem: Fibers are L^2 -dense in $\text{Diff}_{\mu}(M)$.



Instead...

・ロト ・回ト ・ヨト ・ヨト 三日

Instead...

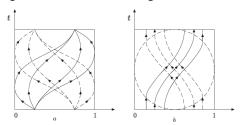
From fluids to multiphase fluids...

From fluids to multiphase fluids...

From groups to groupoids...

Multiphase flows and generalized flows

A multiphase fluid consists of several (or continuum of) fractions that can freely penetrate through each other without resistance, but are constrained by the conservation of the total volume form. **Example:** homogenized vortex sheets or generalized flows by Y.Brenier.



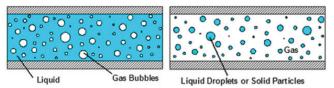
Trajectories of particles in one-dimensional generalized flows for (a) continuum of phases for the flip of the interval [0, 1] and (b) a two-phase flow for the interval-exchange map $[0, 1/2] \leftrightarrow [1/2, 1]$. While a shortest curve on $\text{Diff}_{\mu}(M)$ does not always exist (A.Shnirelman), it does in the class of generalized flows (Y.Brenier).

The Euler equation for multiphase flows

Multiphase flows on a mfd M are governed by the following equations:

$$\begin{cases} \partial_t u_j + \nabla_{u_j} u_j = -\nabla p \,, \\ \partial_t \mu_j + \operatorname{div}(\mu_j u_j) = 0 \,. \end{cases}$$

Here $\mu_1, \ldots, \mu_n \in C^{\infty}(M)$ are mass densities of *n* phases of the fluid subject to the condition $\sum_{j=1}^{n} \mu_j = \operatorname{vol}_M$, the vector fields $u_1, \ldots, u_n \in \operatorname{vect}(M)$ are the corresponding fluid velocities, and the pressure $p \in C^{\infty}(M)$ is common for all phases.



Dispersed two-phase flows: gas bubbles (or liquid droplets) dispersed in a liquid or solid particles or droplets dispersed in gas.

Lie groupoids for multiphase fluids

What is the group-type structure behind such fluids? This is the "multiphase groupoid" $G \rightrightarrows B$, a pair of sets with two maps to base B, called the source and target maps, and a partial operation $(g, h) \mapsto gh$ on G defined for all pairs $g, h \in G$ such that src(g) = trg(h), satisfying certain properties. For multiphase fluids base B = MDens(M) is

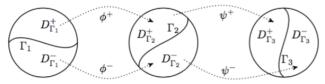
$$\operatorname{MDens}(M) = \{ \overline{\mu} := (\mu_1, ..., \mu_n) \mid \mu_i \in \operatorname{Dens}(M), \ \mu_j > 0, \ \sum_j \mu_j = \operatorname{vol}_M \},$$

with $\int_{M} \mu_j = c_j$ for some fixed constants $c_j \in \mathbb{R}$. The Lie groupoid G = MDiff(M) consists of *n*-tuples of diffeomorphisms of M preserving the incompressibility property of multiphase densities, i.e. the set of tuples $(\bar{\phi}; \bar{\mu}, \bar{\mu}') := (\phi_1, ..., \phi_n; \mu_1, ..., \mu_n, \mu'_1, ..., \mu'_n)$ where $\bar{\phi}_* \bar{\mu} = \bar{\mu}'$ component-wisely.

The composition is given by composition of diffeomorphisms:

$$(ar{\psi}\,;ar{\mu}',ar{\mu}'')(ar{\phi}\,;ar{\mu},ar{\mu}'):=(ar{\psi}ar{\phi}\,;ar{\mu},ar{\mu}'')$$
 .

Classical vortex sheets are a particular case of multiphase fluids where the densities are indicator functions of the connected components separated by a hypersurface in M. Then the multiphase Lie groupoid becomes the groupoid of volume-preserving diffeomorphisms of M discontinuous along a hypersurface. Its elements are quadruples $(\Gamma_1, \Gamma_2, \phi^+, \phi^-)$, where Γ_1, Γ_2 are hypersurfaces (vortex sheets) in M confining the same total volume, while $\phi^{\pm}: D_{\Gamma_1}^{\pm} \rightarrow D_{\Gamma_2}^{\pm}$ are volume preserving diffeomorphisms between connected components of $M \setminus \Gamma_i$. The multiplication of the quadruples is given by the natural composition of discontinuous diffeomorphisms:



What is the space of infinitesimal objects?

The corresponding Lie algebroid $\operatorname{Mvect}(M)$ is the space of possible velocities of the multiphase fluid. It is a vector bundle over $\operatorname{MDens}(M)$ where the fiber of $\operatorname{Mvect}(M)$ over a multiphase density $\overline{\mu} \in \operatorname{MDens}(M)$ is the space of *multiphase vector fields* on M "divergence-free" with respect to the multiphase volume form $\overline{\mu}$, i.e. vector fields of the form $\overline{u} := (u_1, ..., u_n)$, where $u_i \in \operatorname{Vect}(M)$ are such that $\sum_i \mathcal{L}_{u_i} \mu_j = 0$.

Example

a) The case n = 1 gives an incompressible fluid in M. b) The case of indicator densities μ^{\pm} on D_{Γ}^{\pm} corresponds to classical vortex sheets. Note that the velocity fields on D_{Γ}^{\pm} have the same normal component on Γ ("impermeability" of Γ).

The multiphase Euler equation as a geodesic flow

Theorem (A.Izosimov-B.K.)

The Euler equations

$$\begin{cases} \partial_t u_j + \nabla_{u_j} u_j = -\nabla p \,, \\ \partial_t \mu_j + \operatorname{div}(\mu_j u_j) = 0 \,. \end{cases}$$

for a multiphase fluid flow are groupoid Euler-Arnold equations corresponding to the L^2 -metric on the algebroid MVect(M). Equivalently, these Euler equations are a geodesic equation for the right-invariant L^2 -metric on (source fibers of) the Lie groupoid MDiff(M) of multiphase volume-preserving diffeomorphisms.

For the case of a flat space M the geodesic nature of homogenized vortex sheets was established by C.Loeschcke (2012).

The standard Euler hydrodynamical is a particular case of the above equations with only one phase, n = 1.

19

• • • • • • • • • • • •

Hamiltonian framework and continuum of phases

Furthermore, these equations allow a Hamiltonian framework, an analogue of the Hamiltonian property of the Euler-Arnold equation on the dual to a Lie algebra with respect to the Lie-Poisson structure:

Theorem

The Euler equations for a multiphase flow written on the dual $MVect(M)^*$ of the algebroid are Hamiltonian with respect to the natural Poisson structure on the dual algebroid and the Hamiltonian function given by the L^2 kinetic energy.

The above extends *mutatis mutandis* to a "continuous" index *i*, i.e. to multiphase flows where phases (fractions of the fluid) are enumerated by a continuous parameter $a \in A$ in a measure space A. This provides the geodesic and Hamiltonian frameworks for generalized flows of Y.Brenier. Generalized flows satisfy equations

$$\begin{cases} \partial_t(\mu_a u_a) + \operatorname{div} (\mu_a u_a \otimes u_a) + \mu_a \nabla p = 0, \\ \partial_t \mu_a + \operatorname{div} (\mu_a u_a) = 0, \end{cases}$$

on the fraction velocities $u_a \in \operatorname{Vect}(M)$, along with the constraint $\int_A \mu_a \, da = 1$ on the fraction densities $\mu_a \in C^{\infty}(M)$. The pressure function $p \in C^{\infty}(M)$ is common for all fractions.

Remark. An equivalent form is $\partial_t u_a + \nabla_{u_a} u_a = -\nabla p$, while condition $\operatorname{div}(\int_A \mu_a u_a da) = 0$ is an analog of $\operatorname{div} u = 0$ for the classical Euler equation.

21

臣

イロン 不同 とうほう 不同 とう

Multiphase Hodge decomposition

Given a multiphase density $\bar{\mu} = (\mu_1, ..., \mu_n)$ we introduce the (weighted) L^2 inner product: on a Riemannian M:

$$\langle \bar{u}, \bar{u} \rangle_{\bar{\mu}} := \int_M \sum_i (u_i, u_i) \mu_i \,.$$

Recall that the multifield $\bar{u} = (u_1, ..., u_n)$ is $\bar{\mu}$ -div-free if $L_{\bar{u}}\bar{\mu} = 0$.

Theorem

There is a generalized Hodge decomposition: given a multi-density $\bar{\mu}$, any multiphase vector field \bar{v} admits a unique L²-orthogonal decomposition $\bar{v} = \bar{u} \oplus_{L^2} \bar{\nabla} f$ where $f \in C^{\infty}(M)$ and \bar{u} is $\bar{\mu}$ -div-free.

Proof. Find *f* as a solution of the Poisson equation $\Delta_{\bar{\mu}} f = \operatorname{div}_{\bar{\mu}} \bar{\nu}$ (i.e. $\sum_{i} \operatorname{div}_{\mu_{i}} \nabla f = \sum_{i} \operatorname{div}_{\mu_{i}} v_{i}$). Then $\bar{u} := \bar{\nu} - \bar{\nabla} f$ is $\bar{\mu}$ -div-free and $\bar{\nabla} f \perp_{L^{2}} \bar{u}$, since $\langle \bar{\nabla} f, \bar{u} \rangle_{\bar{\mu}} = \int_{M} \sum_{i} (\nabla f, u_{i}) \mu_{i} = \int_{M} \sum_{i} f(\operatorname{div}_{\mu_{i}} u_{i}) \mu_{i} = \int_{M} f L_{\bar{u}} \bar{\mu} = 0.$

- -) 4

Computation of geodesics

Adapt the above computation above to multiphase fluids. Let a multi-flow $(t, x_i) \mapsto g_i(t, x_i)$ be defined by its velocity field $v_i(t, x_i)$:

$$\partial_t g_i(t,x_i) = v_i(t,g_i(t,x_i)), \ g_i(0,x_i) = x_i.$$

The same chain rule gives the acceleration

 $\partial_{tt}^2 \bar{g}(t,\bar{x}) = (\partial_t \bar{v} + \nabla_{\bar{v}} \bar{v})(t,\bar{g}(t,\bar{x})).$

Again, the geodesics on $\text{Diff}^{\times n}(M)$ are straight lines, and $\partial_{tt}^2 \bar{g}(t, \bar{x}) = 0$ is equivalent to the multi-Burgers equation $\partial_t \bar{v} + \nabla_{\bar{v}} \bar{v} = 0$.

Now the multi-phase Euler equation $\partial_t \bar{v} + \nabla_{\bar{v}} \bar{v} = -\bar{\nabla} p$ is equivalent to

$$\partial_{tt}^2 \bar{g}(t,\bar{x}) = -(\bar{\nabla}p)(t,\bar{g}(t,\bar{x})),$$

or the orthogonality of the acceleration $\partial_{tt}^2 \bar{g} \perp_{L^2} \operatorname{MDiff}_{\bar{\mu}}(M)$ in the multiphase Hodge decomposition. Hence the flow $\bar{g}(t,.)$ is a geodesic on the submanifold $\operatorname{MDiff}_{\mu}(M) \subset \operatorname{Diff}^{\times n}(M)$.

Vorticity metric on vortex sheets

Recall the metric on VS(M). A tangent vector to a point $\Gamma \in VS(M)$ is a vector field v attached and normal to the vortex sheet $\Gamma \subset M$. Then

$$\langle\!\langle v, v
angle\!
angle_{\mathrm{vs}} := \inf \left\{ \int_{\mathcal{M}} (u, u) \, \mu \mid \mathrm{div} \, u = 0 \text{ and } (u, \nu) \, \nu = v \text{ on } \Gamma
ight\}$$

where is a vector field u on M, and ν is the unit normal field to Γ .

Theorem

Consider the vortex sheet algebroid $DVect(M) \rightarrow VS(M)$, equipped with the L²-metric. Then vortex sheets in potential flows evolve along geodesics of a metric $\langle\!\langle v, v \rangle\!\rangle_{vs}$ on VS(M) obtained as the projection of the L²-metric on the algebroid DVect(M) to the base VS(M), the shape space of diffeomorphic hypersurfaces bounding the same volume.

Remark Regarding shapes $\Gamma = \partial D_{\Gamma}$ as measures μ_{Γ} supported on $D_{\Gamma} := D_{\Gamma}^+ \subset M$ one can define the Wasserstein distance between the shapes. Then

 $\operatorname{Wass}(\mu_{\Gamma}, \mu_{\tilde{\Gamma}}) \leq \operatorname{Dist}_{\operatorname{vs}}(\Gamma, \tilde{\Gamma}).$

Open questions: Multiphase fluids and beyond

0) Study properties of this vorticity metric: curvatures, relation to instability of vortex sheets, relation to water waves, etc.

1) Describe the groupoid geometry of barotropic multiphase fluids.

2) Vector densities are usually described by an *n*-tuple of densities on which an *n*-tuple of diffeomorphisms act, and there are coefficients for mass exchanges between the components. Is the groupoid framework a natural setting for optimal transport of vector densities?

3) Develop the H^1 geometry of multi-phase fluids or vector-valued information geometry.

4) Vector Madelung and multiphase fluids; their symplectic, Kähler, and momentum map properties in the groupoid setting.

Recall: The Euler equation for barotropic fluids

v — velocity field of a compressible fluid filling M ρ — density of the fluid The equations of a compressible (barotropic) fluid (or gas dynamics) are

$$\begin{cases} \partial_t \mathbf{v} + \nabla_{\mathbf{v}} \mathbf{v} + \frac{1}{\rho} \nabla P(\rho) = \mathbf{0} \\ \partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = \mathbf{0}, \end{cases}$$

Image: A math a math

for the pressure function $P(\rho) = e'(\rho)\rho^2$.

Here $e(\rho)$ is the internal energy depending on fluid's properties. For an ideal gas $P(\rho) = C \cdot \rho^a$ with a = 5/3 for monatomic gases (argon, krypton) and a = 7/5 for diatomic gases (such as nitrogen, oxygen, and hence approximately for air).

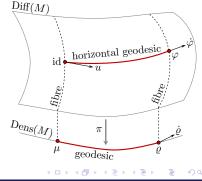
Barotropic fluid as Newton's equation

Theorem (Smolentsev, K.-Misiolek-Modin)

The equations of a compressible barotropic fluid with internal energy $e(\rho)$ are equivalent to Newton's equations $\nabla_{\dot{\varphi}}\dot{\varphi} = -\nabla(\delta U/\delta\rho) \circ \varphi$ on $\varphi \in \text{Diff}(M)$ for the potential $U(\rho) = \int_M e(\rho)\rho \mu$.

Equivalently, this is the Hamiltonian system on $T^*\text{Diff}(M)$ with $H = K + \overline{U}$, where $\overline{U}(\varphi) = U(\rho)$ for $\rho = \det(D\varphi^{-1})$.

For $v = \nabla \theta$ the equation descends to Dens(M).



Reminder: H^1 -metrics on Diff(M)

Example

For $M = S^1$ and right-invariant metrics on $\text{Diff}(S^1)$ and Virasoro group: the L^2 -metric $E(v) = \frac{1}{2} \int v^2 dx \implies$ the Burgers equation

 $v_t + 3vv_x = 0;$

the H1-metric $rac{1}{2}\int v^2+(v')^2\,dx$ \Longrightarrow the Camassa–Holm equation

$$v_t + 3vv_x - v_{txx} - 2v_xv_{xx} - vv_{xxx} + cv_{xxx} = 0;$$

the \dot{H}^1 -metric $\frac{1}{2} \int (v')^2 dx \implies$ the Hunter–Saxton equation

$$v_{xxt} + 2v_xv_{xx} + vv_{xxx} = 0$$

For any compact M the (degenerate) \dot{H}^1 -metric on Diff(M) is given by $(v, v) = \frac{1}{4} \int_M (\operatorname{div} v)^2 \mu$ and it descends to Dens(M)The projection $\pi : \operatorname{Diff}(M) \to \operatorname{Dens}(M)$ is $\varphi \mapsto \rho = \sqrt{|\operatorname{Det}(D\varphi)|}$.

Step aside: discrete equations

INSTITUTE OF PHYSICS PUBLISHING

Nonlinearity 16 (2003) 683-688

NONLINEARITY

PII: S0951-7715(03)55757-7

Discrete Lagrangian systems on the Virasoro group and Camassa–Holm family

A V Penskoi¹ and A P Veselov^{2,3}

A universal nature of these equations: a continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the same family of integrable PDEs containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations.

H^1 -metrics and information geometry

What is the induced metric on Dens(M)?

Theorem (K., Lenells, Misiolek, Preston 2013)

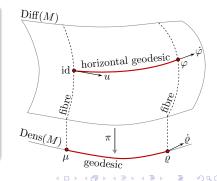
There exists an isometry $Dens(M) \approx U \subset S_r^{\infty}$, $r = \sqrt{\mu(M)}$ (an open part of an inf-dim sphere).

Corollary

- This is the Fisher-Rao metric on Dens(M) used in geometric statistics;

$$G_{\rho}^{FR}(\dot{
ho},\dot{
ho}) = \int_{M} \left(\frac{\dot{
ho}}{
ho}
ight)^{2}
ho\mu$$

- It has constant curvature, explicit description of geodesics on Dens(M), their integrability.



0) Study properties of this vorticity metric: curvatures, relation to instability of vortex sheets, relation to water waves, etc.

1) Describe the groupoid geometry of barotropic multiphase fluids.

2) Vector densities are usually described by an *n*-tuple of densities on which an *n*-tuple of diffeomorphisms act and there are the coefficients for the mass exchanges between the components. Is the groupoid framework a natural setting for optimal transport of vector densities?

3) Develop the H^1 geometry of multi-phase fluids or vector-valued information geometry.

4) Vector Madelung and multiphase fluids; their symplectic, Kähler, and momentum map properties in the groupoid setting.

Several references

- V.Arnold 1966 Ann Inst Fourier
- N.Smolentsev 1979 Siberian Math J
- A.I.Shnirelman 1987 Mathematics of the USSR-Sbornik, 1994 GAFA
- Y.Brenier 1997 ARMA, 1999 CPAM
- V.Arnold, B.Khesin 1998, 2021 Springer
- M-K.von Renesse 2012 Canad Math Bull
- C.Loeschcke 2012 PhD thesis, U Bonn
- B.Khesin, J.Lenells, G.Misiolek, S.Preston 2013 GAFA
- A.Izosimov, B.Khesin 2018 Adv in Math, 2023 Calc. Var. and PDEs
- B.Khesin, G.Misiolek, K.Modin 2019 ARMA and 2021 BAMS

THANK YOU!

and HAPPY BIRTHDAY, SASHA!

Boris Khesin Fluids, diffeomorphisms, etc.