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Hamiltonian equations

Physical system:

Equilibrium

q

p

Potential energy:

V pqq “
q2

2
` λ

q4

4
where λ ě 0.

Hamiltonian:

Hpq, pq “
p2

2
` V pqq.

Hamiltonian ODE:

d

dt

´ q
p

¯

“

ˆ

BpH
´BqH

˙

ðñ
d2

dt2
q “ ´q ´ λq3.



Gibbs measure

Definition (Gibbs measure). We define

dµpq, pq “ Z´1 exp
`

´ Hpq, pq
˘

dqdp.

Example: If V pqq “ q2{2 ` λ ¨ q4{4, then

dµpq, pq “ Z´1 exp
´

´ λq4{4
¯

exp
´

´ q2{2 ´ p2{2
¯

dqdp.

λ “ 0: Gaussian measure.
λ ą 0: Absolutely continuous w.r.t. the Gaussian measure.

Teaser: This can fail in the PDE-setting.



Invariance

dµpq, pq “ Z´1 exp
`

´ Hpq, pq
˘

dqdp.

Theorem (Invariance). The Gibbs measure µ is invariant under
the Hamiltonian flow.

In other words: If Lawpqp0q, pp0qq “ µ, then Lawpqptq, pptqq “ µ
for all t P R.

Proof: Conservation of energy &
Liouville’s theorem for divergence-free vector fields.



(Overdamped) Langevin equation

dq “ ´V 1pqqdt `
?
2 dB

Theorem (Invariance). The measure

dνpqq “ Z´1 exp
´

´ V pqq

¯

dq

is invariant under the Langevin dynamics.

Proof: Itô’s formula.

Note: µ and ν are the “same” measure, since

dµpq, pq “ dνpqqdGaussianppq.



Summary

Equipped with the potential energy V , we can define:

(1) A Gibbs measure.

(2) A Langevin equation.

(3) A Hamiltonian equation.
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From ODEs to PDEs

Question: Can we prove the invariance of the Gibbs measure for
partial differential equations?

Three parts:

(1) Construction of the Gibbs measure?

(2) Local well-posedness of the PDE?

(3) Global well-posedness and invariance?



From ODEs to PDEs

Previously: ‚ q P R.

‚ V pqq “
q2

2
`

q4

4
.

Now: ‚ ϕ : Td
x Ñ K, where K “ R or C.

‚ V pϕq “

ż

Td
x

dx

ˆ

|ϕ|2

2
`

|∇ϕ|2

2
`

|ϕ|4

4

˙

.

Φ4
d -models: With this potential energy, we can formally associate:

(1) A Gibbs measure.

(2) A cubic stochastic heat equation. (Ø Langevin)

(3) A cubic wave equation. (Ø real-valued Hamiltonian)

(4) A cubic Schrödinger equation. (Ø complex-valued Hamiltonian)
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Related works:

‚ Gubinelli-Koch-Oh ’18 on quadratic NLW in d “ 3.
‚ Deng-Nahmod-Yue ’19, ’21 on power-type or Hartree NLS.
‚ B. ’20 on Hartree-NLW in d “ 3.
‚ Oh-Okamoto-Tolomeo ’21 on quadratic NLW in d “ 3.



Main result

The (renormalized) three-dimensional cubic nonlinear wave equation is

#

pB2
t ` 1 ´ ∆qϕwave “ ´ϕ3

wave ` 8 ¨ ϕwave pt, xq P R ˆ T3

ϕwaver0s “ pϕ0, ϕ1q.

Theorem (B.-Deng-Nahmod-Yue ’22).
The cubic nonlinear wave equation is probabilistically well-posed with
respect to the Gibbs measure. Furthermore, the Gibbs measure is
invariant under the dynamics.
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The Gibbs measure

Formal definition: Formally, Gibbs “ Φ4
3 b Gaussian, where

“dΦ4
3pϕq “ Z´1 exp

˜

´

ż

T3

dx

ˆ

|ϕ|2

2
`

|∇ϕ|2

2
`

|ϕ|4

4

˙

¸

ź

xPT3

dϕpxq”.

Rigorous treatment in [GJ73] and [BG20, GH21, MW20]:
The Φ4

3-measure can be defined rigorously (via a finite-dimensional
approximation).

Properties of samples from Φ4
3-measure:

‚ Spatial regularity ă 1 ´ dim.{2 “ ´1{2.

‚ Fourier coefficients are probabilistically dependent (singularity
w.r.t. Gaussian free field).



Caloric representation

We construct caloric initial data , , and , which satisfy

Law
´

´ `

¯

“ Φ4
3

and have the following properties:

Data Probabilistic Structure Regularity ă

Gaussian ´1{2

cubic Gaussian chaos 1{2

not available 1

Remark.

‚ We use the cubic stochastic heat equation, which has been
treated in [Hai13] and [CC18, GIP15].

‚ This is motivated by Tao’s caloric gauge [Tao04].
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The caloric initial value problem

#

pB2
t ` 1 ´ ∆qϕwave “ ´ϕ3

wave ` 8 ¨ ϕwave pt, xq P R ˆ T3

ϕwaver0s “ ´ `

Why is this difficult?

Spatial regularity of is only s “ ´1{2´.



Random structure

Para-controlled Ansatz:

ϕwave “ ´ ´ ` 3
looooooooooomooooooooooon

explicit objects

` X p1q ` X p2q

looooomooooon

para-controlled

` Y
loomoon

remainder

.

Overview:

Regularity ´1{2´ 0´ 1{2´ 1{2`

Component X p1q X p2q Y



Explicit stochastic objects

Linear object:

pB2
t ` 1 ´ ∆q “ 0, r0s “ .

Cubic objects:

pB2
t ` 1 ´ ∆q “

` ˘3
, r0s “ 0.

pB2
t ` 1 ´ ∆q “ 0, r0s “ .

Quintic object:

pB2
t ` 1 ´ ∆q “ ¨ ¨ , r0s “ 0.



Para-controlled components and remainder

Para-controlled components:

pB2
t ` 1 ´ ∆qX p1q »

`

Highˆlowˆlow
˘

´

, ˚, ˚

¯

.

pB2
t ` 1 ´ ∆qX p2q »

`

Highˆhighˆlow
˘

´

, , ˚

¯

.

“Find all terms with regularity ă 1{2 and exhibit
a useful structure.”

Remainder:

pB2
t ` 1 ´ ∆qY “

!

All interactions
)

´

!

Removed interactions
)

# » 87 # » 6

“Main task”



Techniques

The article is „ 200 pages long and combines ingredients from
several different fields:

‚ Gaussian hypercontractivity (Probability theory)

‚ Lattice point estimate (Number theory/Geometry)

‚ Molecular graph analysis (Combinatorics)

‚ Multi-linear dispersive estimates (PDE)

‚ Multiple stochastic integrals (Probability theory)

‚ Para-product estimates (Harmonic analysis)

‚ Para-controlled calculus (SPDE)

‚ Random tensor estimates (Probability theory)



Personal highlight: 1533-cancellation.

Let N ě 1 be a frequency-truncation parameter.

Lemma (33-divergence). The square of
ďN
, i.e.,

´

ďN
pt, xq

¯2
,

diverges as N Ñ 8 in the sense of space-time distributions.

But, we are lucky:

Proposition (1533-cancellation). The linear combination

6 ¨
ďN pt, xq

ďN
pt, xq `

´

ďN
pt, xq

¯2

has a well-defined limit as N Ñ 8.
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Global well-posedness and invariance

Goal (Invariance): If Lawpϕr0sq “ µ, then Lawpϕrtsq “ µ for all t P R.

Danger: Circular argument?

Global well-posedness

Invariance

“Definition”
“Conservation

law” ?

Solution: Bourgain!

Global well-posedness

Invariance

Invariance
for a truncated

system

(i)

(ii)

Remark:
‚ The singularity of the Gibbs measure introduces severe difficulties.
‚ We improve on earlier works [Bri20] and [OOT21].



Thank you!
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