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It is indeed fortunate that the EMS will be 
launched at a unique historical moment 
when so many barriers are breaking 
down…

Atiyah, M. (1991). The European Mathematical Society

The political changes now taking place in 
Europe have an immense potential not 
least in the cultural and scientific area. 
The EMS is coming into existence at just 
the right moment … to see that 
mathematics plays its rightful role in the 
new Europe that we all hope is now being 
formed.
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Physics heroes



James Clerk Maxwell

gauge theory and Lorentz symmetry

Notes for talk on geometric models of matter

Notes by BJS, Jan 2019

1 Spin and gauge theory stu↵

index /DM,V =

Z

M

Â(M) ^ ch(V )

/D = m 

dF = 0, d ⇤ F = j, F 2 ⌦
2
(M)

2 General structure of talk

n ! p+ e+ ⌫e

1. The models: requirements of self-dual Weyl, definition of electric charge, SO(3)

symmetry, rotation of HK structures/volume ) AH and its topology, hence CP2

as model for neutron, the Hitchin family

2. Identification of charge and baryon number

3. Sizes/geometry

4. Review of L
2
norm, Euler characteristic, Pontrjagin number, signature, hence en-

ergy from geometry (check out Atiyah, Hitchin, Singer, LeBrun’s papers) and why

this is‘minimal’ for self-dual curvature.

5. Fluxes and associated energies

6. Spin 1/2

3 Solitons and instantons

U : R3 ! SU(2), U(~x) = �(~x) + i�a⇡a(~x)

with

lim
|~x|!1

U(~x) = I

Define

Ri = (@iU)U
�1

and

deg[U ] = � 1

24⇡2

Z

R3

✏ijktr(RiRjRk)d
3
x

1



Albert Einstein

Physics as (pseudo-) Riemannian geometry

Unified field theory: particles as `solitons’ in  
non-linear partial differential equations 
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Â(M) ^ ch(V )

/D = m 

dF = 0, d ⇤ F = j, F 2 ⌦
2
(M)

Ricg �
1

2
Rg g + ⇤g = 8⇡GT

2 General structure of talk

n ! p+ e+ ⌫e

1. The models: requirements of self-dual Weyl, definition of electric charge, SO(3)

symmetry, rotation of HK structures/volume ) AH and its topology, hence CP2

as model for neutron, the Hitchin family

2. Identification of charge and baryon number

3. Sizes/geometry

4. Review of L
2
norm, Euler characteristic, Pontrjagin number, signature, hence en-

ergy from geometry (check out Atiyah, Hitchin, Singer, LeBrun’s papers) and why

this is‘minimal’ for self-dual curvature.

5. Fluxes and associated energies

6. Spin 1/2

3 Solitons and instantons

U : R3 ! SU(2), U(~x) = �(~x) + i�a⇡a(~x)

with

lim
|~x|!1

U(~x) = I

Define

Ri = (@iU)U
�1

1



Paul Dirac

Spin and differential equations  
from geometry
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Beauty of equations

Large numbers in physics





Physics collaborators



Ed Witten

 String theory and M-theory

Gauge theory:  
Chern-Simons theory and knot invariants 

Yang-Mills theory and 4-manifold invariants



Nick Manton

Geodesic approximation to 
monopole dynamics

Skyrmions from Instantons

Geometric models of matter



The inadvertent physicist



My knowledge of physics was very slim, despite 
having attended a course on quantum mechanics 

by Dirac himself.

Michael Atiyah Collected Works,  
Vol 4 Index Theory 2 (1973-84)



My knowledge of physics was very slim, despite 
having attended a course on quantum mechanics 

by Dirac himself.

Michael Atiyah Collected Works,  
Vol 4 Index Theory 2 (1973-84)

My analytical background was very weak and I 
remember having to be instructed in the 

significance of the Fourier transform.



Atiyah-Singer Index Theorem



Michael Atiyah Collected Works,  
Vol 4 Index Theory 2 (1963-84)

I would have been extremely surprised if I had 
been told that this work would in due course 

become important in theoretical physics

I am really quite struck by the way most of the 
work which Singer and I did in the 60s and 70s 

has become relevant to physics

Michael Atiyah Collected Works,  
Vol 5 Gauge theory  (1977-85)



ADHMN Instanton construction
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`The first time abstract modern mathematics has been of use’ 
Alexander Polyakov 

 cited in Atiyah, Collected Works Vol 4



Monopole moduli spaces

464 S I R  M I C H A E L  A T I  Y AH  A N D  N . J . H I T C H I N

Fig u r e  2. Schematic diagram of the direct collision process.

We next describe type II p lanar interactions, in which the initial motions are this time 
displaced perpendicularly to the scattering plane of the linear collision. Figures 3 and 4 indicate 
the scattering as a function of the initial angular m om entum  Note finally tha t figure 4 is 
three-dimensional.

Fi g u r e  3. Planar diagram of the scattering for 1.
Fig u r e  4. Three-dimensional diagram of the scattering for <  1.

For large p  the deflection is small and repulsive, but as decreases the deflection turns round 
and becomes attractive. The attractive deflection angle S(ji) increases w ithout bound as 
decreases to the critical value 1. For p  < 1 the monopoles leave the plane along the perpendicular 
line through the origin. T heir orbital angular m om entum  is therefore destroyed but, in 
compensation, they now acquire equal and opposite electric charges. Thus they emerge from the 
collision as dyons. This possibility was envisaged by M anton (1982) and it emphasizes once again 
the linkage between spatial and internal phase variables.

As P. G oddard has pointed out to us, although orbital angular m om entum  is lost, total angular 
m om entum  is still conserved provided one takes into account the angular m om entum  of the 
electromagnetic field (cf. G oddard & Olive (1978), §2.2). The type II collision process, by 
producing dyons, has converted orbital angular m om entum  into field angular m om entum .

The fact that p  =  1 is the critical value arises from our norm alization of | |a t  00. Effectively

[ 130 ]



Michael Atiyah Collected Works,  
Vol 5 Gauge Theory (1977-85)

From 1977 .. my interest moved in the direction 
of gauge theories and the interaction between 

geometry and physics. I had for many years 
had a mild interest in theoretical physics



The intentional physicist



The philosophy of Dirac… 

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character.

www.jstor.org
®

 on September 11, 2013rspa.royalsocietypublishing.orgDownloaded from 

PMA Dirac, Proc. R. Soc. Lond. A 1931



…and  Einstein: 

A Einstein and N Rosen, Physical Review 1935  

`It would be quite enough to understand the electron’

A Einstein (according to correspondence between 
Michael Atiyah and Jeroen van Dongen) 



Skyrmions

N Manton and Paul Sutcliffe, Topological Solitons, CUP 2004  



M Atiyah and N Manton, CMP 1992  



Quantum states of Skyrmions

-2.0 -1.0 0.0 1.0 2.0
X1

-2.0

-1.0

0.0

1.0

2.0

X3

Figure 9.a

Manton, Leese, BJS,  Attractive channel Skyrmions and 
the deuteron, Nucl. Phys. B442 (1995) 228-267



Configuration space conjecture
Michael Berry: 

Find map:  

which intertwines  action of permutation and rotation group

Michael Atiyah:  
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solves Michael Berry’s 
problem! 

Conjecture: 
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A Shifted View of Fundamental Physics

Michael Atiyah and Gregory W. Moore

Abstract: We speculate on the role of relativistic versions of delayed differential equa-

tions in fundamental physics. Relativistic invariance implies that we must consider both

advanced and retarded terms in the equations, so we refer to them as shifted equations.

The shifted Dirac equation has some novel properties. A tentative formulation of shifted

Einstein-Maxwell equations naturally incorporates a small but nonzero cosmological con-

stant.

2. An Exploration

The idea we2 want to explore is the use of retarded (or advanced) differential equations in

fundamental physics. These equations, also known as “functional differential equations,” or

“delayed differential equations” have been much studied by engineers and mathematicians,

but the applications in fundamental physics have been limited. This idea has a number of

different origins:

(i) Such retarded differential equations occur in Feynman’s thesis [5].

(ii) In the introduction to Bjorken and Drell [4] it is suggested that, if space-time at very

small scales is “granular,” then one would have to use such equations.

(iii) Their use in the context of quantum mechanics has been advocated by C.K. Raju [7].

We will discuss the general idea briefly before going on to explain how to develop a more

scientific version. This one of us worked on at an earlier stage as reported in the Solvay

Conference [2].

Let us begin by looking at the simplified example of a linear retarded differential

equation for a function x(t):

ẋ(t) + kx(t− r) = 0 (2.1)

where the positive number r is the retardation parameter and k is a constant. A rescaling

of the time variable shows that the equation really only depends on a single dimensionless

parameter µ = kr. Moreover, the initial data for such an equation is an arbitrary function

g(t) over the interval [0, r]. Successive integration then allows us to extend the function

for all t ≥ 0, while successive differentiation (for smooth initial data g(t)) enables us to

extend to negative t. A second way to discuss the solutions is to note that the functions

x(t) = x0e−zt/r solve (2.1) provided z = µez. The latter transcendental equation has an

infinite set of roots tending to z = ∞. (In general, all the roots z have nonzero real part,

and hence the solutions have an unphysical divergence in the far past or future.)

From either approach, we note that equation (2.1), like the equations of quantum

mechanics, has an infinite-dimensional space of initial data: It can be taken to be the

Hilbert space L2[0, r]. We will take that as an encouraging sign and, without pursuing

further the parallel with quantum theory at present we can ask whether retarded differential

equations make any sense in a relativistic framework where there is no distinguished time

direction in which to retard. In fact this can be done and there is a natural and essentially

unique way to carry this out. The first observation is that the translation t → t − r has

the infinitesimal generator −r d
dt , so that the translation is formally just exp(−r d

dt). In

Minkowski space we need a relativistically invariant version of d
dt , i.e. a relativistically

invariant first order differential operator. But this is just what Dirac was looking for when

he invented the Dirac Operator D. The important point is that D acts not on scalar

2The work of G.M. is supported by DOE grant DE-FG02-96ER40959. He would like to thank T. Banks

and S. Thomas for discussions.
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functions but on spinor fields. Thus, we can write down a relativistic analogue of (2.1)

which is a retarded version of the usual Dirac equation

{i!D −mc+ ik exp(−rD)}ψ = 0 (2.2)

where D is the Dirac operator and ψ is a spinor field. Note that r has dimensions of length

L whilst k (slightly different from that appearing in (2.1)) now has the physical dimension

MLT−1.

Both k and r are required to be real for physical reasons which will be clarified shortly

(see (2.6) and (2.12) below). This appears to be rather a formal equation and one can

question whether it makes any sense. In fact (2.2) makes sense for all physical fields ψ,

i.e. those which propagate at velocities less than the velocity of light. Any such ψ is a

linear combination of plane-waves and the operator exp(−rD) applied to such a plane-

wave component just retards it by r in its own time-direction. For waves which travel

with velocity c mathematical arguments based on continuity, or physical arguments using

clocks, require that there be no retardation.

Although we have said that (2.2) is a retarded equation the fact that spinors have both

positive and negative frequencies implies that it is also an advanced equation. Perhaps we

should use a neutral word such as “shifted” instead of advanced or retarded. Having said

that we may consider several variants of the shifted Dirac equation where we replace

D → D+ := D +
k

!
e−rD (2.3a)

D → D− := D −
k

!
erD (2.3b)

D → Ds := D +
k

!
sinh(rD) (2.3c)

D → Dc := D + i
k

!
cosh(rD) (2.3d)

For brevity we will focus on the modification (2.3a) in what follows.

It is instructive to examine the plane-wave solutions of the modified Dirac equations

in Minkowski space. We take ψ = s(p)e−ip·x/! where s(p) is a constant spinor and there is

a dispersion relation p2 = pµpµ = E2
0/c

2, with E0 > 0 representing the inertial rest energy

of a particle. Acting on such a wavefunction Dψ = E0
c γ · p̂ψ where γ · p̂ squares to 1. Let

s±(p) denote the eigenspinors. The planewave solutions of the shifted Dirac equation

(i!D+ −mc)ψ = 0 (2.4)

are then s+(p)e−ip·x/! and s−(p)eip·x/! provided

E0

c
−mc+ ik exp(

irE0

!c
) = 0. (2.5)

Since the first two terms are real we derive a quantization condition

rE0

!c
= (n+ 1/2)π with n integral (2.6)

– 4 –

(2010)



Geometric models of matter

• 4-manifolds as static particles 
• dual Kaluza-Klein picture 
• quantum numbers from topology 
• spin states via Dirac operator

(M Atiyah, N Manton, BJS 2012)
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 x = (r sin ⇤ cos⌃, r sin ⇤ sin⌃, cos ⇤) ⌃ R3.

Hyperkähler forms

V = 1 +
2

r

�i = ⇥3 � dxi �
1

4

�
1 +

2

r

⇥
�ijkdxj � dxk. (4.1)

so that
⌅� �i = dxi

Determines  x modulo Euclidean group

 x� = R x+  a.

5 The proton: Atiyah-Hitchin

topology
CP2 \ RP2

Topology: retracts to
CP1

the core: conic determined by
z21 + z22 + z23 = 0

Symmetry
SO(3)

generic orbit
SO(3)/Z2 ⇧ S3/Z4

with special orbits
CP2

Using SO(3) Euler angles,
⌥ ⌃ [0, 2⇧)

have additional identification

(⇤,⌃,⌥) ⌥⇤ (⇧ � ⇤,⌃+ ⌃,�⌥)

asymptotic form

a(r) ⇥ b(r) ⇥ r

⌅
1� 2

r
, c(r) ⇥ � 2⇤

1� 2
r

5

Atiyah-Hitchin



Recurring themes
• The importance of beauty 

• Trust great minds! 

• Quantum mechanics flawed (linear!) and not 

fundamental. Bohm’s interpretation better! 

• Gauge theory not fundamental: too much freedom 

• String theory important - but not central 

• Central role of geometry and non-linearity 

• 4-manifolds are special 

• Division algebras as natural symmetries 

• Dirac operator as bridge between geometry and QM  

• Intuition beats data…



The teacher





Conclusion



Michael felt a strong  kinship with Hermann Weyl

Both made  profound contributions 
 to physics - but perhaps did so most successfully when 

acting  inadvertently.

However, Michael’s instinct in physics may still turn out to be right!


