

Orienteering with one endomorphism

Sarah Arpin
Universiteit Leiden
Joint with Mingjie Chen, Kristin E. Lauter, Renate Scheidler, Katherine E. Stange, \& Ha T. N. Tran

Arithmetic, Algebra, and Algorithms ICMS
13 April 2023

$1 / 12$

The supersingular endomorphism ring problem is hard

Definition

Let E be an elliptic curve defined over a field K of characteristic $p \neq \infty$. E is supersingular iff one of the following equivalent conditions hold:

- $[p]: E \rightarrow E$ is purely inseparable and $j(E) \in \mathbb{F}_{p^{2}}$,
- End (E) is a maximal order in a quaternion algebra.
- $E\left[p^{k}\right]=\left\{\mathcal{O}_{E}\right\}$ for any $k \geq 1$.

Fixing $K=\overline{\mathbb{F}}_{p}$, there are finitely many isomorphism classes of supersingular elliptic curves over K.

For E supersingular, $\operatorname{End}(E)$ is difficult to compute.

...but we know certain endomorphism rings

$$
\begin{aligned}
& p \equiv 3(\bmod 4) \\
& p \equiv 2(\bmod 3) \\
& E_{1728}: y^{2}=x^{3}+x / \overline{\mathbb{F}_{p}} \\
& j=1728 \\
& {[\pm 1](x, y)=(x, \pm y)} \\
& \pi_{p}(x, y)=\left(x^{p}, y^{p}\right) \\
& {[i](x, y)=(-x, \sqrt{-1} y)} \\
& \operatorname{End}\left(E_{1728}\right)= \\
& \mathbb{Z}\left\langle 1,[i], \frac{1+\pi_{\rho}}{2}, \frac{[i]+[i] \circ \pi_{\rho}}{2}\right\rangle \\
& E_{0}: y^{2}=x^{3}+1 / \overline{\mathbb{F}_{p}} \\
& j=0 \\
& {[\pm 1](x, y)=(x, \pm y)} \\
& \pi_{p}(x, y)=\left(x^{p}, y^{p}\right) \\
& \frac{(1-[i])}{2}(x, y)=\left(\sqrt[6]{1}^{2} x, y\right) \\
& \operatorname{End}\left(E_{0}\right)= \\
& \mathbb{Z}\left\langle 1, \frac{1-[i]}{2}, \frac{\pi_{p}+[i] \circ \pi_{p}}{2}, \frac{[i]+[i] \circ \pi_{p}}{3}\right\rangle
\end{aligned}
$$

Maps to $j=0,1728$ give endomorphisms

$$
p=179, E_{22}: y^{2}=x^{3}+5 x+101
$$

A few obvious endomorphisms:

$$
\begin{gathered}
{[\pm 1]:(x, y) \mapsto(x, \pm y)} \\
\pi_{p}:(x, y) \mapsto\left(x^{p}, y^{p}\right)
\end{gathered}
$$

How to find others? Use an ℓ-isogeny graph!
We have a degree-2 isogeny $\phi: E_{22} \rightarrow E_{1728}$, so we can take endomorphisms from E_{1728} :

$$
\phi \circ \operatorname{End}(E) \circ \hat{\phi} \subseteq \operatorname{End}\left(E_{22}\right)
$$

This information reveals the endomorphism ring:

$$
\operatorname{End}\left(E_{22}\right) \cong \mathbb{Z}\left\langle 1,2 i, \frac{1}{2}+\frac{3}{4} i+\frac{1}{4} i j, \frac{1}{2}+i-\frac{1}{2} j\right\rangle
$$

Supersingular elliptic curve ℓ-isogeny graph

$p=179, \ell=2$
Finding maps to E_{1728}, E_{0} is hard. But what if we had a little bit of endomorphism ring information to start with?

Orientations add structure and allow us to path-find

Definition ((Primitive) Orientation*)

A K-orientation on E is an embedding

$$
\iota: K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} \cong B_{p, \infty} .
$$

A K-orientation is an \mathcal{O}-orientation if $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$, and it is a primitive \mathcal{O}-orientation if $\iota(\mathcal{O})=\operatorname{End}(E) \cap \iota(K)$.
An isogeny $\varphi: E \rightarrow E^{\prime}$ induces an isogeny $\varphi:(E, \iota) \rightarrow\left(E^{\prime}, \varphi_{*} \iota\right)$:

$$
\begin{gathered}
\left(\varphi_{*} \iota\right): K \rightarrow \operatorname{End}\left(E^{\prime}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \\
\left(\varphi_{*} \iota\right)(\alpha):=\frac{1}{[\operatorname{deg} \varphi]} \varphi \circ \iota(\alpha) \circ \hat{\varphi} .
\end{gathered}
$$

If (E, ι) is a primitively \mathcal{O}-oriented supersingular elliptic curve, then ($E^{\prime}, \varphi_{*} \iota$) is primitively \mathcal{O}^{\prime}-oriented and one of the following is true: $\mathcal{O}^{\prime}=$ or $\subsetneq \operatorname{or} \supsetneq \mathcal{O}$ (φ is horizontal/descending/ascending).

[^0] embeddings are called optimal embeddings.

Graph covering

Each oriented isogeny volcano covers the ℓ-isogeny graph:

7 / 12

Finding paths to E_{1728}, E_{0}

Using the oriented isogeny volcano structure within the ℓ-isogeny graphs, we can find paths to E_{0}, E_{1728}.
$p=179, \ell=2, \mathcal{O}=\mathbb{Z}[\sqrt{-47}]$

Combining blue, green, and red paths in the oriented volcano, we find a path from E_{120} to E_{1728} in the supersingular 2-isogeny graph.

Algorithms

> Given (E, ι) by specifying an endomorphism, find the order \mathcal{O} such that ι is \mathcal{O}-primitive Given (E, ι) a primitive \mathcal{O}-orientation, walk to the rim of the oriented ℓ-isogeny volcano.
> Given an imaginary quadratic field, find a K-orientation $\left(E_{1728}, \iota_{1728}\right)$ and walk to the rim. Walk the rim of an oriented ℓ-isogeny volcano.

We provide classical and quantum algorithms. Runtime is usually subexponential, but polynomial time in some cases.

Cycles in ℓ-isogeny graph come from class groups

isogeny cycle	length	endomorphism	\mathcal{O}	$h(\mathcal{O})$
$\left(j_{3}, \overline{j_{3}}, 171\right)$	3	$\frac{ \pm 1 \pm \sqrt{-31}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-31}}{2}\right]$	3
$\left(61, j_{1}, 140, \overline{j_{1}}\right)$	4	$\frac{ \pm 5 \pm \sqrt{-39}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-39}}{2}\right]$	4
$\left(22, \overline{j_{2}}, \overline{j_{3}}, j_{3}, j_{2}\right)$	5	$\frac{ \pm 9 \pm \sqrt{-47}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-47}}{2}\right]$	5

Table: Cycles of lengths 3,4 , and 5 in \mathcal{G}_{2} with $p=179$, with the associated endomorphisms to which the cycles compose.

Cohen-Lenstra heuristics provide framework for understanding class groups

"Heuristics on class groups of number fields" by H. Cohen \& H. W. Lenstra, Jr., Number theory, Noordwijkerhout 1983, 33-62, Lecture Notes in Math., 1068, Springer, Berlin, 1984.

The odd part of the class group of an imaginary quadratic field seems to be quite rarely non cyclic.

If we have a primitively \mathcal{O}-oriented isogeny volcano, $[r] \in C l(\mathcal{O})$ allows us to walk the rim of the volcano. Most likely $[\mathfrak{l}]$ generates $\mathrm{Cl}(\mathcal{O})$, so we know what size rim to expect.

Thank you.

[^0]: *This terminology was popularized for isogenists by Colo-Kohel '20, Onuki '20. In quaternion literature, primitive

