
Challenges and open problems in Fully

Homomorphic Encryption

Anamaria Costache

27 July 2022

Table of contents

1. Introduction, history and applications

2. Schemes

3. Packing

4. Noise in HE

5. Evaluating functions homomorphically

6. Interlude: Iterative Algorithms and Approximate Encryption

7. Real-life implementation

8. HE as a Primitive

9. Conclusion

1

Introduction, history and

applications

What is Homomorphic Encryption?

Thanks to Rachel Player for this slide!

2

Fully Homomorphic Encryption: a brief history

1978 Proposed as open problem [RAD78]

2009 Gentry’s blueprint [Gentry09]

2010 First Implementation

2010 [DGHV10]

2012 Second generation schemes: BGV [BGV12], B/FV [Bra12, FV12], . . .

2013 Third generation schemes: GSW [GSW13], . . .

First open source libraries available

2014 FHEW [DM14]

2016 TFHE introduces fast bootstrapping (less than 0.1 seconds!) [CGGI16]

2017 Standardisation effort begins

Approximate homomorphic encryption: CKKS [CKKS17]

2020 ISO efforts begin

3

Community efforts

Actively maintained libraries

Name Implements Available at

HElib BGV, CKKS github.com/homenc/HElib

SEAL BFV, CKKS github.com/Microsoft/SEAL

Palisade BFV, BGV and more! git.njit.edu/palisade/PALISADE

Concrete TFHE github.com/zama-ai/concrete

Lattigo CKKS, BFV github.com/tuneinsight/lattigo

Standardisation effort1

• Homomorphic Encryption Standard recommends secure parameters

• White papers on applications, APIs, schemes etc.

• Usability focus: use-cases

• Standardisation: ISO/ ISE

1homomorphicencryption.org, fhe.org

4

github.com/homenc/HElib
github.com/Microsoft/SEAL
git.njit.edu/palisade/PALISADE
github.com/zama-ai/concrete
github.com/tuneinsight/lattigo
homomorphicencryption.org
fhe.org

Many possible applications

• Medical

• Genomics

• Machine Learning

• Statistics

• Smart cities

• Cyber physical systems

• Private information

retrieval

• Database search

• Private set intersection

• Electronic voting

• . . .

5

Schemes

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

A Ring-LWE-based (levelled) FHE scheme is parameterised by:

• Dimension n (here always a power of two)

• Power-of-two cyclotomic polynomial Φn = xn + 1

• Polynomial ring Rq = Z [x] /(Φn, q)

• Ciphertext moduli qk

• There are L primes p0, . . . , pL−1

• The chain of moduli is formed as qk =
∏k

j=0 pj

• Q = qL−1 =
∏L−1

j=0 pj the product all the primes is the “top” modulus

• Gaussian error distribution χ with standard deviation σ

• Secret distribution S

• Plaintext modulus t1

• Security parameter λ

• Zq means Z/qZ, [·]q means reduction modulo q

1For BGV and BFV

6

The CKKS scheme - basic operations

Ciphertexts are elements (c0, c1) ∈ R2
q .

SecretKeyGen(λ): Sample s ← S and output sk = (1, s).

PublicKeyGen(sk): Recall sk = (1, s) and sample a← Rq uniformly at

random and e ← χ. Output pk = ([−as + e]q, a).

Encrypt(pk,m): For the message m ∈ R. Let pk = (p0, p1), sample

v ← S and e1, e2 ← χ. Output

ct = ([m + e1 + p0v]q, [p1v + e2]q).

Decrypt(sk, ct): Let ct = (c0, c1). Output m
′ = [c0 + c1s]q.

7

The CKKS scheme - basic operations

Ciphertexts are elements (c0, c1) ∈ R2
q .

SecretKeyGen(λ): Sample s ← S and output sk = (1, s).

PublicKeyGen(sk): Recall sk = (1, s) and sample a← Rq uniformly at

random and e ← χ. Output pk = ([−as + e]q, a).

Encrypt(pk,m): For the message m ∈ R. Let pk = (p0, p1), sample

v ← S and e1, e2 ← χ. Output

ct = ([m + e1 + p0v]q, [p1v + e2]q).

Decrypt(sk, ct): Let ct = (c0, c1). Output m
′ = [c0 + c1s]q.

7

The CKKS scheme - basic operations

Ciphertexts are elements (c0, c1) ∈ R2
q .

SecretKeyGen(λ): Sample s ← S and output sk = (1, s).

PublicKeyGen(sk): Recall sk = (1, s) and sample a← Rq uniformly at

random and e ← χ. Output pk = ([−as + e]q, a).

Encrypt(pk,m): For the message m ∈ R. Let pk = (p0, p1), sample

v ← S and e1, e2 ← χ. Output

ct = ([m + e1 + p0v]q, [p1v + e2]q).

Decrypt(sk, ct): Let ct = (c0, c1). Output m
′ = [c0 + c1s]q.

7

The CKKS scheme - basic operations

Ciphertexts are elements (c0, c1) ∈ R2
q .

SecretKeyGen(λ): Sample s ← S and output sk = (1, s).

PublicKeyGen(sk): Recall sk = (1, s) and sample a← Rq uniformly at

random and e ← χ. Output pk = ([−as + e]q, a).

Encrypt(pk,m): For the message m ∈ R. Let pk = (p0, p1), sample

v ← S and e1, e2 ← χ. Output

ct = ([m + e1 + p0v]q, [p1v + e2]q).

Decrypt(sk, ct): Let ct = (c0, c1). Output m
′ = [c0 + c1s]q.

7

The CKKS scheme - homomorphic operations

• Addition is coordinate-wise

• Multiplication, at a high level, corresponds to three steps:

• Pre-Multiply: from two ciphertexts in R2
q that both decrypt under

sk, we have one ciphertext in R3
q that decrypts under sk2

• Relin: From one ciphertext in R3
q that decrypts under sk, we go to

one ciphertext in R2
q that decrypts under sk2

• Rescale: Multiply by q′/q and round to reduce the noise and output

one ciphertext in Rq′ that decrypts under sk

8

The CKKS scheme - homomorphic operations

• Addition is coordinate-wise

• Multiplication, at a high level, corresponds to three steps:

• Pre-Multiply: from two ciphertexts in R2
q that both decrypt under

sk, we have one ciphertext in R3
q that decrypts under sk2

• Relin: From one ciphertext in R3
q that decrypts under sk, we go to

one ciphertext in R2
q that decrypts under sk2

• Rescale: Multiply by q′/q and round to reduce the noise and output

one ciphertext in Rq′ that decrypts under sk

8

The CKKS scheme - homomorphic operations

• Addition is coordinate-wise

• Multiplication, at a high level, corresponds to three steps:

• Pre-Multiply: from two ciphertexts in R2
q that both decrypt under

sk, we have one ciphertext in R3
q that decrypts under sk2

• Relin: From one ciphertext in R3
q that decrypts under sk, we go to

one ciphertext in R2
q that decrypts under sk2

• Rescale: Multiply by q′/q and round to reduce the noise and output

one ciphertext in Rq′ that decrypts under sk

8

The CKKS scheme - homomorphic operations

We have ct0 = (ct0[0], ct0[1]) and ct1 = (ct1[0], ct1[1]) (mod q).

Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).

Pre-Multiply(ct0, ct1): Set d0 = [ct0[0]ct1[0]]q,

d1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q, and

d2 = [ct0[1]ct1[1]]q. Output ct = (d0, d1, d2).

KeySwitch(ct, evk): Let ct[0] = d0, ct[1] = d1 and ct[2] = d2. Recall

evk[0] = −a′s + e′ + Ps2 and evk[1] = a′. Set

c ′0 = [d0 + ⌊P−1 · d2 · (−a′s + e′ + Ps2)⌉]q, and
c ′1 = [d1 + ⌊P−1 · d2 · a′⌉]q. Output ct′ = (c ′0, c

′
1).

Rescale(ct, q, q′) : Let ct = (c0, c1). Set c
′
0 =

[⌊
q′c0
q

⌉]
q′

and

c ′1 =
[⌊

q′c1
q

⌉]
q′
. Output ct = (c ′0, c

′
1).

9

The CKKS scheme - homomorphic operations

We have ct0 = (ct0[0], ct0[1]) and ct1 = (ct1[0], ct1[1]) (mod q).

Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).

Pre-Multiply(ct0, ct1): Set d0 = [ct0[0]ct1[0]]q,

d1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q, and

d2 = [ct0[1]ct1[1]]q. Output ct = (d0, d1, d2).

KeySwitch(ct, evk): Let ct[0] = d0, ct[1] = d1 and ct[2] = d2. Recall

evk[0] = −a′s + e′ + Ps2 and evk[1] = a′. Set

c ′0 = [d0 + ⌊P−1 · d2 · (−a′s + e′ + Ps2)⌉]q, and
c ′1 = [d1 + ⌊P−1 · d2 · a′⌉]q. Output ct′ = (c ′0, c

′
1).

Rescale(ct, q, q′) : Let ct = (c0, c1). Set c
′
0 =

[⌊
q′c0
q

⌉]
q′

and

c ′1 =
[⌊

q′c1
q

⌉]
q′
. Output ct = (c ′0, c

′
1).

9

The CKKS scheme - homomorphic operations

We have ct0 = (ct0[0], ct0[1]) and ct1 = (ct1[0], ct1[1]) (mod q).

Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).

Pre-Multiply(ct0, ct1): Set d0 = [ct0[0]ct1[0]]q,

d1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q, and

d2 = [ct0[1]ct1[1]]q. Output ct = (d0, d1, d2).

KeySwitch(ct, evk): Let ct[0] = d0, ct[1] = d1 and ct[2] = d2. Recall

evk[0] = −a′s + e′ + Ps2 and evk[1] = a′. Set

c ′0 = [d0 + ⌊P−1 · d2 · (−a′s + e′ + Ps2)⌉]q, and
c ′1 = [d1 + ⌊P−1 · d2 · a′⌉]q. Output ct′ = (c ′0, c

′
1).

Rescale(ct, q, q′) : Let ct = (c0, c1). Set c
′
0 =

[⌊
q′c0
q

⌉]
q′

and

c ′1 =
[⌊

q′c1
q

⌉]
q′
. Output ct = (c ′0, c

′
1).

9

The CKKS scheme - homomorphic operations

We have ct0 = (ct0[0], ct0[1]) and ct1 = (ct1[0], ct1[1]) (mod q).

Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).

Pre-Multiply(ct0, ct1): Set d0 = [ct0[0]ct1[0]]q,

d1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q, and

d2 = [ct0[1]ct1[1]]q. Output ct = (d0, d1, d2).

KeySwitch(ct, evk): Let ct[0] = d0, ct[1] = d1 and ct[2] = d2. Recall

evk[0] = −a′s + e′ + Ps2 and evk[1] = a′. Set

c ′0 = [d0 + ⌊P−1 · d2 · (−a′s + e′ + Ps2)⌉]q, and
c ′1 = [d1 + ⌊P−1 · d2 · a′⌉]q. Output ct′ = (c ′0, c

′
1).

Rescale(ct, q, q′) : Let ct = (c0, c1). Set c
′
0 =

[⌊
q′c0
q

⌉]
q′

and

c ′1 =
[⌊

q′c1
q

⌉]
q′
. Output ct = (c ′0, c

′
1).

9

The BGV scheme

SecretKeyGen(λ): Sample s ← S and output sk = s.

PublicKeyGen(sk): Set s = sk and sample a← Rq uniformly at

random and e ← χ. Output pk = ([−(as + et)]q, a).

Encrypt(pk,m): For the message m ∈ Rt . Let pk = (p0, p1), sample

u ← S and e1, e2 ← χ. Output

ct = ([m + p0u + te1]q, [p1u + te2]q).

Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output

m′ = [[c0 + c1s]q]t .

10

The BFV scheme

SecretKeyGen(λ): Sample s ← S and output sk = s.

PublicKeyGen(sk): Set s = sk and sample a← Rq uniformly at

random and e ← χ. Output pk = ([−(as + e)]q, a).

Encrypt(pk,m): For the message m ∈ Rt . Let pk = (p0, p1), sample

u ← S and e1, e2 ← χ. Output

ct = ([∆m + p0u + e1]q, [p1u + e2]q).

Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output

m′ =
[⌊

t
q [c0 + c1s]q

⌉]
t
.

11

A side-by-side comparison

Scheme BGV BFV CKKS

Message encoding m + t · e ∆ · m + e m + e

Message encoding Lower bits Upper bits Approximate encryption

Decryption m′ =
[
[c0 + c1s]q

]
t m′ =

[⌊
t
q
[c0 + c1s]q

⌉]
t

m′ = [c0 + c1s]q

Multiplication m0m1 + t2e0e1 + t(e0m1 + e1m0) ∆2m0m1 + ∆(e0m1 + e1m0) + e0e1 m0m1 + m1e0 + m0e1 + e0e1

Noise growth is much slower in CKKS.

12

Packing

Encoding and Decoding for CKKS

The CKKS scheme uses the canonical embedding to define an encoding

from the message space CN/2 to the “plaintext” space Z[X]/(XN + 1) in

the following way: an isomorphism τ : R[X]/(XN + 1)→ CN/2 can be

defined via considering the canonical embedding restricted to N/2 of the

2N th primitive roots and discarding conjugates. Encoding and decoding

then use this map τ , as well as a precision parameter ∆, as follows:

Encode(z,∆) =
⌊
∆τ−1(z)

⌉
, Decode(m,∆) =

1

∆
τ(m),

where z ∈ CN/2, m ∈ Zq[X]/(XN + 1) and ⌊·⌉ is taken coefficient-wise.

Can pack up to N/2 values into a single ciphertext.

13

Plaintext packing in BGV - CRT for rings

Theorem
Let R be a ring, and I0, . . . , Ik−1 be pairwise coprime ideals. Let

I =
⋂k−1

i=0 Ii . Then we have that

R/I ∼= R/I0 × . . .× R/Ik−1.

Now let R = Zq[x]/(Φn), where Φn is the nth cyclotomic polynomial, q

is a ciphertext modulus and Zt [x]/(Φn) is the plaintext space. Consider

Z/tZ such that it contains a primitve nth root of unity. Then, Φn factors

into ℓ irreducible factors

Φn =
ℓ−1∏
i=0

fi (x) (mod t).

The ideals (fi) are pairwise coprime in R, and we can apply the Chinese

Remainder Theorem for rings to obtain plaintext slots.

14

Noise in HE

The noise problem, illustrated

15

Noise management

Two main techniques for managing the noise: bootstrapping and

modulus switching (or rescaling).

Introduction to Practical FHE and the TFHE Scheme, Ilaria Chillotti

16

What is noise and why is it important?

Noise in homomorphic encryption

• All ciphertexts have inherent noise

• Noise grows during homomorphic operations

• If noise too large, decryption will fail

Good understanding of noise growth is essential

• Either need to determine when to bootstrap

• Or need to determine when to do modulus switching

• This enables us to choose appropriate parameters, ideally small ones

• Requiring large parameters remains a major challenge in practical HE

17

An example of the importance of good noise management

The graph-specific optimisation lazy rescaling reduces runtime by 8x.

• Lazy rescaling

• Only after a fully connected or convolution layer

• Skip if no multiplications left before decryption

Approximate Homomorphic Encryption over the Conjugate-invariant Ring Duhyeong

Kim and Yongsoo Song

18

Lazy rescaling

nGraph-HE2: A High-Throughput Framework for Neural Network Inference on Encrypted Data, Fabian Boemer, Rosario Cammarota,

Anamaria Costache and Casimir Wierzynski

19

Worst-case analysis

• Recall the canonical embedding σ(a) = (a(ζi))i∈(Z/NZ)∗

• Use the Canonical embedding norm: ∥a∥can = ∥σ(a)∥∞
• Variance of σ(a) is nVa

We use

∥a∥can ≤ 6
√
n
√
Va , (1)

and the following facts:

Va+b = Va + Vb

Vγa = γ2Va

Vab = nVaVb.

C. Gentry, S. Halevi, N. P. Smart. Homomorphic evaluation of the AES circuit. CRYPTO, 2012.

20

BGV results: heuristic bounds vs. observed HElib noise growth

Enc Add Mult ModSw

P I x P I x P I x P I x

34.0 35.0 41.1 33.0 34.0 40.2 14.0 17.0 26.0 - - -

88.0 89.0 97.9 87.0 88.0 97.0 67.0 70.0 82.4 38.0 39.0 38.1

196 197 209 195 196 209 174 177 194 146 147 150

415 416 433 414 415 432 392 395 416 365 366 373

Table 1: The observed mean x of the noise budget in HElib ciphertexts in

10000 trials, with estimates of the noise budget obtained using Iliashenko

heuristic analysis I and previous heuristic analysis P. Each row corresponds to

a parameter set with n ∈ {2048, 4096, 8192, 16384}.

Evaluating the effectiveness of heuristic worst-case noise analysis in FHE; Anamaria Costache, Kim Laine, Rachel Player

21

Average-case analysis for CKKS

• In CKKS, there are two sources of precision loss

• Encoding noise

• Encryption noise that never gets removed

• There is a way to detangle the two and provide an average-case

analysis

• Track the noise variance all the way through a circuit via the Central

Limit Theorem (CLT)

• Bound it at the end

22

Noise in the ring

log(N) log(q) Average CLT

Addition noise.

13 109 10.88 11.40

14 219 11.44 11.93

15 443 12.00 12.45

Multiplication noise.

13 109 17.31 18.69

14 219 18.38 19.72

15 443 19.43 20.75

Table 2: Average bits of noise observed in the ring over 1000 trials in HEAAN,

for α = 0.0001 and ∆ = 240.

On the precision loss in approximate homomorphic encryption; Anamaria Costache, Benjamin R. Curtis, Erin Hales, Sean Murphy, Tabitha

Ogilvie, and Rachel Player

23

Results in the complex space

log(N) log(q) Average CLT

Addition, complex error.

13 109 -21.92 -22.55

14 219 -20.72 -21.52

15 443 -19.70 -20.49

Multiplication, complex error.

13 109 -23.17 -21.51

14 219 -21.68 -19.92

15 443 -20.13 -18.72

Table 3: Average bits of error observed in the message space over 1000 trials

in HEAAN, for α = 0.0001 and ∆ = 240.

On the precision loss in approximate homomorphic encryption; Anamaria Costache, Benjamin R. Curtis, Erin Hales, Sean Murphy, Tabitha

Ogilvie, and Rachel Player

24

Evaluating functions

homomorphically

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

What functions can we evaluate homomorphically?

• CKKS/ BGV/ BFV schemes are naturally limited to multiplication

and addition

• This can present challenges in some applications, such as Machine

Learning

• The activation function used in Neural Networks is typically

non-linear

• Examples include ReLu, f (x) = max(0, x)

• Typically, we would approximate the function to evaluate

• Usually via a Taylor Series approximation

• CryptoNets uses f (x) = x2, achieves 99% accuracy

• CHET uses f (x) = ax + b, for a, b ∈ R, achieves 81.5% accuracy

(down from 84%)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy; Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, John Wernsing

Chet: an optimizing compiler for fully-homomorphic neural- network inferencing; Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,

K., Maleki, S., Musuvathi, M., Mytkowicz, T

25

Machine Learning Applications

Because of the limitations specified above, there are roughly two

approaches:

• Modify the network to make it HE-friendly, and re-train

• Could lead to much better accuracy and overall performance as the

network is now optimised for HE

• Modify the scheme or protocol

• No need to re-train your network, which is potentially a huge

overhead

• Some scenarios are easier than others (encrypted data vs encrypted

model)

• Training in general is an open problem (backpropagation)

Side note: we mainly consider Neural Networks (NN) in this

conversation, but other scenarios are more achievable for FHE [1].

[1]: Privacy-preserving semi-parallel logistic regression training with Fully Homomorphic Encryption; Sergiu Carpov, Nicolas Gama, Mariya

Georgieva, and Juan Ramon Troncoso-Pastoriza

26

Machine Learning Applications

Because of the limitations specified above, there are roughly two

approaches:

• Modify the network to make it HE-friendly, and re-train

• Could lead to much better accuracy and overall performance as the

network is now optimised for HE

• Modify the scheme or protocol

• No need to re-train your network, which is potentially a huge

overhead

• Some scenarios are easier than others (encrypted data vs encrypted

model)

• Training in general is an open problem (backpropagation)

Side note: we mainly consider Neural Networks (NN) in this

conversation, but other scenarios are more achievable for FHE [1].

[1]: Privacy-preserving semi-parallel logistic regression training with Fully Homomorphic Encryption; Sergiu Carpov, Nicolas Gama, Mariya

Georgieva, and Juan Ramon Troncoso-Pastoriza

26

Machine Learning Applications

Because of the limitations specified above, there are roughly two

approaches:

• Modify the network to make it HE-friendly, and re-train

• Could lead to much better accuracy and overall performance as the

network is now optimised for HE

• Modify the scheme or protocol

• No need to re-train your network, which is potentially a huge

overhead

• Some scenarios are easier than others (encrypted data vs encrypted

model)

• Training in general is an open problem (backpropagation)

Side note: we mainly consider Neural Networks (NN) in this

conversation, but other scenarios are more achievable for FHE [1].

[1]: Privacy-preserving semi-parallel logistic regression training with Fully Homomorphic Encryption; Sergiu Carpov, Nicolas Gama, Mariya

Georgieva, and Juan Ramon Troncoso-Pastoriza

26

Machine Learning Applications

Because of the limitations specified above, there are roughly two

approaches:

• Modify the network to make it HE-friendly, and re-train

• Could lead to much better accuracy and overall performance as the

network is now optimised for HE

• Modify the scheme or protocol

• No need to re-train your network, which is potentially a huge

overhead

• Some scenarios are easier than others (encrypted data vs encrypted

model)

• Training in general is an open problem (backpropagation)

Side note: we mainly consider Neural Networks (NN) in this

conversation, but other scenarios are more achievable for FHE [1].

[1]: Privacy-preserving semi-parallel logistic regression training with Fully Homomorphic Encryption; Sergiu Carpov, Nicolas Gama, Mariya

Georgieva, and Juan Ramon Troncoso-Pastoriza

26

Machine Learning Applications

Because of the limitations specified above, there are roughly two

approaches:

• Modify the network to make it HE-friendly, and re-train

• Could lead to much better accuracy and overall performance as the

network is now optimised for HE

• Modify the scheme or protocol

• No need to re-train your network, which is potentially a huge

overhead

• Some scenarios are easier than others (encrypted data vs encrypted

model)

• Training in general is an open problem (backpropagation)

Side note: we mainly consider Neural Networks (NN) in this

conversation, but other scenarios are more achievable for FHE [1].

[1]: Privacy-preserving semi-parallel logistic regression training with Fully Homomorphic Encryption; Sergiu Carpov, Nicolas Gama, Mariya

Georgieva, and Juan Ramon Troncoso-Pastoriza

26

Machine Learning Applications

Because of the limitations specified above, there are roughly two

approaches:

• Modify the network to make it HE-friendly, and re-train

• Could lead to much better accuracy and overall performance as the

network is now optimised for HE

• Modify the scheme or protocol

• No need to re-train your network, which is potentially a huge

overhead

• Some scenarios are easier than others (encrypted data vs encrypted

model)

• Training in general is an open problem (backpropagation)

Side note: we mainly consider Neural Networks (NN) in this

conversation, but other scenarios are more achievable for FHE [1].

[1]: Privacy-preserving semi-parallel logistic regression training with Fully Homomorphic Encryption; Sergiu Carpov, Nicolas Gama, Mariya

Georgieva, and Juan Ramon Troncoso-Pastoriza

26

Interlude: Iterative Algorithms

and Approximate Encryption

Iterative algorithms and approximate encryption

• In an exact scheme, we would only need to worry about correctness

(and perhaps parameter selection)

• In the clear, we would exactly calculate the (n + 1)th estimate from

the nth to obtain a more accurate approximation

• With approximate encryption, the additional noise incurred by the

(n + 1)th calculation may mean that calculating the (n + 1)th

estimate doesn’t provide an advantage over the nth estimate

• In fact, it may mean that your precision starts worsening instead of

improving

27

Iterative algorithms and approximate encryption

For a given set of parameters, function, and data set, we want to identify

the point at which the evaluation noise begins to interfere with the

accurate bits of the calculated solution.

• Let A(r) = ||f (z)− z(r)|| be the absolute error associated with

iteration r in the clear,

• β(r) be a bound on the real noise in CN/2 at iteration r

• Want to identify the point at which

log β(r) > logA(r)

• If this critical point is correctly identified, the maximum possible

accuracy that can be guaranteed is

− logA(r−1),

as by iteration r encryption noise has begun to interfere with the

accuracy − logA(r)

28

Newton-Raphson

29

Real-life implementation

Deploying FHE

• We have now reached the point where we will “soon” start

deploying FHE

• This means we need to start thinking about

• Lack of CCA security

• By definition, ciphertexts are malleable

• Trusted Execution Environments (TEE)?

• Key management?

• With eg AES you might use Hardware Security Modules (HSM); not

practical for FHE

• . . . ?

30

Deploying FHE

• We have now reached the point where we will “soon” start

deploying FHE

• This means we need to start thinking about

• Lack of CCA security

• By definition, ciphertexts are malleable

• Trusted Execution Environments (TEE)?

• Key management?

• With eg AES you might use Hardware Security Modules (HSM); not

practical for FHE

• . . . ?

30

Deploying FHE

• We have now reached the point where we will “soon” start

deploying FHE

• This means we need to start thinking about

• Lack of CCA security

• By definition, ciphertexts are malleable

• Trusted Execution Environments (TEE)?

• Key management?

• With eg AES you might use Hardware Security Modules (HSM); not

practical for FHE

• . . . ?

30

Deploying FHE

• We have now reached the point where we will “soon” start

deploying FHE

• This means we need to start thinking about

• Lack of CCA security

• By definition, ciphertexts are malleable

• Trusted Execution Environments (TEE)?

• Key management?

• With eg AES you might use Hardware Security Modules (HSM); not

practical for FHE

• . . . ?

30

Deploying FHE

• We have now reached the point where we will “soon” start

deploying FHE

• This means we need to start thinking about

• Lack of CCA security

• By definition, ciphertexts are malleable

• Trusted Execution Environments (TEE)?

• Key management?

• With eg AES you might use Hardware Security Modules (HSM); not

practical for FHE

• . . . ?

30

Deploying FHE

• We have now reached the point where we will “soon” start

deploying FHE

• This means we need to start thinking about

• Lack of CCA security

• By definition, ciphertexts are malleable

• Trusted Execution Environments (TEE)?

• Key management?

• With eg AES you might use Hardware Security Modules (HSM); not

practical for FHE

• . . . ?

30

HE as a Primitive

HE as a Primitive

One can also think of HE as a primitive, which enables many

constructions.

• Multi-Party Computation (MPC)

• Private Set Intersection (PSI)

• Privacy-Preserving Smart Contracts

• Private Set Union

• . . .

31

PSI from FHE

https://bit-ml.github.io/blog/post/private-set-intersection-an-

implementation-in-python/

32

PSI from FHE

https://bit-ml.github.io/blog/post/private-set-intersection-an-

implementation-in-python/

33

Conclusion

2010

Implementing Gentry’s Fully Homomorphic Encryption Scheme, Craig Gentry and

Shai Halevi https://eprint.iacr.org/2010/520.pdf.

34

https://eprint.iacr.org/2010/520.pdf

2019

nGraph-HE2: A High-Throughput Framework for Neural Network Inference on

Encrypted Data, Fabian Boemer, Rosario Cammarota, Anamaria Costache and

Casimir Wierzynski https://eprint.iacr.org/2019/947.pdf

35

https://eprint.iacr.org/2019/947.pdf

Conclusion

• Some spectacular advances have been made since the first scheme in

2009

• In particular, this means that we are realistically looking at deplying

FHE in the industry in the next “few years”

• There are some very exciting open problems, both theoretical and

practical

• . . . join us :)

36

Thank you!

36

	Introduction, history and applications
	Schemes
	Packing
	Noise in HE
	Evaluating functions homomorphically
	Interlude: Iterative Algorithms and Approximate Encryption
	Real-life implementation
	HE as a Primitive
	Conclusion

