Algebraic lattices for cryptography

Alice Pellet-Mary

CNRS and university of Bordeaux, France

Fundations and applications of lattice-based cryptography workshop 25-28 July 2022, Edinburgh

Algebraic lattices

What are they:

- lattices
- but also algebraic objects (e.g., ideals and modules in a number field)

Algebraic lattices

What are they:

- lattices
- but also algebraic objects (e.g., ideals and modules in a number field)

Why use them:

- mainly for efficiency (faster primitives, smaller keys)
- also sometimes for the algebraic properties
(e.g., the first FHE schemes, or some iO candidates)

Algebraic lattices

What are they:

- lattices
- but also algebraic objects (e.g., ideals and modules in a number field)

Why use them:

- mainly for efficiency (faster primitives, smaller keys)
- also sometimes for the algebraic properties (e.g., the first FHE schemes, or some iO candidates)

What about security:

- most of the time no better attacks than for unstructured lattices
- but for some problems, we have specific attacks using the algebraic structure (cf second talk)

Outline of the talk

(1) A bit of number theory
(2) Algebraic lattices
(3) Algorithmic problems for cryptography
(4) Some more number theory

Outline of the talk

(1) A bit of number theory

2) Algebraic lattices

(3) Algorithmic problems for cryptography
(4) Some more number theory

Number fields

Number field: $K=\mathbb{Q}[X] / P(X) \quad(P$ irreducible, $\operatorname{deg}(P)=d)$

Number fields

Number field: $K=\mathbb{Q}[X] / P(X) \quad(P$ irreducible, $\operatorname{deg}(P)=d)$

- $K=\mathbb{Q}$
- $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic field
- $K=\mathbb{Q}[X] /\left(X^{d}-X-1\right)$ with d prime \rightsquigarrow NTRUPrime field

Number fields

Number field: $K=\mathbb{Q}[X] / P(X) \quad(P$ irreducible, $\operatorname{deg}(P)=d)$

- $K=\mathbb{Q}$
- $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic field
- $K=\mathbb{Q}[X] /\left(X^{d}-X-1\right)$ with d prime \rightsquigarrow NTRUPrime field

Ring of integers: $\mathcal{O}_{K} \subset K$, for this talk $\mathcal{O}_{K}=\mathbb{Z}[X] / P(X)$ (more generally $\mathbb{Z}[X] / P(X) \subseteq \mathcal{O}_{K}$ but \mathcal{O}_{K} can be larger)

Number fields

Number field: $K=\mathbb{Q}[X] / P(X) \quad(P$ irreducible, $\operatorname{deg}(P)=d)$

- $K=\mathbb{Q}$
- $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic field
- $K=\mathbb{Q}[X] /\left(X^{d}-X-1\right)$ with d prime \rightsquigarrow NTRUPrime field

Ring of integers: $\mathcal{O}_{K} \subset K$, for this talk $\mathcal{O}_{K}=\mathbb{Z}[X] / P(X)$ (more generally $\mathbb{Z}[X] / P(X) \subseteq \mathcal{O}_{K}$ but \mathcal{O}_{K} can be larger)

- $\mathcal{O}_{K}=\mathbb{Z}$
- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic ring
- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{d}-X-1\right)$ with d prime \rightsquigarrow NTRUPrime ring of integers

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: Σ :

$$
\begin{aligned}
K & \rightarrow \mathbb{R}^{d} \\
\sum_{i=0}^{d-1} y_{i} X^{i} & \mapsto\left(y_{0}, \cdots, y_{d-1}\right)
\end{aligned}
$$

Canonical embedding: σ :

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\Sigma: \quad K \rightarrow \mathbb{R}^{d}$

$$
\sum_{i=0}^{d-1} y_{i} x^{i} \mapsto\left(y_{0}, \cdots, y_{d-1}\right)
$$

Canonical embedding: σ :

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

- both embeddings induce a (different) geometry on K

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\Sigma: \quad K \rightarrow \mathbb{R}^{d}$

$$
\sum_{i=0}^{d-1} y_{i} x^{i} \mapsto\left(y_{0}, \cdots, y_{d-1}\right)
$$

Canonical embedding: σ :

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

- both embeddings induce a (different) geometry on K

Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\Sigma: \quad K \rightarrow \mathbb{R}^{d}$

$$
\sum_{i=0}^{d-1} y_{i} x^{i} \mapsto\left(y_{0}, \cdots, y_{d-1}\right)
$$

Canonical embedding: σ :

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

- both embeddings induce a (different) geometry on K

Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\Sigma: \quad K \rightarrow \mathbb{R}^{d}$

$$
\sum_{i=0}^{d-1} y_{i} x^{i} \mapsto\left(y_{0}, \cdots, y_{d-1}\right)
$$

Canonical embedding: σ :

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

- both embeddings induce a (different) geometry on K

Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)
- for fields used in crypto, both geometries are \approx the same

Ideals

Ideal: $I \subseteq \mathcal{O}_{K}$ is an ideal if

- $x+y \in I$ for all $x, y \in I$
- $a \cdot x \in I$ for all $a \in \mathcal{O}_{K}$ and $x \in I$

Ideals

Ideal: $I \subseteq \mathcal{O}_{K}$ is an ideal if

- $\quad x+y \in I$ for all $x, y \in I$
- $a \cdot x \in I$ for all $a \in \mathcal{O}_{K}$ and $x \in I$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\{6 a \mid a \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

Ideals

Ideal: $I \subseteq \mathcal{O}_{K}$ is an ideal if

- $\quad x+y \in I$ for all $x, y \in I$
- $a \cdot x \in I$ for all $a \in \mathcal{O}_{K}$ and $x \in I$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\{6 a \mid a \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

Multiplication: $I \cdot J:=\left\{\sum_{i=1}^{r} a_{i} \cdot b_{i} \mid r>0, a_{i} \in I, b_{i} \in J\right\}$ \rightsquigarrow this is also an ideal

Ideals

Ideal: $I \subseteq \mathcal{O}_{K}$ is an ideal if

- $\quad x+y \in I$ for all $x, y \in I$
- $a \cdot x \in I$ for all $a \in \mathcal{O}_{K}$ and $x \in I$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\{6 a \mid a \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

Multiplication: $I \cdot J:=\left\{\sum_{i=1}^{r} a_{i} \cdot b_{i} \mid r>0, a_{i} \in I, b_{i} \in J\right\}$ \rightsquigarrow this is also an ideal

- $I_{1} \cdot J_{1}=\{12 a \mid a \in \mathbb{Z}\}$

Ideals

Ideal: $I \subseteq \mathcal{O}_{K}$ is an ideal if

- $x+y \in I$ for all $x, y \in I$
- $a \cdot x \in I$ for all $a \in \mathcal{O}_{K}$ and $x \in I$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\{6 a \mid a \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

Multiplication: $I \cdot J:=\left\{\sum_{i=1}^{r} a_{i} \cdot b_{i} \mid r>0, a_{i} \in I, b_{i} \in J\right\}$ \rightsquigarrow this is also an ideal

- $I_{1} \cdot J_{1}=\{12 a \mid a \in \mathbb{Z}\}$

Algebraic norm: $\mathcal{N}(I):=\left|\mathcal{O}_{K} / I\right|$ ("size" of I)
\rightsquigarrow norm is multiplicative: $\mathcal{N}(I J)=\mathcal{N}(I) \mathcal{N}(J)$

Ideals

Ideal: $I \subseteq \mathcal{O}_{K}$ is an ideal if

- $\quad x+y \in I$ for all $x, y \in I$
- $a \cdot x \in I$ for all $a \in \mathcal{O}_{K}$ and $x \in I$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\{6 a \mid a \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

Multiplication: $I \cdot J:=\left\{\sum_{i=1}^{r} a_{i} \cdot b_{i} \mid r>0, a_{i} \in I, b_{i} \in J\right\}$ \rightsquigarrow this is also an ideal

- $I_{1} \cdot J_{1}=\{12 a \mid a \in \mathbb{Z}\}$

Algebraic norm: $\mathcal{N}(I):=\left|\mathcal{O}_{K} / I\right|$ ("size" of I) \rightsquigarrow norm is multiplicative: $\mathcal{N}(I J)=\mathcal{N}(I) \mathcal{N}(J)$

- $\mathcal{N}\left(I_{1}\right)=2$ and $\mathcal{N}\left(J_{1}\right)=6$
- $\mathcal{N}\left(I_{2}\right)=2$

Principal ideals and units

Units: $O_{K}^{\times}=\left\{a \in O_{K} \mid \exists b \in O_{K}, a b=1\right\}$

Principal ideals and units

Units: $O_{K}^{\times}=\left\{a \in O_{K} \mid \exists b \in O_{K}, a b=1\right\}$

- $\mathbb{Z}^{\times}=\{-1,1\}$
- $\left(\mathbb{Z}[X] /\left(X^{2}+1\right)\right)^{\times}=\{-1,1,-X, X\}$
- $\left(\mathbb{Z}[X] /\left(X^{4}+1\right)\right)^{\times}=\left\{ \pm\left(1+X+X^{2}\right)^{i} \mid i \in \mathbb{Z}\right\}$
- in general, \mathcal{O}_{K}^{\times}is infinite

Principal ideals and units

Units: $O_{K}^{\times}=\left\{a \in O_{K} \mid \exists b \in O_{K}, a b=1\right\}$

- $\mathbb{Z}^{\times}=\{-1,1\}$
- $\left(\mathbb{Z}[X] /\left(X^{2}+1\right)\right)^{\times}=\{-1,1,-X, X\}$
- $\left(\mathbb{Z}[X] /\left(X^{4}+1\right)\right)^{\times}=\left\{ \pm\left(1+X+X^{2}\right)^{i} \mid i \in \mathbb{Z}\right\}$
- in general, \mathcal{O}_{K}^{\times}is infinite

Principal ideals: $\langle g\rangle:=\left\{g \cdot a \mid a \in O_{K}\right\}$

Principal ideals and units

Units: $O_{K}^{\times}=\left\{a \in O_{K} \mid \exists b \in O_{K}, a b=1\right\}$

- $\mathbb{Z}^{\times}=\{-1,1\}$
- $\left(\mathbb{Z}[X] /\left(X^{2}+1\right)\right)^{\times}=\{-1,1,-X, X\}$
- $\left(\mathbb{Z}[X] /\left(X^{4}+1\right)\right)^{\times}=\left\{ \pm\left(1+X+X^{2}\right)^{i} \mid i \in \mathbb{Z}\right\}$
- in general, \mathcal{O}_{K}^{\times}is infinite

Principal ideals: $\langle g\rangle:=\left\{g \cdot a \mid a \in O_{K}\right\}$

- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}=\langle 2\rangle$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}=\langle 1+X\rangle$

Principal ideals and units

Units: $O_{K}^{\times}=\left\{a \in O_{K} \mid \exists b \in O_{K}, a b=1\right\}$

- $\mathbb{Z}^{\times}=\{-1,1\}$
- $\left(\mathbb{Z}[X] /\left(X^{2}+1\right)\right)^{\times}=\{-1,1,-X, X\}$
- $\left(\mathbb{Z}[X] /\left(X^{4}+1\right)\right)^{\times}=\left\{ \pm\left(1+X+X^{2}\right)^{i} \mid i \in \mathbb{Z}\right\}$
- in general, \mathcal{O}_{K}^{\times}is infinite

Principal ideals: $\langle g\rangle:=\left\{g \cdot a \mid a \in O_{K}\right\}$

- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}=\langle 2\rangle$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}=\langle 1+X\rangle$
- g is a generator of $\langle g\rangle$
- $\{$ generators of $\langle g\rangle\}=\left\{g u \mid u \in O_{K}^{\times}\right\}$
- $\mathcal{N}(\langle g\rangle)=|\mathcal{N}(g)|$, where $\mathcal{N}(g)=\prod_{i} g\left(\alpha_{i}\right) \quad\left(\alpha_{i}\right.$ complex roots of $\left.P(X)\right)$

Outline of the talk

(1) A bit of number theory

(2) Algebraic lattices

(3) Algorithmic problems for cryptography

Ideal lattices

\mathcal{O}_{K} is a lattice:

$$
\begin{aligned}
& -\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z} \\
& \sigma\left(\mathcal{O}_{K}\right)=\sigma(1) \cdot \mathbb{Z}+\cdots+\sigma\left(X^{d-1}\right) \cdot \mathbb{Z}
\end{aligned}
$$

Ideal lattices

\mathcal{O}_{K} is a lattice:

- $\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z}$
- $\sigma\left(\mathcal{O}_{K}\right)=\sigma(1) \cdot \mathbb{Z}+\cdots+\sigma\left(X^{d-1}\right) \cdot \mathbb{Z}$
$\sigma\left(\mathcal{O}_{K}\right)$ is a lattice of rank d in $\mathbb{C}^{d} \simeq \mathbb{R}^{2 d}$ with basis $\left(\sigma\left(X^{i}\right)\right)_{0 \leq i<d}$

Ideal lattices

\mathcal{O}_{K} is a lattice:

- $\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z}$
- $\sigma\left(\mathcal{O}_{K}\right)=\sigma(1) \cdot \mathbb{Z}+\cdots+\sigma\left(X^{d-1}\right) \cdot \mathbb{Z}$
$\sigma\left(\mathcal{O}_{K}\right)$ is a lattice of rank d in $\mathbb{C}^{d} \simeq \mathbb{R}^{2 d}$ with basis $\left(\sigma\left(X^{i}\right)\right)_{0 \leq i<d}$
$\langle g\rangle$ is a lattice:
- $\langle g\rangle=g \cdot \mathcal{O}_{K}=g \cdot 1 \cdot \mathbb{Z}+g \cdot X \cdot \mathbb{Z}+\cdots+g \cdot X^{d-1} \cdot \mathbb{Z}$
- $\sigma(\langle g\rangle)=\sigma(g) \cdot \mathbb{Z}+\cdots+\sigma\left(g \cdot X^{d-1}\right) \cdot \mathbb{Z}$

Ideal lattices

\mathcal{O}_{K} is a lattice:

- $\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z}$
- $\sigma\left(\mathcal{O}_{K}\right)=\sigma(1) \cdot \mathbb{Z}+\cdots+\sigma\left(X^{d-1}\right) \cdot \mathbb{Z}$
$\sigma\left(\mathcal{O}_{K}\right)$ is a lattice of rank d in $\mathbb{C}^{d} \simeq \mathbb{R}^{2 d}$ with basis $\left(\sigma\left(X^{i}\right)\right)_{0 \leq i<d}$
$\langle g\rangle$ is a lattice:
- $\langle g\rangle=g \cdot \mathcal{O}_{K}=g \cdot 1 \cdot \mathbb{Z}+g \cdot X \cdot \mathbb{Z}+\cdots+g \cdot X^{d-1} \cdot \mathbb{Z}$
- $\sigma(\langle g\rangle)=\sigma(g) \cdot \mathbb{Z}+\cdots+\sigma\left(g \cdot X^{d-1}\right) \cdot \mathbb{Z}$
$\sigma(\langle g\rangle)$ is a lattice of rank d in $\mathbb{C}^{d} \simeq \mathbb{R}^{2 d}$ with basis $\left(\sigma\left(g \cdot X^{i}\right)\right)_{0 \leq i<d}$
(this is also true for non principal ideals)

Ideal lattices (2)

Ideal lattices (2)

Ideal lattices (2)

$$
\text { Basis of }\langle g\rangle: g, g \cdot X, \cdots, g \cdot X^{d-1}
$$

Ideal lattices (2)

Basis of $\langle g\rangle: g, g \cdot X, \cdots, g \cdot X^{d-1}$

$$
\left(\begin{array}{c}
g_{0} \\
g_{1} \\
\vdots \\
g_{d-1}
\end{array}\right.
$$

(in $K=\mathbb{Q}[X] / X^{d}+1$)

Ideal lattices (2)

Basis of $\langle g\rangle: g, g \cdot X, \cdots, g \cdot X^{d-1}$

$$
\begin{aligned}
& \left(\begin{array}{cc}
g_{0} & -g_{d-1} \\
g_{1} & g_{0} \\
\vdots & \vdots \\
g_{d-1} & g_{d-2}
\end{array}\right. \\
& \text { (in } K=\mathbb{Q}[X] / X^{d}+1 \text {) }
\end{aligned}
$$

Ideal lattices (2)

Basis of $\langle g\rangle: g, g \cdot X, \cdots, g \cdot X^{d-1}$

$$
\begin{aligned}
& \begin{array}{lllll}
\bullet \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
X_{1} & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \sigma\left(O_{K}\right)
\end{array} \\
& \left(\begin{array}{cccc}
g_{0} & -g_{d-1} & \cdots & -g_{1} \\
g_{1} & g_{0} & \cdots & -g_{2} \\
\vdots & \vdots & \ddots & \vdots \\
g_{d-1} & g_{d-2} & \cdots & g_{0}
\end{array}\right) \\
& \text { (in } K=\mathbb{Q}[X] / X^{d}+1 \text {) }
\end{aligned}
$$

Ideal lattices (2)

Discriminant: $\Delta_{K}:=\sqrt{\operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)}$

Ideal lattices (2)

Discriminant: $\Delta_{K}:=\sqrt{\operatorname{vol}\left(\sigma\left(\mathcal{O}_{K}\right)\right)}$
Volume of an ideal: $\operatorname{vol}(\sigma(I))=\mathcal{N}(I) \cdot \sqrt{\Delta_{K}}$

Module lattices

(Free) module:

$$
M=\left\{B \cdot x \mid x \in \mathcal{O}_{K}^{k}\right\} \text { for some matrix } B \in \mathcal{O}_{K}^{k \times k}{\text { with } \operatorname{det}_{K}(B) \neq 0}
$$

Module lattices

(Free) module:

$$
M=\left\{B \cdot x \mid x \in \mathcal{O}_{K}^{k}\right\} \text { for some matrix } B \in \mathcal{O}_{K}^{k \times k} \text { with } \operatorname{det}_{K}(B) \neq 0
$$

- k is the module rank
- B is a module basis of M
(if the module is not free, it has a "pseudo-basis" instead)
$\sigma(M)$ is a lattice:
- of \mathbb{Z}-rank $n:=d \cdot k$, included in \mathbb{C}^{n}

Module lattices

(Free) module:
$M=\left\{B \cdot x \mid x \in \mathcal{O}_{K}^{k}\right\}$ for some matrix $B \in \mathcal{O}_{K}^{k \times k}$ with $\operatorname{det}_{K}(B) \neq 0$

- k is the module rank
- B is a module basis of M
(if the module is not free, it has a "pseudo-basis" instead)
$\sigma(M)$ is a lattice:
- of \mathbb{Z}-rank $n:=d \cdot k$, included in \mathbb{C}^{n}
- with basis $\left(\sigma\left(b_{i} X^{j}\right)\right)_{\substack{1 \leq i \leq k \\ 0 \leq j<d}} \quad\left(b_{i}\right.$ columns of $\left.B\right)$

Module lattices

(Free) module:
$M=\left\{B \cdot x \mid x \in \mathcal{O}_{K}^{k}\right\}$ for some matrix $B \in \mathcal{O}_{K}^{k \times k}$ with $\operatorname{det}_{K}(B) \neq 0$

- k is the module rank
- B is a module basis of M
(if the module is not free, it has a "pseudo-basis" instead)
$\sigma(M)$ is a lattice:
- of \mathbb{Z}-rank $n:=d \cdot k$, included in \mathbb{C}^{n}
- with basis $\left(\sigma\left(b_{i} X^{j}\right)\right)_{\substack{1 \leq i<k \\ 0 \leq j<d}} \quad\left(b_{i}\right.$ columns of $\left.B\right)$
- $\operatorname{vol}(M)=\left|\mathcal{N}\left(\operatorname{det}_{K}(B)\right)\right| \cdot \Delta_{K}^{k / 2}$

Modules vs ideals

$$
\begin{aligned}
\text { Ideal } & =\text { Module of rank } 1 \\
\text { (principal ideal } & =\text { free module of rank } 1 \text {) }
\end{aligned}
$$

Modules vs ideals

$$
\begin{aligned}
\text { Ideal } & =\text { Module of rank } 1 \\
\text { (principal ideal } & =\text { free module of rank } 1 \text {) }
\end{aligned}
$$

$\ln K=\mathbb{Q}[X] /\left(X^{d}+1\right)$:

$$
M_{a}=\left(\begin{array}{cccc}
a_{1} & -a_{d} & \cdots & -a_{2} \\
a_{2} & a_{1} & \cdots & -a_{3} \\
\vdots & \ddots & \ddots & \vdots \\
a_{d} & a_{d-1} & \cdots & a_{1}
\end{array}\right)
$$

basis of a principal ideal lattice

basis of a free module lattice of rank k

Algorithmic problems

Algorithmic problems

Notations:

- id- $\mathrm{X}=$ problem X restricted to ideal lattices
- mod- $X_{k}=$ problem X restricted to module lattices of rank k

Hardness of SVP

Asymptotics:

SVP and mod-SVP ${ }_{k}$

$$
(k \geq 2)
$$

id-SVP [CDW17]
(in cyclotomic fields)
id-SVP [PHS19,BR20]
(with $2^{O(n)}$ pre-processing)
[CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt. [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt. [BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

Hardness of SVP

Asymptotics:

SVP and mod-SVP ${ }_{k}$ ($k \geq 2$)

id-SVP [CDW17]
(in cyclotomic fields)

id-SVP [PHS19,BR20]
(with $2^{O(n)}$ pre-processing)

Practice: Darmstadt challenge ${ }^{1}$
\rightsquigarrow max dim for SVP: 180
$\rightsquigarrow \max \operatorname{dim}$ for id-SVP: 150

1 https://wWW.latticechallenge.org/

Outline of the talk

(1) A bit of number theory

(2) Algebraic lattices
(3) Algorithmic problems for cryptography

Ring and Module-LWE

(search) mod-LWE ${ }_{k}$
Parameters: $k, m, q \in \mathbb{Z}_{>0}$ and $\alpha \in \mathbb{R}_{>0}$
Objective: given $(A, b) \in \mathcal{O}_{K}^{m \times k} \times \mathcal{O}_{K}^{m}$, with

- A uniform in $\mathcal{O}_{K}^{m \times k}$
- s uniform in \mathcal{O}_{K}^{K} and $e \in \mathcal{O}_{K}^{m}$ such that $\sigma(e) \leftarrow D_{\sigma\left(\mathcal{O}_{K}\right), \alpha \cdot q}$
($D_{L, \sigma}$ discrete Gaussian distribution over L with parameter σ)
- $b=A s+e$
output s
(can also be defined using Σ instead of σ)

Ring and Module-LWE

(search) mod-LWE ${ }_{k}$
Parameters: $k, m, q \in \mathbb{Z}_{>0}$ and $\alpha \in \mathbb{R}_{>0}$
Objective: given $(A, b) \in \mathcal{O}_{K}^{m \times k} \times \mathcal{O}_{K}^{m}$, with

- A uniform in $\mathcal{O}_{K}^{m \times k}$
- s uniform in \mathcal{O}_{K}^{K} and $e \in \mathcal{O}_{K}^{m}$ such that $\sigma(e) \leftarrow D_{\sigma\left(\mathcal{O}_{K}\right), \alpha \cdot q}$
($D_{L, \sigma}$ discrete Gaussian distribution over L with parameter σ)
- $b=A s+e$
output s
(can also be defined using Σ instead of σ)

RLWE $=\bmod -$ LWE $_{1}$

Decision mod-LWE

dec-mod-LWE ${ }_{k}$

Parameters: $k, m, q \in \mathbb{Z}_{>0}$ and $\alpha \in \mathbb{R}_{>0}$
Objective: distinguish between (A, b) and (A, u), where

- A and b are as on the previous slide
- u is uniform in \mathcal{O}_{K}^{m}

Decision mod-LWE

dec-mod-LWE ${ }_{k}$

Parameters: $k, m, q \in \mathbb{Z}_{>0}$ and $\alpha \in \mathbb{R}_{>0}$
Objective: distinguish between (A, b) and (A, u), where

- A and b are as on the previous slide
- u is uniform in \mathcal{O}_{K}^{m}

$$
{\bmod -\mathrm{LWE}_{k} \text { reduces to dec-mod-LWE }}_{k}[\mathrm{LS15]}
$$

Reductions

\triangle Arrows may not all compose (different parameters)

(References are for the first reductions. Better, more recent reductions may exist.)

[^0]
From mod-LWE k to mod-SIVP ${ }_{k+1}$

Reminder mod-LWE ${ }_{k}:(A, b=A \cdot s+e \bmod q)$
with $s \in \mathcal{O}_{K}^{k}, e \in \mathcal{O}_{K}^{m}$ and $\|\sigma(e)\| \approx \alpha \cdot q$
${\bmod -\mathrm{LWE}_{k}}$ is a BDD in the rank- m module lattice

$$
\Lambda=\sigma\left(\left\{x \in \mathcal{O}_{K}^{m} \mid \exists z \in \mathcal{O}_{K}^{k}, x=A \cdot z \bmod q\right\}\right)
$$

- BDD only if m is large enough

From mod-LWE k to mod-SIVP ${ }_{k+1}$

Reminder mod-LWE ${ }_{k}:(A, b=A \cdot s+e \bmod q)$
with $s \in \mathcal{O}_{K}^{k}, e \in \mathcal{O}_{K}^{m}$ and $\|\sigma(e)\| \approx \alpha \cdot q$
${\bmod -\mathrm{LWE}_{k}}$ is a BDD in the rank- m module lattice

$$
\Lambda=\sigma\left(\left\{x \in \mathcal{O}_{K}^{m} \mid \exists z \in \mathcal{O}_{K}^{k}, x=A \cdot z \bmod q\right\}\right)
$$

- BDD only if m is large enough \rightsquigarrow how large?

From mod-LWE k to mod-SIVP ${ }_{k+1}$

Reminder mod-LWE ${ }_{k}:(A, b=A \cdot s+e \bmod q)$
with $s \in \mathcal{O}_{K}^{k}, e \in \mathcal{O}_{K}^{m}$ and $\|\sigma(e)\| \approx \alpha \cdot q$
${\bmod -\mathrm{LWE}_{k}}^{\text {is a BDD }}$ in the rank- m module lattice

$$
\Lambda=\sigma\left(\left\{x \in \mathcal{O}_{K}^{m} \mid \exists z \in \mathcal{O}_{K}^{k}, x=A \cdot z \bmod q\right\}\right)
$$

- BDD only if m is large enough \rightsquigarrow how large?
- $m=k$ is not sufficient

From mod-LWE k to mod-SIVP ${ }_{k+1}$

Reminder mod-LWE ${ }_{k}:(A, b=A \cdot s+e \bmod q)$
with $s \in \mathcal{O}_{K}^{k}, e \in \mathcal{O}_{K}^{m}$ and $\|\sigma(e)\| \approx \alpha \cdot q$
${\bmod -\mathrm{LWE}_{k}}$ is a BDD in the rank- m module lattice

$$
\Lambda=\sigma\left(\left\{x \in \mathcal{O}_{K}^{m} \mid \exists z \in \mathcal{O}_{K}^{k}, x=A \cdot z \bmod q\right\}\right)
$$

- BDD only if m is large enough \rightsquigarrow how large?
- $m=k$ is not sufficient
- $m=k+1$ might be sufficient depending on α and q
- we need roughly $m=k \cdot \frac{\log (q)}{\log (1 / \alpha)}$
- for $k=1, m=2$ is possible if $\alpha \cdot q \lesssim \sqrt{q}$

From mod-LWE k to mod-SIVP ${ }_{k+1}$

Reminder mod-LWE ${ }_{k}:(A, b=A \cdot s+e \bmod q)$
with $s \in \mathcal{O}_{K}^{k}, e \in \mathcal{O}_{K}^{m}$ and $\|\sigma(e)\| \approx \alpha \cdot q$
${\bmod -\mathrm{LWE}_{k}}$ is a BDD in the rank-m module lattice

$$
\Lambda=\sigma\left(\left\{x \in \mathcal{O}_{K}^{m} \mid \exists z \in \mathcal{O}_{K}^{k}, x=A \cdot z \bmod q\right\}\right)
$$

- BDD only if m is large enough \rightsquigarrow how large?
- $m=k$ is not sufficient
- $m=k+1$ might be sufficient depending on α and q
- we need roughly $m=k \cdot \frac{\log (q)}{\log (1 / \alpha)}$
- for $k=1, m=2$ is possible if $\alpha \cdot q \lesssim \sqrt{q}$

RLWE is at best a special case of mod- $-D_{2}$

Reductions

\triangle Arrows may not all compose (different parameters)

Reductions

\triangle Arrows may not all compose (different parameters)

Reductions

\triangle Arrows may not all compose (different parameters) \qquad
[LPSW19] Lee, Pellet-Mary, Stehlé, and Wallet. An LLL algorithm for module lattices. Asiacrypt. [MS20] Mukherjee and Stephens-Davidowitz. Lattice reduction for modules, or how to reduce moduleSVP to moduleSVP. Crypto.

Reductions

A Arrows may not all compose (different parameters) \qquad
[LPSW19] Lee, Pellet-Mary, Stehlé, and Wallet. An LLL algorithm for module lattices. Asiacrypt. [MS20] Mukherjee and Stephens-Davidowitz. Lattice reduction for modules, or how to reduce moduleSVP to moduleSVP. Crypto.

NTRU (a.k.a, partial Fourier recovery problem [HPS98])

(search) NTRU

Parameters: $q \geq B>1$ and ψ distribution over \mathcal{O}_{K} outputting elements $\leq B$

Objective: given $h \in \mathcal{O}_{K} /\left(q \mathcal{O}_{K}\right)$, with

- $f, g \leftarrow \psi$ conditioned on g invertible modulo q
- $h=f \cdot g^{-1} \bmod q$
output (f, g)
(can also be defined using Σ instead of σ)

NTRU (a.k.a, partial Fourier recovery problem [HPS98])

(search) NTRU

Parameters: $q \geq B>1$ and ψ distribution over \mathcal{O}_{K} outputting elements $\leq B$

Objective: given $h \in \mathcal{O}_{K} /\left(q \mathcal{O}_{K}\right)$, with

- $f, g \leftarrow \psi$ conditioned on g invertible modulo q
- $h=f \cdot g^{-1} \bmod q$
output (f, g)
(can also be defined using Σ instead of σ)

dec-NTRU

Parameters: q, B and ψ
Objective: distinguish between h as above and u uniform in $\mathcal{O}_{K} /\left(q \mathcal{O}_{K}\right)$

Two regimes of NTRU

If $B \geq \sqrt{q} \cdot \operatorname{poly}(d)$

Two regimes of NTRU

$$
\text { If } B \geq \sqrt{q} \cdot \operatorname{poly}(d)
$$

$$
\text { If } B \leq \sqrt{q} / \operatorname{poly}(d)
$$

- h is statistically close to uniform $\bmod q$ [SS11,WW18]
- dec-NTRU is statistically hard

Two regimes of NTRU

$$
\text { If } B \geq \sqrt{q} \cdot \operatorname{poly}(d)
$$

- h is statistically close to uniform $\bmod q$ [SS11,WW18]
- dec-NTRU is statistically hard

$$
\text { If } B \leq \sqrt{\bar{q}} / \operatorname{poly}(d)
$$

- h is not statistically close to uniform $\bmod q$
- NTRU is a special case of unique-SVP

Two regimes of NTRU

$$
\text { If } B \geq \sqrt{q} \cdot \operatorname{poly}(d)
$$

- h is statistically close to uniform $\bmod q$ [SS11,WW18]
- dec-NTRU is statistically hard

$$
\text { If } B \leq \sqrt{\bar{q}} / \operatorname{poly}(d)
$$

- h is not statistically close to uniform mod q
- NTRU is a special case of unique-SVP

Reductions

Arrows may not all compose (different parameters)

[^1]
Reductions

\triangle Arrows may not all compose (different parameters) \triangle

```
[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.

\section*{Reductions}

\(\triangle\) Arrows may not all compose (different parameters) \(\triangle\)
```

[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.

id-SVP

> id-SVP is a lower bound on the hardness of RLWE, mod-LWE, NTRU

id-SVP

> id-SVP is a lower bound on the hardness of RLWE, mod-LWE, NTRU

Breaking id-SVP does not break:

- RLWE, mod-LWE, NTRU
- most lattice-based crypto using algebraic lattices

id-SVP

id-SVP is a lower bound on the hardness of RLWE, mod-LWE, NTRU

Breaking id-SVP does not break:

- RLWE, mod-LWE, NTRU
- most lattice-based crypto using algebraic lattices

Breaking id-SVP do break:

- some early FHE schemes
- the PV-Knap problem (see next slides)

PV-Knap (a.k.a, partial Fourier recovery problem)

Notations:

- $K=\mathbb{Q}[X] / \Phi_{N}(X)$ with Φ_{N} cyclotomic polynomial
- $\Phi_{N}(\alpha)=0$ if and only if α is a primitive N-th root of unity

PV-Knap (a.k.a, partial Fourier recovery problem)

Notations:

- $K=\mathbb{Q}[X] / \Phi_{N}(X)$ with Φ_{N} cyclotomic polynomial
- $\Phi_{N}(\alpha)=0$ if and only if α is a primitive N-th root of unity
- $q=1 \bmod N$ prime
- so that there exists a primitive N-th root of unity in \mathbb{F}_{q}

PV-Knap (a.k.a, partial Fourier recovery problem)

Notations:

- $K=\mathbb{Q}[X] / \Phi_{N}(X)$ with Φ_{N} cyclotomic polynomial
- $\Phi_{N}(\alpha)=0$ if and only if α is a primitive N-th root of unity
- $q=1 \bmod N$ prime
- so that there exists a primitive N-th root of unity in \mathbb{F}_{q}
- $S_{t} \subset\left\{\omega\right.$, roots of Φ_{N} in $\left.\mathbb{F}_{q}\right\}$ with size $\left|S_{t}\right|=t \quad(1 \leq t \leq \varphi(N))$

PV-Knap (a.k.a, partial Fourier recovery problem)
Notations:

- $K=\mathbb{Q}[X] / \Phi_{N}(X)$ with Φ_{N} cyclotomic polynomial
- $\Phi_{N}(\alpha)=0$ if and only if α is a primitive N-th root of unity
- $q=1 \bmod N$ prime
- so that there exists a primitive N-th root of unity in \mathbb{F}_{q}
- $S_{t} \subset\left\{\omega\right.$, roots of Φ_{N} in $\left.\mathbb{F}_{q}\right\}$ with size $\left|S_{t}\right|=t \quad(1 \leq t \leq \varphi(N))$

Partial Vandermonde Knapsack (PV-Knap) [HPS+14]
Parameters: q, S_{t} and $B>1$
Objective: recover f from $(f(\omega) \bmod q)_{\omega \in S_{t}}$, where

- $f=f(X) \in \mathcal{O}_{K}$ is sampled randomly such that $\|\sigma(f)\| \leq B$
(The original article worked in $\mathbb{Q}[X] /\left(X^{N}-1\right)$ and with Σ)

PV-Knap is an (ideal) lattice problem

PV-Knap

Objective: recover f from $(f(\omega) \bmod q)_{\omega \in S_{t}}$, where

- $f=f(X) \in \mathcal{O}_{K}$ is sampled randomly such that $\|\sigma(f)\| \leq B$

A few observations:

- easy to recover a large \tilde{f} such that $\tilde{f}(\omega)=f(\omega) \bmod q, \forall \omega \in S_{t}$ \rightsquigarrow polynomial interpolation in \mathbb{F}_{q}

PV-Knap is an (ideal) lattice problem

PV-Knap

Objective: recover f from $(f(\omega) \bmod q)_{\omega \in S_{t}}$, where

- $f=f(X) \in \mathcal{O}_{K}$ is sampled randomly such that $\|\sigma(f)\| \leq B$

A few observations:

- easy to recover a large \tilde{f} such that $\tilde{f}(\omega)=f(\omega) \bmod q, \forall \omega \in S_{t}$ \leadsto polynomial interpolation in \mathbb{F}_{q}
- Recovering small f from large \tilde{f} is a BDD in

$$
\Lambda=\sigma\left(\left\{g \in \mathcal{O}_{K} \mid g(\omega)=0 \bmod q, \forall \omega \in S_{t}\right\}\right)
$$

(if parameters are well chosen)

PV-Knap is an (ideal) lattice problem

PV-Knap

Objective: recover f from $(f(\omega) \bmod q)_{\omega \in S_{t}}$, where

- $f=f(X) \in \mathcal{O}_{K}$ is sampled randomly such that $\|\sigma(f)\| \leq B$

A few observations:

- easy to recover a large \tilde{f} such that $\tilde{f}(\omega)=f(\omega) \bmod q, \forall \omega \in S_{t}$
\rightsquigarrow polynomial interpolation in \mathbb{F}_{q}
- Recovering small f from large \tilde{f} is a BDD in

$$
\Lambda=\sigma\left(\left\{g \in \mathcal{O}_{K} \mid g(\omega)=0 \bmod q, \forall \omega \in S_{t}\right\}\right)
$$

(if parameters are well chosen)

- Λ is an ideal lattice [BSS22]

Hardness of PV-Knap

Hardness of PV-Knap

Warning:

- The reduction produces specific ideals (they divide $\langle q\rangle$)
- PV-Knap might be easier than id-SVP

Hardness of PV-Knap

Warning:

- The reduction produces specific ideals (they divide $\langle q\rangle$)
- PV-Knap might be easier than id-SVP
- if S_{t} is badly chosen, id-SVP can be solved in poly time [BGP22]
- attacks on PV-Knap for bad choices of S_{t}

Outline of the talk

(1) A bit of number theory

(2) Algebraic lattices
(3) Algorithmic problems for cryptography
(4) Some more number theory

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$
- $a=0$ iff r is a unit

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.
Properties $\left(r \in O_{K}\right)$
$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$
- $a=0$ iff r is a unit

The Log-unit lattice: $\Lambda:=\log \left(O_{K}^{\times}\right)$is a lattice in H.

The Log function

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{d} \\
y & \mapsto\left(\log \left|y\left(\alpha_{1}\right)\right|, \cdots, \log \left|y\left(\alpha_{d}\right)\right|\right)
\end{aligned}
$$

Let $1=(1, \cdots, 1)$ and $H=1^{\perp}$.

Properties $\left(r \in O_{K}\right)$

$\log r=h+a \cdot 1$, with $h \in H$

- $\log \left(r_{1} \cdot r_{2}\right)=\log \left(r_{1}\right)+\log \left(r_{2}\right)$
- $a \geq 0$
- $a=0$ iff r is a unit
- $\|r\| \simeq \exp \left(\|\log r\|_{\infty}\right)$

The Log-unit lattice: $\Lambda:=\log \left(O_{K}^{\times}\right)$is a lattice in H.

Subfields

```
K
n1
L
\(n_{2}\)
\(\mathbb{Q}\)
```


Meaning:

- K contains L, which contains \mathbb{Q}

Subfields

Meaning:

- K contains L, which contains \mathbb{Q}
- K is a L-vector space of degree $[K: L]=n_{1}$
- L is a \mathbb{Q}-vector space of degree $[L: \mathbb{Q}]=n_{2}$

Subfields

Meaning:

- K contains L, which contains \mathbb{Q}
- K is a L-vector space of degree $[K: L]=n_{1}$
- L is a \mathbb{Q}-vector space of degree $[L: \mathbb{Q}]=n_{2}$
$\Rightarrow K$ is a \mathbb{Q}-vector space of degree $n_{1} \cdot n_{2}$

Subfields

Meaning:

- K contains L, which contains \mathbb{Q}
- K is a L-vector space of degree $[K: L]=n_{1}$
- L is a \mathbb{Q}-vector space of degree $[L: \mathbb{Q}]=n_{2}$
$\Rightarrow K$ is a \mathbb{Q}-vector space of degree $n_{1} \cdot n_{2}$

Example:

Automorphisms and subfields

In this slide $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ (or any Galois field)

Automorphisms: $\exists \sigma_{1}, \cdots, \sigma_{d}$ automorphisms of K

Automorphisms and subfields

In this slide $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ (or any Galois field)

Automorphisms: $\exists \sigma_{1}, \cdots, \sigma_{d}$ automorphisms of K
Properties:

- if $f \in \mathcal{O}_{K}$ then $\sigma_{i}(f) \in \mathcal{O}_{K}$
- $\|\sigma(f)\|=\left\|\sigma\left(\sigma_{i}(f)\right)\right\|$, for all $f \in K$

Automorphisms and subfields

In this slide $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$
(or any Galois field)

Automorphisms: $\exists \sigma_{1}, \cdots, \sigma_{d}$ automorphisms of K
Properties:

- if $f \in \mathcal{O}_{K}$ then $\sigma_{i}(f) \in \mathcal{O}_{K}$
- $\|\sigma(f)\|=\left\|\sigma\left(\sigma_{i}(f)\right)\right\|$, for all $f \in K$

Subfields: If L subfield of K, there exist $S_{L} \subseteq\{1, \cdots, d\}$ s.t.

- $\left|S_{L}\right|=[K: L]-1$
- for all $f \in K$,

$$
\mathcal{N}_{K / L}(f):=f \cdot \prod_{i \in S_{L}} \sigma_{i}(f) \in L
$$

Conclusion

Ideals vs modules of rank ≥ 2 :

- there seem to be a gap in hardness between id-SVP and mod-SIVP ≥ 2

Conclusion

Ideals vs modules of rank ≥ 2 :

- there seem to be a gap in hardness between id-SVP and mod-SIVP ≥ 2

Crypto problems:

- most problems used in crypto are module problems of rank ≥ 2
- RLWE and mod-LWE $\approx \bmod -$ SIVP $_{2}$
- id-SVP \leq NTRU $\leq \bmod -$ SIVP $_{2} \quad$ (where exactly?)

Conclusion

Ideals vs modules of rank ≥ 2 :

- there seem to be a gap in hardness between id-SVP and mod-SIVP ≥ 2

Crypto problems:

- most problems used in crypto are module problems of rank ≥ 2
- RLWE and mod-LWE $\approx \bmod -$ SIVP $_{2}$
- id-SVP \leq NTRU \leq mod-SIVP 2 (where exactly?)
- but some problems are ideal problems
- PV-Knap $\leq i d-S V P$

Conclusion

Ideals vs modules of rank ≥ 2 :

- there seem to be a gap in hardness between id-SVP and mod-SIVP ≥ 2

Crypto problems:

- most problems used in crypto are module problems of rank ≥ 2
- RLWE and mod-LWE $\approx \bmod -$ SIVP $_{2}$
- id-SVP \leq NTRU $\leq \bmod -$ SIVP $_{2}$ (where exactly?)
- but some problems are ideal problems
- PV-Knap $\leq i d-S V P$

Next talk: attacks that exploit the algebraic structure

Conclusion

Ideals vs modules of rank ≥ 2 :

- there seem to be a gap in hardness between id-SVP and mod-SIVP ≥ 2

Crypto problems:

- most problems used in crypto are module problems of rank ≥ 2
- RLWE and mod-LWE $\approx \bmod -$ SIVP $_{2}$
- id-SVP \leq NTRU \leq mod-SIVP 2 (where exactly?)
- but some problems are ideal problems
- PV-Knap $\leq i d-S V P$

Next talk: attacks that exploit the algebraic structure

> Thank you

[^0]: [SSTX09] Stehlé, Seinfeld, Tanaka, Xagawa. Efficient public key encryption based on ideal lattices. Asiacrypt. [LPR10] Lyubashevsky, Peikert, Regev. On ideal lattices and learning with errors over rings. Eurocrypt. [LS15] Langlois, Stehlé. Worst-case to average-case reductions for module lattices. DCC.

[^1]: [Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.
 [PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.

