Geodesically equivalent metrics and Nijenhuis geometry

Alexey Bolsinov

Loughborough University, UK

joint work with A. Konyaev and V. Matveev

Geometry and Integrability 12–16 May 2025, ICMS, Edinburgh

A field of endomorphisms $L = (L_i^i)$ is called a *Nijenhuis operator*, if

$$\mathcal{N}_{L}(\xi,\eta) \stackrel{\text{def}}{=} L^{2}[\xi,\eta] - L[L\xi,\eta] - L[\xi,L\eta] + [L\xi,L\eta] = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all vector fields ξ , η .

A field of endomorphisms $L = (L_j^i)$ is called a *Nijenhuis operator*, if

$$\mathcal{N}_L(\xi,\eta) \stackrel{\mathrm{def}}{=} L^2[\xi,\eta] - L[L\xi,\eta] - L[\xi,L\eta] + [L\xi,L\eta] = 0$$

for all vector fields ξ , η .

Equivalently, in simple terms, Nijenhuis structure is defined by an $n \times n$

matrix
$$L(x) = \begin{pmatrix} L_1^1(x) & \dots & L_n^1(x) \\ \vdots & \ddots & \vdots \\ L_1^n(x) & \dots & L_n^n(x) \end{pmatrix}$$
, $L_j^i(x) = L_j^i(x_1, \dots, x_n)$, such that

$$(\mathcal{N}_L)_{jk}^i \stackrel{\text{def}}{=} \sum_{\alpha} \left(L_j^{\alpha} \frac{\partial L_k^i}{\partial x^{\alpha}} - L_k^{\alpha} \frac{\partial L_j^i}{\partial x^{\alpha}} - L_{\alpha}^i \frac{\partial L_k^{\alpha}}{\partial x^j} + L_{\alpha}^i \frac{\partial L_j^{\alpha}}{\partial x^k} \right) = 0,$$

 $i,j,k=1\ldots,n.$

◆□▶ ◆圖▶ ◆喜▶ ◆喜▶ 言 - ∽��?

any constant operator

any constant operator

▶ any operator of the form $L = f(x) \cdot Id$

- any constant operator
- ▶ any operator of the form $L = f(x) \cdot Id$
- complex structure J on a complex manifold

any constant operator

- ▶ any operator of the form $L = f(x) \cdot Id$
- complex structure J on a complex manifold

$$\blacktriangleright \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}, \begin{pmatrix} x_1 & 1 & \dots & 0 \\ x_2 & 0 & \ddots & \\ \vdots & \vdots & \ddots & 1 \\ x_n & 0 & \dots & 0 \end{pmatrix} \text{ and } \begin{pmatrix} x_1 & 0 & \dots & 0 \\ x_2 & x_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ x_n & \dots & x_2 & x_1 \end{pmatrix}$$

any constant operator

- ▶ any operator of the form $L = f(x) \cdot Id$
- complex structure J on a complex manifold

$$L(x) = J^{-1}SJ, \text{ where } S = \begin{pmatrix} x_1 & 0 & \dots & 0 \\ x_2 & 0 & \ddots & \vdots \\ x_n & 0 & \dots & 0 \end{pmatrix} \text{ and } \begin{pmatrix} x_1 & 0 & \dots & 0 \\ x_2 & x_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ x_n & \dots & x_2 & x_1 \end{pmatrix}$$

any constant operator

- ▶ any operator of the form $L = f(x) \cdot Id$
- complex structure J on a complex manifold

$$\begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}, \begin{pmatrix} x_1 & 1 & \dots & 0 \\ x_2 & 0 & \ddots \\ \vdots & \vdots & \ddots & 1 \\ x_n & 0 & \dots & 0 \end{pmatrix} \text{ and } \begin{pmatrix} x_1 & 0 & \dots & 0 \\ x_2 & x_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ x_n & \dots & x_2 & x_1 \end{pmatrix}$$

$$L(x) = J^{-1}SJ, \text{ where } S = \begin{pmatrix} \sigma_1(x) & 1 \\ \sigma_2(x) & 0 & \ddots \\ \vdots & \vdots & \ddots & 1 \\ \sigma_n(x) & 0 & \dots & 0 \end{pmatrix} \text{ and } J = \begin{pmatrix} \frac{\partial \sigma_i}{\partial x_j} \end{pmatrix}.$$

$$L = A + bx^T + xb^T + Kxx^T, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Theorem The characteristic polynomial

$$\sigma(\lambda) = \det(\lambda \operatorname{Id} - L(x)) = \lambda^n - \sigma_1(x)\lambda^{n-1} - \sigma_2(x)\lambda^{n-2} - \ldots - \sigma_n(x)$$

of a Nijenhuis operator L satisfies the following identity

$$(L - \lambda \operatorname{Id})^* \operatorname{d}\sigma(\lambda) = \sigma(\lambda) \operatorname{dtr} L.$$
 (1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Conversely, if (1) holds for a certain operator L and the coefficients σ_i of the characteristic polynomial are functionally independent, then L is a Nijenhuis.

Let $A = (A_i^i)$ be an operator (not necessarily Nijenhuis).

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Let $A = (A_i^i)$ be an operator (not necessarily Nijenhuis).

Definition

A function f is a *conservation law* for A, if the form $A^* df$ is closed.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Let $A = (A_i^i)$ be an operator (not necessarily Nijenhuis).

Definition

A function f is a *conservation law* for A, if the form $A^* df$ is closed.

Definition

An operator $B = (B_i^i)$ is called a *symmetry* of A, if

$$\blacktriangleright$$
 AB = BA

$$\blacktriangleright \langle A, B \rangle (\xi, \xi) = A[B\xi, \xi] + B[\xi, A\xi] - [A\xi, B\xi] = 0.$$

Let $A = (A_i^i)$ be an operator (not necessarily Nijenhuis).

Definition

A function f is a *conservation law* for A, if the form $A^* df$ is closed.

Definition

An operator $B = (B_i^i)$ is called a *symmetry* of A, if

$$\blacktriangleright$$
 $AB = BA$

$$\blacktriangleright \langle A, B \rangle (\xi, \xi) = A[B\xi, \xi] + B[\xi, A\xi] - [A\xi, B\xi] = 0.$$

B is a strong symmetry if

$$\langle A, B \rangle(\xi, \eta) \stackrel{\text{def}}{=} A[B\xi, \eta] + B[\xi, A\eta] - [A\xi, B\eta] - AB[\xi, \eta] = 0.$$

Let $A = (A_i^i)$ be an operator (not necessarily Nijenhuis).

Definition

A function f is a *conservation law* for A, if the form $A^* df$ is closed.

Definition

An operator $B = (B_i^i)$ is called a *symmetry* of A, if

 $\blacktriangleright AB = BA$

$$\blacktriangleright \langle A, B \rangle (\xi, \xi) = A[B\xi, \xi] + B[\xi, A\xi] - [A\xi, B\xi] = 0.$$

B is a strong symmetry if

$$\langle A, B \rangle(\xi, \eta) \stackrel{\text{def}}{=} A[B\xi, \eta] + B[\xi, A\eta] - [A\xi, B\eta] - AB[\xi, \eta] = 0.$$

Characteristic property of Nijenhuis operators. Every conservation law $f = f_0$ of a Nijenhuis operator L generates a hierarchy of conservation laws $df_k = (L^*)^k df$, k = 0, 1, ..., nConversely, if an operator A admits such an hierarchy for k = 0, 1, ..., nand df_k , k = 0, ..., n - 1, are linearly independent, then A is Nijenhuis.

For a diagonal Nijenhuis operator

$$L = \begin{pmatrix} \lambda_1(x_1) & & \\ & \ddots & \\ & & \lambda_n(x) \end{pmatrix}$$

the conservation laws and symmetries (which will be automatically strong) are or the form

$$h = h_1(u_1) + h_2(u_2) + \cdots + h_n(u_n)$$

and

$$M = \begin{pmatrix} m_1(u_1) & & \\ & \ddots & \\ & & m_n(u_n) \end{pmatrix}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

where h_i and m_i are arbitrary smooth functions.

More interesting example

Let L = L(u) be a Nijenhuis operator and $\sigma(\lambda) = \det(\lambda \operatorname{Id} - L(x))$ is the characteristic polynomial of *L*. Consider the family of operators

$$A_{\lambda} = \sigma(\lambda)(L - \lambda \operatorname{Id})^{-1}.$$
 (2)

All these operators are symmetries of each other. The functions $\frac{1}{\sigma(\mu)}$, $\mu \in \mathbb{R}$ are common conservation laws for these operators.

More interesting example (Ferapontov, Magri, Lorenzoni)

Let L = L(u) be a Nijenhuis operator and $\sigma(\lambda) = \det(\lambda \operatorname{Id} - L(x))$ is the characteristic polynomial of L. Consider the family of operators

$$A_{\lambda} = \sigma(\lambda)(L - \lambda \operatorname{Id})^{-1}.$$
 (2)

All these operators are symmetries of each other. The functions $\frac{1}{\sigma(\mu)}$, $\mu \in \mathbb{R}$ are common conservation laws for these operators.

More interesting example (Ferapontov, Magri, Lorenzoni)

Let L = L(u) be a Nijenhuis operator and $\sigma(\lambda) = \det(\lambda \operatorname{Id} - L(x))$ is the characteristic polynomial of L. Consider the family of operators

$$A_{\lambda} = \sigma(\lambda)(L - \lambda \operatorname{Id})^{-1}.$$
 (2)

All these operators are symmetries of each other. The functions $\frac{1}{\sigma(\mu)}$, $\mu \in \mathbb{R}$ are common conservation laws for these operators.

One more useful description of common conservation laws for A_{λ} .

Let *L* be gl-regular Nijenhuis operator, and *M* be an arbitrary symmetry of *L*. Then *M* can be uniquely written as a linear combination

$$M = g_1 L^{n-1} + g_2 L^{n-2} + \cdots + g_n \operatorname{Id},$$

with smooth coefficients g_i . The function g_1 is a common conservation law for all A_{λ} . Moreover, the following relation holds

$$A_{\lambda}^* \operatorname{d} g_1 = \operatorname{d} \left(\lambda^{n-1} g_1 + \lambda^{n-2} g_2 + \dots + g_n \right).$$
(3)

Let us check that the function $\frac{1}{\sigma(\mu)}$ is a common conservation law for all A_{λ} .

Let us check that the function $\frac{1}{\sigma(\mu)}$ is a common conservation law for all A_{λ} . We use the fundamental property of the characteristic polynomial $\sigma(\mu)$:

 $(L-\mu \operatorname{Id})^* \mathrm{d}\sigma(\mu) = \sigma(\mu) \operatorname{dtr} L$ or in the new notation $A^*_{\mu} \operatorname{d}\sigma(\mu) = \operatorname{dtr} L$

and the matrix identity $A_{\lambda}A_{\mu} = \frac{1}{\lambda - \mu} (\sigma(\mu)A_{\lambda} - \sigma(\lambda)A_{\mu}).$

Let us check that the function $\frac{1}{\sigma(\mu)}$ is a common conservation law for all A_{λ} . We use the fundamental property of the characteristic polynomial $\sigma(\mu)$:

 $(L-\mu \operatorname{Id})^* \operatorname{d} \sigma(\mu) = \sigma(\mu) \operatorname{dtr} L$ or in the new notation $A^*_\mu \operatorname{d} \sigma(\mu) = \operatorname{dtr} L$

and the matrix identity $A_{\lambda}A_{\mu} = \frac{1}{\lambda-\mu} (\sigma(\mu)A_{\lambda} - \sigma(\lambda)A_{\mu}).$

Then

$$A^*_{\lambda} \operatorname{d}\left(\frac{1}{\sigma(\mu)}\right) =$$

Let us check that the function $\frac{1}{\sigma(\mu)}$ is a common conservation law for all A_{λ} . We use the fundamental property of the characteristic polynomial $\sigma(\mu)$:

 $(L-\mu \operatorname{Id})^* \mathrm{d}\sigma(\mu) = \sigma(\mu) \operatorname{dtr} L$ or in the new notation $A^*_{\mu} \operatorname{d}\sigma(\mu) = \operatorname{dtr} L$ and the matrix identity $A_{\lambda}A_{\mu} = \frac{1}{\lambda-\mu} (\sigma(\mu)A_{\lambda} - \sigma(\lambda)A_{\mu}).$

Then

$$A_{\lambda}^* \operatorname{d} \left(rac{1}{\sigma(\mu)}
ight) = \ - \ rac{1}{\sigma^2(\mu)} A_{\lambda}^* \operatorname{d} \sigma(\mu) = - rac{1}{\sigma^2(\mu)} A_{\lambda}^* A_{\mu}^* \operatorname{dtr} L =$$

$$-\frac{1}{\lambda-\mu}\frac{1}{\sigma^{2}(\mu)}\left(\sigma(\mu)A_{\lambda}^{*}\operatorname{dtr} L - \sigma(\lambda)A_{\mu}^{*}\operatorname{dtr} L\right) = \\ -\frac{1}{\lambda-\mu}\frac{\sigma(\mu)\,\mathrm{d}\sigma(\lambda) - \sigma(\lambda)\,\mathrm{d}\sigma(\mu)}{\sigma^{2}(\mu)} = -\frac{1}{\lambda-\mu}\,\operatorname{d}\left(\frac{\sigma(\lambda)}{\sigma(\mu)}\right).$$

Definition (Wikipedia)

In geometry, a *geodesic* is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. It is a generalization of the notion of a "straight line".

Puc.: A geodesic on a triaxial ellipsoid By Cffk - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27525009

FlightsFrom.com website

Flights from London Heathrow

◆□> ◆□> ◆三> ◆三> ● 三○ ○ ○ ○

Two metrics g and \overline{g} are called geodesically equivalent if they share the same (unparametrised) geodesics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two metrics g and \overline{g} are called geodesically equivalent if they share the same (unparametrised) geodesics.

▶ Trivial example: $\bar{g} = \text{const} \cdot g$.

Two metrics g and \overline{g} are called geodesically equivalent if they share the same (unparametrised) geodesics.

- Trivial example: $\bar{g} = \text{const} \cdot g$.
- More interesting example:

Two metrics g and \overline{g} are called geodesically equivalent if they share the same (unparametrised) geodesics.

- Trivial example: $\bar{g} = \text{const} \cdot g$.
- More interesting example:

Beltrami problem. Describe/classify pairs of geodesically equivalent metrics.

Theorem (Levi-Civita (1896))

Let g and \overline{g} be geodesically equivalent Riemannian metrics then (at a generic point)

$$g = \sum_{i=1}^{n} \left(\pm \prod_{\alpha \neq i} (\lambda_i(x_i) - \lambda_\alpha(x_\alpha)) \right) dx_i^2,$$
$$\bar{g} = \sum_{i=1}^{n} \left(\pm \frac{1}{\lambda_i(x_i) \prod_{\alpha} \lambda_\alpha(x_\alpha)} \prod_{\alpha \neq i} (\lambda_i(x_i) - \lambda_\alpha(x_\alpha)) \right) dx_i^2.$$

for some smooth functions $\lambda_i(x_i)$.

From g and \overline{g} to Nijenhuis operators: Sinjukov equation

Observation. It is more convenient to 'replace' \bar{g} with the operator *L* defined by

$$L = \left| \frac{\det \bar{g}}{\det g} \right|^{\frac{1}{n+1}} g \, \bar{g}^{-1}.$$

Notice that this matrix relation is equivalent to

$$\bar{g} = \frac{1}{\det L} g L^{-1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From g and \overline{g} to Nijenhuis operators: Sinjukov equation

Observation. It is more convenient to 'replace' \bar{g} with the operator *L* defined by

$$L = \left| \frac{\det \bar{g}}{\det g} \right|^{rac{1}{n+1}} g \, \bar{g}^{-1}.$$

Notice that this matrix relation is equivalent to

$$\bar{g} = \frac{1}{\det L} g L^{-1}.$$

Theorem (Sinjukov (\simeq 1965))

Metrics g and \bar{g} are geodesically equivalent if and only if L satisfies the PDE system

$$\nabla_k L_{ij} = \frac{1}{2} \left(g_{jk} \frac{\partial \operatorname{tr} L}{\partial x_i} + g_{ik} \frac{\partial \operatorname{tr} L}{\partial x_j} \right), \quad L_{ij} = \sum_{\alpha} g_{i\alpha} L_j^{\alpha}.$$
(4)

From g and \overline{g} to Nijenhuis operators: Sinjukov equation

Observation. It is more convenient to 'replace' \bar{g} with the operator *L* defined by

$$L = \left| \frac{\det \bar{g}}{\det g} \right|^{rac{1}{n+1}} g \, \bar{g}^{-1}.$$

Notice that this matrix relation is equivalent to

$$\bar{g} = \frac{1}{\det L} g L^{-1}.$$

Theorem (Sinjukov (\simeq 1965))

Metrics g and \bar{g} are geodesically equivalent if and only if L satisfies the PDE system

$$\nabla_{k} L_{ij} = \frac{1}{2} \left(g_{jk} \frac{\partial \operatorname{tr} L}{\partial x_{i}} + g_{ik} \frac{\partial \operatorname{tr} L}{\partial x_{j}} \right), \quad L_{ij} = \sum_{\alpha} g_{i\alpha} L_{j}^{\alpha}.$$
(4)

Conclusion. The study of geodesically equivalent metrics 'reduces' to the study of *geodesically compatible* pairs (L,g) (i.e., such that L is a *g*-selfadjoint and satisfies (4)).

The key facts

Theorem (Sinjukov, Matveev, Topalov, Gover, Tabachnikov)

(a) L is a Nijenhuis operator.

- (b) Operators $A_{\lambda} = \det(L \lambda \operatorname{Id}) \cdot (L \lambda \operatorname{Id})^{-1}$ are Killing (1, 1)-tensors of the metric g.
- (c) Functions $F_{\lambda} : T^*M \to \mathbb{R}$, $F_{\lambda} = g^{-1}(A^*_{\lambda} p, p)$, are Poisson commuting first integrals of the geodesic flow of g on T^*M .
- (d) If L is gl-regular, then among these integrals F_{λ} , $\lambda \in \mathbb{R}$, we can choose $n = \dim M$ functionally independent integrals and, therefore, the geodesic flow of g is Liouville integrable.

The key facts

Theorem (Sinjukov, Matveev, Topalov, Gover, Tabachnikov)

(a) L is a Nijenhuis operator.

- (b) Operators $A_{\lambda} = \det(L \lambda \operatorname{Id}) \cdot (L \lambda \operatorname{Id})^{-1}$ are Killing (1, 1)-tensors of the metric g.
- (c) Functions $F_{\lambda} : T^*M \to \mathbb{R}$, $F_{\lambda} = g^{-1}(A^*_{\lambda} p, p)$, are Poisson commuting first integrals of the geodesic flow of g on T^*M .
- (d) If L is gl-regular, then among these integrals F_{λ} , $\lambda \in \mathbb{R}$, we can choose $n = \dim M$ functionally independent integrals and, therefore, the geodesic flow of g is Liouville integrable.

The most difficult part was (c). But now (modulo the above discussion) it's almost obvious due to the following observation:

The key facts

Theorem (Sinjukov, Matveev, Topalov, Gover, Tabachnikov)

(a) L is a Nijenhuis operator.

- (b) Operators $A_{\lambda} = \det(L \lambda \operatorname{Id}) \cdot (L \lambda \operatorname{Id})^{-1}$ are Killing (1, 1)-tensors of the metric g.
- (c) Functions $F_{\lambda} : T^*M \to \mathbb{R}$, $F_{\lambda} = g^{-1}(A^*_{\lambda} p, p)$, are Poisson commuting first integrals of the geodesic flow of g on T^*M .
- (d) If *L* is gl-regular, then among these integrals F_{λ} , $\lambda \in \mathbb{R}$, we can choose $n = \dim M$ functionally independent integrals and, therefore, the geodesic flow of *g* is Liouville integrable.

The most difficult part was (c). But now (modulo the above discussion) it's almost obvious due to the following observation: Let $F_A = g^{-1}(Ap, p)$ and $F_B = g^{-1}(Bp, p)$ be quadratic integrals of the geodesic flow of a metric g, and AB = BA.

Theorem (Sinjukov, Matveev, Topalov, Gover, Tabachnikov)

(a) L is a Nijenhuis operator.

- (b) Operators $A_{\lambda} = \det(L \lambda \operatorname{Id}) \cdot (L \lambda \operatorname{Id})^{-1}$ are Killing (1, 1)-tensors of the metric g.
- (c) Functions $F_{\lambda} : T^*M \to \mathbb{R}$, $F_{\lambda} = g^{-1}(A^*_{\lambda} p, p)$, are Poisson commuting first integrals of the geodesic flow of g on T^*M .
- (d) If L is gl-regular, then among these integrals F_{λ} , $\lambda \in \mathbb{R}$, we can choose $n = \dim M$ functionally independent integrals and, therefore, the geodesic flow of g is Liouville integrable.

The most difficult part was (c). But now (modulo the above discussion) it's almost obvious due to the following observation:

Let $F_A = g^{-1}(Ap, p)$ and $F_B = g^{-1}(Bp, p)$ be quadratic integrals of the geodesic flow of a metric g, and AB = BA.

Then F_A and F_B Poisson commute if and only if the evolutionary flows $u_{t_1} = Au_x$ and $u_{t_2} = Bu_x$ commute, i.e., A and B are symmetries of each other.

Geodesically compatible g and L produce an integrable geodesic flow. Can we add a potential V such that the system with the Hamiltonian

$$H = K + V = \frac{1}{2}g^{ij}p_ip_j + V(q)$$

remains integrable?

Geodesically compatible g and L produce an integrable geodesic flow. Can we add a potential V such that the system with the Hamiltonian

$$H = K + V = \frac{1}{2}g^{ij}p_ip_j + V(q)$$

remains integrable?

Theorem

Let M be a symmetry of a gl-regular operator L written in the form

$$M = g_1 L^{n-1} + g_2 L^{n-2} + \cdots + g_n \mathsf{Id}.$$

Consider the natural Hamiltonian system on M with metric g and potential $V = g_1(q)$, i.e., the system on T^*M with the Hamiltonian $H = K + V = \frac{1}{2}g^{-1}(p,p) + g_1(q)$. This system is Liouville integrable, its commuting integrals are functions of the form $\tilde{F}_{\lambda} = F_{\lambda} + V_{\lambda}$, where

$$V_{\lambda}(x) = g_1 \lambda^{n-1} + g_2 \lambda^{n-2} + \cdots + g_n.$$

Take $g = dx_1^2 + \cdots + dx_n^2$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Take $g = dx_1^2 + \cdots + dx_n^2$. Geodesic compatibility (Sinjukov equation)

$$\frac{\partial}{\partial x_i} L_{kj} = \frac{1}{2} \left(\delta_{ik} \frac{\partial}{\partial x_j} \left(\sum_{\alpha} L_{\alpha \alpha} \right) + \delta_{ij} \frac{\partial}{\partial x_k} \left(\sum_{\alpha} L_{\alpha \alpha} \right) \right).$$

Take $g = dx_1^2 + \cdots + dx_n^2$. Geodesic compatibility (Sinjukov equation)

$$\frac{\partial}{\partial x_i} L_{kj} = \frac{1}{2} \left(\delta_{ik} \frac{\partial}{\partial x_j} \left(\sum_{\alpha} L_{\alpha \alpha} \right) + \delta_{ij} \frac{\partial}{\partial x_k} \left(\sum_{\alpha} L_{\alpha \alpha} \right) \right).$$

can be easily solved

$$L_{kj}(x) = A_{kj} + b_k x_j + b_j x_k + K x_k x_j$$

In matrix form:

$$L = A + b x^{\top} + x b^{\top} + K x x^{\top}, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$
(5)

Take $g = dx_1^2 + \cdots + dx_n^2$. Geodesic compatibility (Sinjukov equation)

$$\frac{\partial}{\partial x_i} L_{kj} = \frac{1}{2} \left(\delta_{ik} \frac{\partial}{\partial x_j} \left(\sum_{\alpha} L_{\alpha \alpha} \right) + \delta_{ij} \frac{\partial}{\partial x_k} \left(\sum_{\alpha} L_{\alpha \alpha} \right) \right).$$

can be easily solved

$$L_{kj}(x) = A_{kj} + b_k x_j + b_j x_k + K x_k x_j$$

In matrix form:

$$L = A + b x^{\top} + x b^{\top} + K x x^{\top}, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$
(5)

Theorem

Let \overline{g} be a metric on \mathbb{R}^n whose geodesics are straight lines. Then

$$\bar{g} = \frac{1}{\det L} L^{-1}$$
, where L is given by (5).

Let L be gl-regular.

(ロ)、(型)、(E)、(E)、 E) のQ(()

Let *L* be gl-regular.

Then in suitable coordinates u_1, \ldots, u_n , operator *L* takes the form (another fundamental results in Nijenhuis geometry)

$$L = L_{\text{comp2}} = \begin{pmatrix} 0 & 1 & \\ \vdots & \ddots & \ddots & \\ 0 & \dots & 0 & 1 \\ -\sigma_n & \dots & -\sigma_2 & -\sigma_1 \end{pmatrix}, \quad \det(t \operatorname{Id} - L) = t^n + \sum_{k=0}^{n-1} \sigma_{n-k} t^k$$

Let *L* be gl-regular.

Then in suitable coordinates u_1, \ldots, u_n , operator L takes the form (another fundamental results in Nijenhuis geometry)

$$L = L_{\text{comp2}} = \begin{pmatrix} 0 & 1 & & \\ \vdots & \ddots & \ddots & \\ 0 & \dots & 0 & 1 \\ -\sigma_n & \dots & -\sigma_2 & -\sigma_1 \end{pmatrix}, \quad \det(t \operatorname{Id} - L) = t^n + \sum_{k=0}^{n-1} \sigma_{n-k} t^k$$

Consider $g = \sum_{m=1}^{n} \left(\sigma_{n-m} \sum_{i+j=m+1} \mathrm{d} u_i \, \mathrm{d} u_j \right)$ or in matrix form

$$g_{\text{comp2}} = \begin{pmatrix} \sigma_{n-1} & \sigma_{n-2} & \dots & \sigma_1 & 1 \\ \sigma_{n-2} & \sigma_1 & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \sigma_1 & 1 & 0 & & \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let *L* be gl-regular.

Then in suitable coordinates u_1, \ldots, u_n , operator L takes the form (another fundamental results in Nijenhuis geometry)

$$L = L_{comp2} = \begin{pmatrix} 0 & 1 & & \\ \vdots & \ddots & \ddots & \\ 0 & \dots & 0 & 1 \\ -\sigma_n & \dots & -\sigma_2 & -\sigma_1 \end{pmatrix}, \quad \det(t \, \mathrm{Id} - L) = t^n + \sum_{k=0}^{n-1} \sigma_{n-k} t^k$$

Consider
$$g = \sum_{m=1}^{n} \left(\sigma_{n-m} \sum_{i+j=m+1} du_i du_j \right)$$
 or in matrix form

$$g_{\text{comp2}} = \begin{pmatrix} \sigma_{n-1} & \sigma_{n-2} & \dots & \sigma_1 & 1 \\ \sigma_{n-2} & \sigma_1 & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \sigma_1 & 1 & 0 & & \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Theorem

 L_{comp2} and g_{comp2} are geodesically compatible.

Magic formula (continued)

This formula can be easily transformed to any other coordinate system x_1, \ldots, x_n :

$$g = C^{\top} g_{\text{comp2}} C \tag{6}$$

where $C = \left(\frac{\partial u_i}{\partial x_j}\right)$ is the transition matrix, which is very special in this case

$$C = \begin{pmatrix} df \\ df \cdot L \\ \vdots \\ df \cdot L^{n-1} \end{pmatrix}, \text{ where } f \text{ is a conservation law of } L.$$

Example (Levi-Civita formula) Let $L = \text{diag}(\lambda_1(x_1), \lambda_2(x_2), \dots, \lambda_n(x_n))$. Take $f = x_1 + x_2 + \dots + x_n$. Then computing of (6) is just an algebraic exercise, leading to

$$g = \sum_i \sigma'(\lambda_i) \; \mathsf{d} x_i^2$$

where $\sigma'(\cdot)$ is the derivative of the characteristic polynomial of L w.r.t. λ .

Magic formula (continued)

This formula can be easily transformed to any other coordinate system x_1, \ldots, x_n :

$$g = C^{\top} g_{\text{comp2}} C \tag{6}$$

where $C = \left(\frac{\partial u_i}{\partial x_j}\right)$ is the transition matrix, which is very special in this case

$$C = \begin{pmatrix} df \\ df \cdot L \\ \vdots \\ df \cdot L^{n-1} \end{pmatrix}, \text{ where } f \text{ is a conservation law of } L.$$

Example (Levi-Civita formula) Let $L = \text{diag}(\lambda_1(x_1), \lambda_2(x_2), \dots, \lambda_n(x_n))$. Take $f = x_1 + x_2 + \dots + x_n$. Then computing of (6) is just an algebraic exercise, leading to

$$\mathsf{g} = \sum_i \sigma'(\lambda_i) \, \mathsf{d} x_i^2 = \sum_{i=1}^n \prod_{lpha
eq i} (\lambda_i(x_i) - \lambda_lpha(x_lpha)) \, \mathsf{d} x_i^2,$$

where $\sigma'(\cdot)$ is the derivative of the characteristic polynomial of L w.r.t. λ .

Singularities in the context of geodesically equivalent metrics

Singular points are those at which the algebraic type of L changes, e.g., the eigenvalues of L collide.

Singularities in the context of geodesically equivalent metrics

Singular points are those at which the algebraic type of L changes, e.g., the eigenvalues of L collide.

Open problem 1. What kind of singular points can appear in the context of geodesically equivalent metrics?

Singularities in the context of geodesically equivalent metrics

Singular points are those at which the algebraic type of L changes, e.g., the eigenvalues of L collide.

Open problem 1. What kind of singular points can appear in the context of geodesically equivalent metrics?

Example.
$$\begin{pmatrix} 2x & y \\ y & 0 \end{pmatrix}$$
 is allowed, $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ is not.

Singular points are those at which the algebraic type of L changes, e.g., the eigenvalues of L collide.

Open problem 1. What kind of singular points can appear in the context of geodesically equivalent metrics?

Example.
$$\begin{pmatrix} 2x & y \\ y & 0 \end{pmatrix}$$
 is allowed, $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ is not.

If L is a gl-regular operator, then its eigenvalues can still collide without violating the gl-regularity condition. In the Nijenhuis geometry, scenarios of such collisions can be very different. However, regardless of any particular scenario, Magic Formula implies

Theorem

Let L be a gl-regular real analytic Nijenhuis operator. Then (locally) there exists a pseudo-Riemannian metric g geodesically compatible with L. Moreover, such a metric g can be defined explicitly in terms of the second companion form of L.

Let L be an admissible Nijenhuis operator (in the context of geodesic equivalence), i.e. there is at least one (pseudo)-Riemannian metric g geodesically compatible with L.

Open Problem 2. Describe all geodesically compatible partners for *L*.

Let L be an admissible Nijenhuis operator (in the context of geodesic equivalence), i.e. there is at least one (pseudo)-Riemannian metric g geodesically compatible with L.

Open Problem 2. Describe all geodesically compatible partners for *L*.

Theorem

Let L and g be geodesically compatible. Assume that M is g-symmetric and is a strong symmetry of L, then L and $gM := (g_{is}M_j^s)$ are geodesically compatible. Moreover, if L is gl-regular, then every metric \tilde{g} geodesically compatible with L is of the form $\tilde{g} = gM$, where M is a (strong) symmetry of L.

Conclusion. Beltrami problem reduces essentially to the description of symmetries for Nijenhuis operators.

Important example

Theorem (Matveev, 2006)

Consider a Riemannian metric g and a Nijenhuis operator L geodesically compatible with g. Assume that the eigenvalues of L at a generic point are different, and $L(p) = \lambda \cdot Id$ at a singular point $p \in M$. Then up to a suitable coordinate transformation only the following three cases are possible:

• dim M = 2,
$$L = \lambda \cdot \operatorname{Id} \pm \begin{pmatrix} x^2 & xy \\ xy & y^2 \end{pmatrix};$$

• dim M = 2, $L = \lambda \cdot \operatorname{Id} + \begin{pmatrix} 2x & y \\ y & 0 \end{pmatrix};$
• dim M = 3, $L = \lambda \cdot \operatorname{Id} + \begin{pmatrix} 2x & y & z \\ y & 0 & 0 \\ z & 0 & 0 \end{pmatrix};$

As a geodesically compatible metric g one can take the standerd Euclidean metric g, i.e. $ds^2 = dx^2 + dy^2$ in dimension 2 and $ds^2 = dx^2 + dy^2 + dz^2$ in dimension 3. Any other metric geodesically compatible with L will be of the form $\tilde{g} = gM$, where M is a certain symmetry of the operator L. A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Classification in dimension 2: two examples from a long list

(joint project with D. Akpan)

$$g = \frac{\operatorname{Im}(W(ye^{-ix}))}{y} \, \mathrm{d}x \, \mathrm{d}y, \quad L = \begin{pmatrix} -\operatorname{Re} W & y^{-1} \operatorname{Im} W \\ -y \operatorname{Im} W & -\operatorname{Re} W \end{pmatrix}$$

where W(z) = H(z) + i z h(z), H and h are arbitrary real analytic functions in a neighbourhood of z = 0 and $h(0) \neq 0$.

$$g = \frac{X\left(y\left(1 + \frac{2-s}{2}xy^{\frac{s-2}{2}}\right)^{\frac{2}{2-s}}\right) - Y\left(y\left(1 - \frac{2-s}{2}xy^{\frac{s-2}{2}}\right)^{\frac{2}{2-s}}\right)}{2y^{s/2}} \, dx \, dy$$

and

$$L = \begin{pmatrix} X+Y & y^{-s/2}(X-Y) \\ y^{s/2}(X-Y) & X+Y \end{pmatrix},$$

where $X = v^{s/2}h(v) + H(v)$, $Y = -v^{s/2}h(v) + H(v)$, H and h are arbitrary real analytic functions in a neighbourhood of v = 0 and $h(0) \neq 0$, s > 2.

- 1. Bolsinov A., Konyaev A., Matveev V., Nijenhuis Geometry, Advances in Math. **394** (2022), 108001, arXiv:1903.04603.
- Bolsinov A., Konyaev A., Matveev V., Nijnehuis Geometry III: gl-regular Nijenhuis operators, Rev. Mat. Iberoam. 40 (2024) 1, 155–188. arXiv:2007.09506.
- Bolsinov A., Konyaev A., Matveev V., Nijenhuis Geometry IV: conservation laws, symmetries and integration of certain non-diagonalisable systems of hydrodynamic type in quadratures, Nonlinearity **37** (2024) 105003, arXiv:2304.10626.
- Bolsinov A., Konyaev A., Matveev V., Applications of Nijenhuis Geometry V: geodesic equivalence and finite-dimensional reductions of integrable quasilinear systems, Journal of Nonlinear Sciences, 34:33 (2024), arXiv:2306.13238.

Happy Birthday, Sasha!

・ロト・4日ト・4日ト・4日・9000