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Nijenhuis geometry and Nijenhuis operators

Definition
A field of endomorphisms L = (Lij) is called a Nijenhuis operator, if

NL(ξ, η)
def
= L2[ξ, η]− L[Lξ, η]− L[ξ, Lη] + [Lξ, Lη] = 0

for all vector fields ξ, η.

Equivalently, in simple terms, Nijenhuis structure is defined by an n × n

matrix L(x) =

L11(x) . . . L1n(x)
...

. . .
...

Ln1(x) . . . Lnn(x)

, Lij(x) = Lij(x1, . . . , xn), such that

(NL)ijk
def
=
∑
α

(
Lαj
∂Lik
∂xα

− Lαk
∂Lij
∂xα

− Liα
∂Lαk
∂x j

+ Liα
∂Lαj
∂xk

)
= 0,

i , j , k = 1 . . . , n.
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Examples

I any constant operator
I any operator of the form L = f (x) · Id
I complex structure J on a complex manifold

I


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

,


x1 1 . . . 0

x2 0
. . .

...
...

. . . 1
xn 0 . . . 0

 and


x1 0 . . . 0

x2 x1
. . .

...
...

. . .
. . . 0

xn . . . x2 x1



I L(x) = J−1SJ, where S =


σ1(x) 1

σ2(x) 0
. . .

...
...

. . . 1
σn(x) 0 . . . 0

 and J =

(
∂σi
∂xj

)
.

I L = A + b x> + x b> + K x x>, b =

b1
...
bn

 , x =

x1
...
xn

.
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Fundamental property of the characteristic polynomial

Theorem
The characteristic polynomial

σ(λ) = det
(
λ Id− L(x)

)
= λn − σ1(x)λn−1 − σ2(x)λn−2 − . . .− σn(x)

of a Nijenhuis operator L satisfies the following identity

(L− λ Id)∗ dσ(λ) = σ(λ) dtr L. (1)

Conversely, if (1) holds for a certain operator L and the coefficients σi of
the characteristic polynomial are functionally independent, then L is a
Nijenhuis.



Conservation laws and symmetries

Let A = (Ai
j) be an operator (not necessarily Nijenhuis).

Definition
A function f is a conservation law for A, if the form A∗ df is closed.

Definition
An operator B = (B i

j ) is called a symmetry of A, if
I AB = BA

I 〈A,B〉(ξ, ξ) = A[Bξ, ξ] + B[ξ,Aξ]− [Aξ,Bξ] = 0.

B is a strong symmetry if

〈A,B〉(ξ, η)
def
= A[Bξ, η] + B[ξ,Aη]− [Aξ,Bη]− AB[ξ, η] = 0.

Characteristic property of Nijenhuis operators.
Every conservation law f = f0 of a Nijenhuis operator L generates
a hierarchy of conservation laws dfk = (L∗)k df , k = 0, 1, . . .
Conversely, if an operator A admits such an hierarchy for k = 0, 1, . . . , n
and dfk , k = 0, . . . , n − 1, are linearly independent, then A is Nijenhuis.
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Example

For a diagonal Nijenhuis operator

L =

λ1(x1)
. . .

λn(x)


the conservation laws and symmetries (which will be automatically
strong) are or the form

h = h1(u1) + h2(u2) + · · ·+ hn(un),

and

M =

m1(u1)
. . .

mn(un)


where hi and mi are arbitrary smooth functions.



More interesting example

(Ferapontov, Magri, Lorenzoni)

Let L = L(u) be a Nijenhuis operator and σ(λ) = det
(
λ Id− L(x)

)
is the

characteristic polynomial of L. Consider the family of operators

Aλ = σ(λ)(L− λ Id)−1. (2)

All these operators are symmetries of each other. The functions
1

σ(µ)
,

µ ∈ R are common conservation laws for these operators.

One more useful description of common conservation laws for Aλ.

Let L be gl-regular Nijenhuis operator, and M be an arbitrary symmetry
of L. Then M can be uniquely written as a linear combination

M = g1L
n−1 + g2L

n−2 + · · ·+ gnId,

with smooth coefficients gi . The function g1 is a common conservation
law for all Aλ. Moreover, the following relation holds

A∗λ dg1 = d
(
λn−1g1 + λn−2g2 + · · ·+ gn

)
. (3)
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Proof

Let us check that that the function
1

σ(µ)
is a common conservation law

for all Aλ.

We use the fundamental property of the characteristic polynomial σ(µ):

(L−µ Id)∗ dσ(µ) = σ(µ) dtr L or in the new notation A∗µ dσ(µ) = dtr L

and the matrix identity AλAµ = 1
λ−µ

(
σ(µ)Aλ − σ(λ)Aµ

)
.

Then

A∗λ d
(

1
σ(µ)

)
=

− 1
σ2(µ)A

∗
λ dσ(µ) = − 1

σ2(µ)A
∗
λA
∗
µ dtr L =

− 1
λ−µ

1
σ2(µ)

(
σ(µ)A∗λ dtr L− σ(λ)A∗µ dtr L

)
=

− 1
λ−µ

σ(µ) dσ(λ)−σ(λ) dσ(µ)
σ2(µ) = − 1

λ−µ d
(
σ(λ)
σ(µ)

)
.
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Geodesics

Definition (Wikipedia)
In geometry, a geodesic is a curve representing in some sense the shortest
path (arc) between two points in a surface, or more generally in a
Riemannian manifold. It is a generalization of the notion of a “straight
line”.

Рис.: A geodesic on a triaxial ellipsoid
By Cffk - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=27525009
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Flights from London Heathrow



Geodesically equivalent metrics

Definition
Two metrics g and ḡ are called geodesically equivalent if they share the
same (unparametrised) geodesics.

I Trivial example: ḡ = const · g .
I More interesting example:

Beltrami problem. Describe/classify pairs of geodesically equivalent
metrics.
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Two metrics g and ḡ are called geodesically equivalent if they share the
same (unparametrised) geodesics.

I Trivial example: ḡ = const · g .
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Classical result (everything is done?)

Theorem (Levi-Civita (1896))
Let g and ḡ be geodesically equivalent Riemannian metrics then
(at a generic point)

g =
n∑

i=1

±∏
α 6=i

(
λi (xi )− λα(xα)

) dx2i ,

ḡ =
n∑

i=1

± 1

λi (xi )
∏
α λα(xα)

∏
α6=i

(
λi (xi )− λα(xα)

) dx2i .

for some smooth functions λi (xi ).



From g and ḡ to Nijenhuis operators: Sinjukov equation

Observation. It is more convenient to ‘replace’ ḡ with the operator L
defined by

L =

∣∣∣∣det ḡ

det g

∣∣∣∣ 1
n+1

g ḡ−1.

Notice that this matrix relation is equivalent to

ḡ =
1

det L
g L−1.

Theorem (Sinjukov (' 1965))
Metrics g and ḡ are geodesically equivalent if and only if L satisfies the
PDE system

∇kLij =
1

2

(
gjk

∂ tr L
∂xi

+ gik
∂ tr L
∂xj

)
, Lij =

∑
α

giαL
α
j . (4)

Conclusion. The study of geodesically equivalent metrics ‘reduces’ to
the study of geodesically compatible pairs (L, g) (i.e., such that L is a
g -selfadjoint and satisfies (4)).
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The key facts

Theorem (Sinjukov, Matveev, Topalov, Gover, Tabachnikov)

(a) L is a Nijenhuis operator.
(b) Operators Aλ = det(L− λId) · (L− λId)−1 are Killing (1, 1)-tensors

of the metric g .
(c) Functions Fλ : T ∗M→ R, Fλ = g−1(A∗λ p, p), are Poisson

commuting first integrals of the geodesic flow of g on T ∗M.
(d) If L is gl-regular, then among these integrals Fλ, λ ∈ R, we can

choose n = dim M functionally independent integrals and, therefore,
the geodesic flow of g is Liouville integrable.

The most difficult part was (c). But now (modulo the above discussion)
it’s almost obvious due to the following observation:
Let FA = g−1(Ap, p) and FB = g−1(Bp, p) be quadratic integrals of the
geodesic flow of a metric g , and AB = BA.

Then FA and FB Poisson commute if and only if the evolutionary flows
ut1 = Aux and ut2 = Bux commute, i.e., A and B are symmetries of each
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Adding an integrable potential

Geodesically compatible g and L produce an integrable geodesic flow.
Can we add a potential V such that the system with the Hamiltonian

H = K + V =
1

2
g ijpipj + V (q)

remains integrable?

Theorem
Let M be a symmetry of a gl-regular operator L written in the form

M = g1L
n−1 + g2L

n−2 + · · ·+ gnId.

Consider the natural Hamiltonian system on M with metric g and
potential V = g1(q), i.e., the system on T ∗M with the Hamiltonian
H = K + V = 1

2 g
−1(p, p) + g1(q). This system is Liouville integrable, its

commuting integrals are functions of the form F̃λ = Fλ + Vλ, where

Vλ(x) = g1λ
n−1 + g2λ

n−2 + · · ·+ gn.
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Metrics whose geodesics are straight lines

Take g = dx21 + · · ·+ dx2n .

Geodesic compatibility (Sinjukov equation)

∂

∂xi
Lkj =

1

2

(
δik

∂

∂xj

(∑
α

Lαα
)

+ δij
∂

∂xk

(∑
α

Lαα
))

.

can be easily solved

Lkj(x) = Akj + bkxj + bjxk + Kxkxj

In matrix form:

L = A + b x> + x b> + K x x>, b =

b1
...
bn

 , x =

x1
...
xn

 . (5)

Theorem
Let ḡ be a metric on Rn whose geodesics are straight lines. Then

ḡ =
1

det L
L−1, where L is given by (5).
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Magic formula

Let L be gl-regular.

Then in suitable coordinates u1, . . . , un, operator L takes the form
(another fundamental results in Nijenhuis geometry)

L = Lcomp2 =


0 1
...

. . .
. . .

0 . . . 0 1
−σn . . . −σ2 −σ1

, det(t Id− L) = tn +
n−1∑
k=0

σn−kt
k

Consider g =
∑n

m=1

(
σn−m

∑
i+j=m+1 dui duj

)
or in matrix form

gcomp2 =


σn−1 σn−2 . . . σ1 1
σn−2 σ1 1 0
... . .

.
. .
.
. .
. ...

σ1 1 0
1 0 0 . . . 0


Theorem
Lcomp2 and gcomp2 are geodesically compatible.
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Magic formula (continued)

This formula can be easily transformed to any other coordinate system
x1, . . . , xn:

g = C>gcomp2 C (6)

where C =
(
∂ui
∂xj

)
is the transition matrix, which is very special in this

case

C =


df

df · L
...

df · Ln−1

, where f is a conservation law of L.

Example (Levi-Civita formula)
Let L = diag

(
λ1(x1), λ2(x2), . . . , λn(xn)

)
. Take f = x1 + x2 + · · ·+ xn.

Then computing of (6) is just an algebraic exercise, leading to

g =
∑
i

σ′(λi ) dx2i

=
n∑

i=1

∏
α6=i

(
λi (xi )− λα(xα)

)
dx2i ,

where σ′(·) is the derivative of the characteristic polynomial of L w.r.t. λ.
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Singularities in the context of geodesically equivalent metrics

Singular points are those at which the algebraic type of L changes, e.g.,
the eigenvalues of L collide.

Open problem 1. What kind of singular points can appear in the
context of geodesically equivalent metrics?

Example.
(

2x y
y 0

)
is allowed,

(
x 0
0 y

)
is not.

If L is a gl-regular operator, then its eigenvalues can still collide without
violating the gl-regularity condition. In the Nijenhuis geometry, scenarios
of such collisions can be very different. However, regardless of any
particular scenario, Magic Formula implies

Theorem
Let L be a gl-regular real analytic Nijenhuis operator. Then (locally)
there exists a pseudo-Riemannian metric g geodesically compatible with
L. Moreover, such a metric g can be defined explicitly in terms of the
second companion form of L.
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How to describe all geodesically compatible partners for L?

Let L be an admissible Nijenhuis operator (in the context of geodesic
equivalence), i.e. there is at least one (pseudo)-Riemannian metric g
geodesically compatible with L.

Open Problem 2. Describe all geodesically compatible partners for L.

Theorem
Let L and g be geodesically compatible. Assume that M is g -symmetric
and is a strong symmetry of L, then L and gM := (gisM

s
j ) are

geodesically compatible.
Moreover, if L is gl-regular, then every metric g̃ geodesically compatible
with L is of the form g̃ = gM, where M is a (strong) symmetry of L.

Conclusion. Beltrami problem reduces essentially to the description of
symmetries for Nijenhuis operators.
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Important example

Theorem (Matveev, 2006)
Consider a Riemannian metric g and a Nijenhuis operator L geodesically
compatible with g . Assume that the eigenvalues of L at a generic point
are different, and L(p) = λ · Id at a singular point p ∈ M. Then up to a
suitable coordinate transformation only the following three cases are
possible:

I dim M = 2, L = λ · Id±
(
x2 xy
xy y2

)
;

I dim M = 2, L = λ · Id +

(
2x y
y 0

)
;

I dim M = 3, L = λ · Id +

2x y z
y 0 0
z 0 0

;

As a geodesically compatible metric g one can take the standerd
Euclidean metric g , i.e. ds2 = dx2 + dy2 in dimension 2 and
ds2 = dx2 + dy2 + dz2 in dimension 3. Any other metric geodesically
compatible with L will be of the form g̃ = gM, where M is a certain
symmetry of the operator L.



Classification in dimension 2: two examples from a long list

(joint project with D. Akpan)

I g =
Im
(
W (ye−ix)

)
y

dx dy , L =

(
−ReW y−1 ImW
−y ImW −ReW

)
where W (z) = H(z) + i z h(z), H and h are arbitrary real analytic
functions in a neighbourhood of z = 0 and h(0) 6= 0.

I

g =

X

(
y
(

1 + 2−s
2 xy

s−2
2

) 2
2−s

)
− Y

(
y
(

1− 2−s
2 xy

s−2
2

) 2
2−s

)
2y s/2

dx dy

and

L =

(
X + Y y−s/2(X − Y )

y s/2(X − Y ) X + Y

)
,

where X = v s/2h(v) + H(v), Y = −v s/2h(v) + H(v), H and h are
arbitrary real analytic functions in a neighbourhood of v = 0 and
h(0) 6= 0, s > 2.
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Happy Birthday, Sasha!


