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Context [1/4] — L -scale high-frequency time-harmonic problems

Exemple: Scattering problem
Figure from Boubendir-Antoine-Geuzaine 2012

Helmholtz problem with exterior ABC

—Au—Ku=0 onQ

Find uw € H'(Q) such that | dnu+ 7% =0 onT® T _ Dt operator
dnu=g oOn rint (boundary)
L Large sparse linear system
Finite-element approach —> . . .
Slow convergence with standard iterative solvers
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Context [2/s] — Domain decomposition solver (substructuring)

Non-overlapping domain decomposition — Layered partition

> | 99 |
921 = g1 932 = gos T1. = DtN operator
/ / (interface)
212 / Eg:’, /
pext

with agrg = anI’lLJ +7—[J’LLJ

Which transmission operator 77 ; at the interfaces?
e Ideal operator — DtN related to the complementary of each subdomain
e Good operators — Operators used for artificial/absorbing boundary conditions
[e.g. Hagstrom-Tewarson-Jazcilevich 1988, Nataf-Rogier-de Sturler 1994]

Current approaches (references for Helmholtz): [e.g. Gander-zhang 2019]
° Impedance conditions [Després 1991, Gander-Magoulés-Nataf 2002, Boubendir 2007 ... ]
e 2"9-order conditions [Gander et al 2002, Boubendir et al 2008, Després-Nicolopoulos-Thierry 2021...]
e High-order conditions / HABCS [Boubendir-Antoine-Geuzaine 2012, Kim-Zhang 2015 ....]
e Perfectly matched layers / PMLS [Stolk 2013, Vion-Geuzaine 2014 ....]
e Non-local approaches [Lecouvez et al 2014, Claeys-Parolin 2020 ...]

PMLs for DD preconditionning: [Tosseli 1998, Schédle-Zschiedrich 2007]
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Context [3/4] — Interlude on PMLs

Original scattering problem

—Au—Kk2u=0
Sommerfeld B.C.
Onu=g

in RQ\Qdisk
at [|x|| — oo

on rint

Finite element solution
with Perfectly Matched Layer (PML)

—V - (DVu) — Ek?2u=0 inQy
n-(DVu)=0 onTg
Onu=g¢g oOnN l_‘iarlf
Material scalar/tensor fields: £ and D
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Context [4/s] — Domain decomposition solver (substructuring)

Non-overlapping domain decomposition — Checkerboard partition

Q4 v Q3 — Boundary edge
Y34 | - - Interface edge
: . % Corner point
) oo 23 . ® Boundary cross point
Y1 ; O Interior cross point
: \ Fexl
|
Q 1 g,

Strategies for/with cross points (specific for the Helmholtz equation):
e Impedance conditions [Farhat et al 2020, Boubendir-Bendali-Fares 2008, ...]
e 2"d-order conditions [pesprés-Nicolopoulos-Thierry 2021, 2022, ...]
High-order conditions /| HABCS [Modave-Royer-Antoine-Geuzaine 2022]
Perfectly matched layers / PMLS [Royer ine-Béct dave 2022] « This talk
e Non-local approaches [zepeda-Niifiez-Demanet 2016, Claeys et al 2021, Claeys-Parolin 2022....]

PMLs for DD precond. for checkerboard partitions: [Astaneh-Guddati 2016, Leng-Ju 2019]

Writting the PML as a DtN transmission operator
Challenges in this talk PML as a transmission operator for checkerboard partions
Discretization aspects 4/31
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DDM iterative process [1/s] — General case

[Després 1991, Collino-Ghanemi-Joly 2000]
Helmholtz problem

Find u(x) with x € Q st. 0 N2 N

{—M—k%:f in Q

Onu —tku =0 onI™ Yo/ Yo3 /

Fext

DDM iterative process (substructuring method — non-overlapping partition)

For each Q, find u{™! (x) with x € Qr st.

—AuET 2T = inqy
Onuttt —kuitt =0 on 9Q; NT™t —  Exterior boundary condition
Anust + Trjult = g%, oneachT;; — Transmission condition
| Transmission variables:
Data transfer at the interfaces g?jl = OnyuG + Trouf

l = —!J.Lfl + 27}JU§

4+
DtN operator: 77 5/31



DDM iterative process [2/s] — Impedance operator

[Després 1991]
Helmholtz problem

Find u(x) with x € Q st. 0 RN 0 N O
5 |
—Au—Ku=f inQ Pz & #923
Onu—1ku=0 onI® Sis S S /)

Fext

DDM iterative process with impedance operator
I
I

For each Q, find u{™! (x) with x € Qr st.

41 g2 041 ;
AT — k2t = inQy
An uttt —akulT =0 on 89, NT™ — Exterior boundary condition
Onyubtt —akultt = g%, oneach;; — Transmission condition
| Transmission variables:

Data transfer at the interfaces gt = On gl — akub
| = —_q,L'” — szuf}

¥

I+
DtN operator: 775 = —ik 6/31



DDM iterative process [3/s] — High-order operator

[Boubendir-Antoine-Geuzaine, 2012]
Helmholtz problem

Find u(x) with x € Q st. 0 RN 0 N O
5 | a¢
—Au—Ku=f inQ P12 g1y P23 g
Opu —tku=0 onI™ by ! !

~
\g|

N

~

12

Fext
DDM iterative process with high-order operator based on Padé-type HABC

For each Q, find u{ ™! (x) with x € Qr st.

—Au§+1 — kzu?rl =5 inQy
8n1u§+1 - zku§+1 =0 on 8Q; NIt
£+1 £+1 N £41 L 0
Anustt — zk(ujr + % DDA cn(uJJr +enli ) =97, oneach B,

Aspn|iH + K2 (en + D (pnlid +uft) =0  oneach =5, Vn

Data transfer at the interfaces

O+ l 7131




DDM iterative process [4/s] — High-order operator + Cross points

Helmholtz problem

[Modave-Royer-Antoine-Geuzaine, 2020]

Q | Q3
Find u(x) with x € Q s.t. =
\
_ k2, — i =
Au—ku=f InQ wffH 1o Y H’*"
Onpu —1ku =0 onI®™ \‘r'
a et
|
. 0 . . Ql ‘ QQ
DDM iterative process with high-order operator .
For each Qp, find w7 (x) with x € Qr sit.
—Aubt g2t = f in

e+1
Orpyonlr ]

8n1u§+1 = zku?'“ =0

oy~ (S & Sy e 4
Axon \/‘L' —+ k2((a20n + 1L)en ﬁ' + a2 (cn + 1)u§+1) =0
thon|ih =0

5 |£t1 L4
aT]_]*ru IJ +T21J’Y”‘Iv/

on 9Q NIt

W =g oneach

on each X;;,Vn

ateach 927, NI, vn

! :gn‘[j(]/ at each 82[]0821J/,V7’L
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The PML as a DtN operator — Helmholtz subproblem with PML [1/2]

Helmholtz subproblem with PML

Find each wuy € H'(,,) such that

~V - (DVugay) — Ek?uqy = f
n- (DVugy) =0

where E and D are material scalar/tensor fields.

Exemple with a Dirichlet BC on the disk

Real part of the solution

C)

I 1.09

—1.09

in Qau
on BQau

Norm of the solution

I 1.09

0.0
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The PML as a DtN operator — Helmholtz subproblem with PML [2/2]

Helmholtz subproblem with PML
Find each u, € H'(Q,) such that

—V - (D Vuy) — E?uy = f in Qq
n- (D Vuau) =0 on oy

with material tensor/scalar fields D and E:

D(z,y) = diag (vy/ves ¥z /1)
E(z,y) = Yz Yy

with stretching functions ~; (z) and v, (y) and absorption functions o (z) and oy (y):
Yo (z) =14 0z(x) /1k oz(z) >0
YY) =1+ 0y(y)/k oy(y) >0

Inside the truncated domain Q: 0, =0;0, =0 = D=1;E=1

Variational formulation
Find each u,; € H'(Q,) such that

/ Vg D Vg d2 — / k? E ugy Uay dQ = / fUadQ,  Vua € H' (Qq)
Qay Qan Q
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The PML as a DtN operator — Decomposed problem [1/3]

Helmholtz subproblem with PML (decomposed version)

e For the domain Q:

{ —Au—Fku=f inQ

n-Vu=); oneachl};

with \; := n - Vu,.
e For each edge PML Q;:
—V - (DVu;) — Ek?u; =0
n-(DVu;) =0
U = U
n- (D Vu;) = Aij
with \j; :=n - (D Vug).
e For each corner PML €;;:
—V - (D Vu;) — Ek?u;; =0
n- (D Vu;;) =0
Uij = Ug

Uij = U

in Qi
ext
onT;
on Fi
on each I';;

in Ql‘j

onT'§
on Fij
on F]‘i

.1—‘23 Qz

I32 T2
Qs |3 ry| Qp
T34 Ty
.1—\43 94
T, :=QuUQ;
Fij =Q; U Qij

et .= 9Q, NN
Fs;t = 8Qij N o
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The PML as a DtN operator — Decomposed problem [1/3]

Helmholtz subproblem with PML (decomposed version)
e For the domain Q: .F23 Q2
—Au—ku=f inQ "2 2
n-Vu=); oneachT;
. Q3 |Ts r| @
with \; :=n - Vu,.
e For each edge PML Q;: o o
-V (DVw;) - Ek*u; =0  inQy .
a3 Qu
n-(DVu;)=0 onI'P"
U = U onI';
n-(DVu;)=2X; oneachly; ri:=QuQ,
Tisi= Qs UQus
Neumann trace Neumann trace
° i >\ij b

Edge PMLs
Q;

Dirichlet trace Dirichlet trace

12/31




The PML as a DtN operator — Decomposed problem [2/3]
Variational formulation with Lagrange multipliers . .

Find uw € HY(Q), u; € HY(Q;), uij € H (i)

N € HTY2(Ty), \ij € H-Y/2(Dy;)  withi,j=1,...,4 @
such that

o For the domain ©, each edge PML Q; and each corner PML . .
/Vuﬁdﬂf/lﬁuﬁdﬂf/ Amdrz/fvdﬂ
Q Q r; Q

Vu; D Vo; dQ — kQEuideQ—l—/)\“T,;dF—Z/ Xij 77 dl =0
Q; Q; r; Tij

/VuijDWdQ—/ kQEuijodQ—i-Z/ Nij Ti; dT =0
Qij Qi Lij

forallv € H1(Q), forall v; € H'(9;) and for all v;; € H(Q45).

e For each interface domain/PML I'; and each interface PML/PML I, ;:
/ (u,,;fu)mdl“:o / (ui]-—ui)uTde:O
Ty Ly

forall u; € H—/2(I;) and for all w;; € H=1/2(Ty ). /
13/31



The PML as a DtN operator — Decomposed problem [3/3]

Variational formulation with Lagrange multipliers
Find (ual; Aal) EU X L with
a(uall; vau) + b(vau, Aaw) = L(vau)
b(uall; fall) =0
for all (vay, pan) €U x L.
Spaces:
U:=HYQ) x - x HY(Q) x -+ x H(Qy) x -
L:=H2T) x -+ x HY2Dy) x -

Forms:

a(uay, vay) := /;Z(VU-VEfk%ﬁ) dQ+Z/Q +Z/Q
b(uau, Hau) Z/ U — ui)li dF+Z/ — wij )iy dI’

I(van) / fodQ.

/31



The PML as a DtN operator — DDM with PML transmission [1/2]

Data transfer at the cross point

Domain partition with 4 subdomains (domain-PML and PML-PML)
Q4 : QS
’ L] L]
1
) C
1 @ —— — e
1
__________ co | |
Yia=T12 1 X23=T22 Fi21 9121 T2
I
1
Fl,l = Zlhz = F2,3 o = 911 .C
1
1
Q1 ! Qo
' a3
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The PML as a DtN operator — DDM with PML transmission [2/2]

Variational formulation of one subdomain Q;
Find (uraus Ar,an) € Us x L1 with

a(ur aus vran) + 0(vra, Aran) = Lvran)
b(ur aus pr,an) =0

forall (vy au, pr,au) € Ur x Lr.

Spaces:
Up = H () x -+ x H'(Qr3) X -+ X H(Qp,i5) X -+
Lr=HY2Tr,) x oo x H Y2 5) x -
Forms:
a(ur all, vral) = / (Vur - Vor — K2usor) dQr + Z/
Q7. QI i i

b(ur s Hr1,a0) Z/ (ur —ur )Tz dlU+ Y / (uri = wrj)prg dU

PR RY
I(vr,au) —/ for dQ2 + Z/ gr,ivr dI' + Z / gr1,i5v1,; dT’
Ty Ui

Update formula:

41 ¢ [

g1 =9y + 250
41 ‘ ‘
91,45 = —95,4i7 5 +2/\J.i’j’

where J is neighbouring subdomain with T'; ; =T, ;v and T’y ;5 =T ; ;s 16/31
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FE discretization — Subproblem with coupled PMLs [1/2]

Variational formulation
Find (uay, Aau) € U x L with
{a(uall»vall) + b(va, Aa) = U(van)
b(ua, pau) =0

for all (vay, pay) €U X L.

Algebraic system
Finite element discretization leads to the saddle-point problem:

A BT [uau] _ [fau
B 0| |l 0
where only B depend on the discretization of the Lagrange multipliers.

Finite element discretizations
Solution uy;  Continuous basis functions
. (C) H'-conforming basis functions (continuous)
Multipliers pg L. . . . .
(D) Projection on n of H(div)-confrom. basis func. (discontinuous)

17/31



FE discretization — Subproblem with coupled PMLs [2/2]

Hierarchical H'-conforming basis functions (C)

Degree 1 Degree 2 Degree 3 Degree 4

> 7 A e

Projection on n of hierarchical H(div)-conforming basis functions (D)

Degree 1 Degree 2 Degree 3 Degree 4

18/31



FE discretization — Comparison of FE bases for multipliers

Issue with the continuous basis functions (C) a1
At each corner, relations are linearly dependent: 22 uf |
uC - ulc =0 I'y
uC — uzc =0 e uC
C c _ b
Uy — Uy =0
c c Q Q1
Uy — Uy =0 I

= B is not surjective ; system not solvable

Strategies
e Additional Lagrange multiplier ¢ to break the dependency
u® — uf +2°=0 Ty
ucfugfz\C:O uC ulc
uf —uG +2% =0
uzc - u102 —x¢=o0 r,

)‘f*)‘gJF)‘lCQ*/\ch:O
Strategy used for FETI [e.g. Toselli-Widlund 2005]

o Penalization [Boffi-Brezzi-Fortin 2005]: A BT Jua] _ [fau
B M| |[ly| |0

However, continuity at interfaces not exactly enforced, e.g. u® — u{ = 7A¢. /
19/31



FE discretization — Comparison of FE bases for multipliers [2/2]

Degree 1 Degree 2 Degree 3 Degree 4

Issues with the discontinuous basis functions (D)
o If degree(multipliers) = degree(sol) = stability issues
o If degree(multipliers) < degree(sol) = underdeterm. system ; solution not exact
o If degree(multipliers) > degree(sol) = overdeterm. system ; system not solvable

Strategies
o Different polynomial degrees for solution v and the Lagrange multipliers A
e Penalization (7 = 0.002 h2)
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FE discretization — Numerical experiment [1/2]

0

-5

Neumann traces along the top interface

Continuous + corner eq.

T

Continuous + penalty
T

| 1
s /1ol -
: | : RY | :

. Discontinuous (p) . Di.:,continuous (;f)) + penalty .
; /"”’/////I//IIIIIII///II/,//I //”I”’/ T AL

SN A AN BNV
TDiscontinuou‘s (p—1) : Discc:ntinuous (p—‘i- 1) + penaltx
e E 51 E E .

! | ™~ ; _5 ; | ;

Parameters: k = 4w, h = 1/30, P2 elements

— p = degree for the solution
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FE discretization — Numerical experiment [2/2]

100

10-1

Inf-sup test [Chapelle-Bathe 1993] + Interface error

Continuous + corner eq. Continuous + penalty =
—e— Discontinuous (p) —— Discontinuous (p) + penalty
—&— Discontinuous (p — 1) Discontinuous (p + 1) + penalty
Inf-sup value 3y, Relative interface error e

T T T T T T
[ B 1071 [ .|
I : :*\*___*—* - M R
; | 10f 1
5 1 1071 B
L \ \ \ ] 10716 |- I I ]
0 10 20 30 0 20 40 60

1/h 1/h

Interface error = L2 norm of the jump on the solution at the interfaces

Chapelle-Bath test: 8 = miny, 8j
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Numerical results — Scattering benchmark

Benchmark: Scattering of a plane wave by a disk
> Exterior condition: PML with épy. = 6k and o = oy,
> Interface condition: PML with dpy. = 6h and o = o},  tests with other params ...

oq(w) = 0*z®/6gm  on(x) =1/(6eme — @)  ons(z) = 1/(Gpm — ) — 1/pmL

> GMRES iterative solver — GmshFEM and GmshDDM codes

Numerical solution + Domain partition .
P Mesh of one subdomain

I 1.1 with the surrounding PMLs

@

I .

k=47 — P2orP3
15 points per wavelength

Triangular elements (subdomain)
Square elements (extruded PMLs)
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Numerical results — Comparison of discretizations [1/2]

Comparison of discretizations of the Lagrange multipliers [P2 elements]

3 S
S o
g 9
(<] (<]
= =
- -
i) ©
Q Q
x x
1072 | .
| I I
0 10 20 30 0 10 20 30
GMRES iteration GMRES iteration
Continuous + corner eq. Continuous + penalty
—e— Discontinuous(p) —=— Discontinuous(p — 1)
—— Discontinuous(p) + penalty Discontinuous(p + 1) + penalty

Error L2-error: DDM solution compared to reference numerical solution.
Same discretization used for interface and exterior PMLs. 24/31



Numerical results — Comparison of discretizations [2/2]

Comparison of discretizations of the Lagrange multipliers [P elements]

3 S
S o
(%] 1
g a
(<] (<]
= =
- -
i) ©
Q Q
x x
| I I | I I
0 10 20 30 0 10 20 30
Iteration Iteration
Continuous + corner eq. Continuous + penalty
—e— Discontinuous(p) —=— Discontinuous(p — 1)
—— Discontinuous(p) + penalty Discontinuous(p + 1) + penalty

Error L2-error: DDM solution compared to reference numerical solution.
Same discretization used for interface and exterior PMLs. 25/31



Numerical results — Influence of the PML parameters

Relative residual

Influence of the absorption functions o and the layer thickness Spy = NpmLh

Selected continuous disc. + P2 elem.

10-1

"I‘A T T
_\\.
\‘ .
e, 2 10
» —
& S
[A) . .-9
X g ,
— . 2 10~
\ . Q
% ‘a 2
\ e T
\ []
\k %A g
- »\\ \ | 10—5
(] ®
\ ®
0 10 20
Iteration

Selected discontinuous disc. + P2 elem.

T T T

1 A

5 10 15 20

Iteration

- %= 0qand NpmL =1
—®— 04 and NpML =6

O, and NPML =1
Op, and NPML =6

Ohs and NPML =1
Ohs and NPML =6
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Numerical results — Influence of &k and A

Influence of wavenumber & with points per wavelength = 15

Selected continuous disc. + P2 elem. Selected continuous disc. + P4 elem.
20 I I I I I 20 I I I I I
é 151 s—e—o—o—o" . é 15 .
- -
o o
5 10 |- - 5 10-m  _m—w N
] ]
o] Qo
£ £
= 51 | = 51 |
0 | | | | | 0 | | | | |
0 20 40 60 80 0 20 40 60 80
Wavenumber k Wavenumber k
—o— Npy. =1 —#— Npy. =2 Npw = 4 NpyL =6
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Numerical results — Influence of &k and A

Influence of characteristic mesh cell size h with k = 47

Selected continuous disc. + P2 elem. Selected continuous disc. + P4 elem.
20 T T T 20 T T T
0 o« _poe 0
.S 15 ® | .5 15 |
— Vv -
© 74 W ——" ©
2 ! 2 W
5 1or | 5 1or 1::: |
9] 9]
o) o)
E S
= 51 N = 51 N
0 | | | 0 | | |
20 40 60 20 40 60
Inverse of mesh size 1/h Inverse of mesh size 1/h
—o— Npyp =1 —8— Npy = 2 NpmL = 4 NpmL = 6

28/31



Numerical results — Benchmark with heterogeneous medium [1/2]

Benchmark: Marmousi benchmark
> Exterior condition: PML with dpy. = 6h and o = oy,
» Interface condition: PML with dpw. = h,2h,3h and o = o},
> GMRES iterative solver — GmshFEM and GmshDDM codes

Wavenumber k(x) [f = 10Hz]

—

Subdomain with PMLs

I 0.13

0.08

I 0.03

Square elements [Q1]
h ~ 10m

0.03 0.08 0.13

Numerical solution
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Numerical results — Benchmark with heterogeneous medium [2/2]

Residual history

Selected continuous discretization Selected discontinuous discretization
T T R T R S
N —— NemL =1 —— NpmL = 1
10-1 |° Npwp = 2 10-1 |- — NpmL = 2 |
. Neme = 3 . Nem. = 3
© ©
=] =]
S S ~e.
%] ~ (%]
g Sso g
o 10731 N o 10731 .
> >
£ 2
o Ko
[2'4 o
1075 - . 1075 - .
I I
0 50 100 150 0 50 100 150
GMRES iteration GMRES iteration
Dashed line corresponds to basic impedance transmission (7 = —uk)

Same discretization used for interface and exterior PMLs.

30/31



DDM iterative process

The PML as a DtN operator
Finite element discretization
Numerical results



The last slide ...

Non-overlapping substructuring DDM with PVL transmission
for checkerboard partitions with cross points

Summary
— Strategy based on the weak coupling of PMLs with Lagrange multipliers
— Two discretizations for the multipliers (“continuous” and "discontinuous”)
— Numerical experiments:

® Compare two discretizations for the multipliers
® Study the PML parameters (absorption function and thickness)
® Behavior depending on k, h and heterogeneous media

Royer, Geuzaine, Béchet, M. (2022). A non-overlapping DDM with PML transmission conditions
for the Helmholtz equation. CMAME, 395, 115006 + GmshFEM / GmshDDM codes

Personnel comments on DDM with transmission conditions
based on non-reflecting boundary techniques (PML, HABC, ...)
> One has to deal with the limitations of these techniques (practical / theoretical)
> These approaches require specific solvers / limited theoretical background
> These approaches incorporate physics in the solver

> Mostly developed/tested for standard CG/FD methods ...
...a lot to do for DG, HDG, Trefftz methods
31/31
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