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ABSTRACT: The inherently serial nature and requirement for short integration time steps
in the numerical integration of molecular dynamics (MD) calculations place strong
limitations on the accessible simulation time scales and statistical uncertainties in sampling
slowly relaxing dynamical modes and rare events. Molecular latent space simulators (LSSs)
are a data-driven approach to learning a surrogate dynamical model of the molecular system
from modest MD training trajectories that can generate synthetic trajectories at a fraction of
the computational cost. The training data may comprise single long trajectories or multiple
short, discontinuous trajectories collected over, for example, distributed computing
resources. Provided the training data provide sufficient sampling of the relevant
thermodynamic states and dynamical transitions to robustly learn the underlying
microscopic propagator, an LSS furnishes a global model of the dynamics capable of
producing temporally and spatially continuous molecular trajectories. Trained LSS models
have produced simulation trajectories at up to 6 orders of magnitude lower cost than
standard MD to enable dense sampling of molecular phase space and large reduction of the
statistical errors in structural, thermodynamic, and kinetic observables. The LSS employs three deep learning architectures to solve
three independent learning problems over the training data: (i) an encoding of the high-dimensional MD into a low-dimensional
slow latent space using state-free reversible VAMPnets (SRVs), (ii) a propagator of the microscopic dynamics within the low-
dimensional latent space using mixture density networks (MDNs), and (iii) a generative decoding of the low-dimensional latent
coordinates back to the original high-dimensional molecular configuration space using conditional Wasserstein generative adversarial
networks (cWGANs) or denoising diffusion probability models (DDPMs). In this software tutorial, we introduce the mathematical
and numerical background and theory of LSS and present example applications of a user-friendly Python package software
implementation to alanine dipeptide and a 28-residue beta−beta−alpha (BBA) protein within simple Google Colab notebooks.

1. BACKGROUND AND THEORY
Classical molecular dynamics (MD) simulations model the
microscopic dynamical evolution of atomistic and molecular
systems by integrating Newton’s equations of motion.1

Modern high-performance computing hardware and efficient
parallel software implementations have expanded the length
scales accessible to all-atom simulations to tens of trillions of
atoms.2 However, the inherently serial nature of numerical
integration together with the femtosecond time steps required
to capture the fastest microscopic motions has limited
accessible time scales to milliseconds.3 This limitation, often
termed the “time scale barrier” or “sampling challenge” in
molecular simulation, places strong restrictions on the
simulation of rare events and slowly relaxing dynamical
processes by unbiased MD calculations. The inability to
(densely) sample rare but important configurational states
and/or dynamical transitions makes simulation trajectories
subject to large statistical uncertainties in structural,
thermodynamic, and kinetic observables.4

A number of strategies have been developed to engage this
sampling challenge. Coarse graining sacrifices atomistic
resolution in service of computational efficiency by
developing simplified higher-level models that integrate
atomistic degrees of freedom, typically by lumping multiple
atoms together into coarse-grained beads.5−7 A variety of
highly successful coarse-grained models have been developed
for biological8 and condensed matter9 systems and protocols
developed to parametrize coarse-grained models from both
bottom-up (i.e., fitting to all-atom data) and/or top-down
(i.e., fitting to experimental observables) perspectives.5

Although good strategies exist to ensure thermodynamic
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consistency between all-atom and coarse-grained models,
preservation of dynamical consistency has proven a more
difficult challenge such that the kinetics of coarse-grained
models may be artificially accelerated in an uncontrolled
fashion relative to the all-atom systems.10 Enhanced sampling
techniques present an alternative strategy to accelerate
sampling via collective variable biasing,11,12 tempering,13−15

or path-based techniques.16−19 Collective variable biasing
approaches apply artificial potentials to accelerate barrier
crossing and improve sampling. The application of a
posteriori analytical corrections can recover unbiased
thermodynamic averages, but, except in special cases,20−24 it
is not generally possible to recover unbiased dynamical
averages. Tempering approaches combine various thermody-
namic ensembles within a single expanded ensemble to
achieve improved sampling at the thermodynamic state of
interest. In general, this involves exchanges between
thermodynamic states that produce short, discontinuous
trajectory segments as opposed to a single, long, temporally,
and spatially continuous trajectory. Path-based techniques
employ a variety of approaches to generate transition
pathways between predefined reactant and product states
but are generally limited in applicability to single-barrier
transitions as opposed to global sampling of the thermally
accessible phase space. Boltzmann generators represent a
relatively new sampling paradigm wherein a normalizing flow
is trained to transform a simple easy-to-sample Gaussian prior
distribution into a target Boltzmann distribution over
molecular states.25,26 Once trained, the model can be used
to efficiently sample from the Boltzmann distribution and
compute free energy profiles but is not designed to generate
unbiased dynamical trajectories for the estimation of kinetic
or path-based observables. Markov state models (MSMs)
exploit a separation of time scales to model the long-time
system dynamics as probabilistic and memoryless jumps
between discrete states within which the dynamical
relaxations are fast.27,28 The rate constants for the dynamic
jumps between pairs of states are estimated from MD
trajectories. The inherently localized nature of these jumps
between kinetically linked states imbues MSMs with the very
attractive feature that they do not require a single long
trajectory against which to fit the transition rates but may be
parametrized by a series of short, discontinuous trajectories
that sufficiently densely sample the relevant states and
transitions and which may be independently generated on
distributed computing resources. MSMs can be viewed as a
dynamical coarse graining of the configurational phase space
into a set of discrete dynamical states amenable to a divide-
and-conquer parametrization of interstate transition rates.

Molecular latent space simulators (LSSs) were introduced
in 2020 as a means to learn a data-driven surrogate model of
the dynamics of a molecular system and generate spatially
and temporally continuous unbiased trajectories at a fraction
of the cost of standard MD.29,30 Mathematically, MD may be
viewed as an algorithm to propagate the state of a molecular
system xt at time t to a configuration xt+τ at time (t + τ) via a
set of transition density elements xt+τ ∼ pτ(xt+τ|xt).31,32 For
deterministic dynamics and x containing the full-dimensional
state of the system (i.e., all particle coordinates and
momenta), the transition density element pτ(xt+τ|xt) is a
Dirac delta function lying on the single deterministic
configuration xt+τ to which the dynamics evolve at time (t
+ τ). If the state vector contains a reduced representation of

the system (e.g., only the configurational variables) or the
dynamical evolution is stochastic (e.g., the temperature is
maintained by a stochastic thermostat), then the transition
density elements become distributions. In either case, the
transition density elements are computed on-the-fly by
accumulating the forces on all of the particles and
numerically integrating Newton’s equations of motion. The
motivation for the LSS approach is to learn an efficient
surrogate model for the microscopic transition density
elements that can be evaluated at a vastly lower computa-
tional cost than in MD.

Attempts to directly learn the transition density elements
pτ(xt+τ|xt) have been reported for small systems and have met
moderate success,33 but the curse of dimensionality makes
learning of high-dimensional distributions for large systems
computationally intractable. The fundamental premise of the
LSS approach is to learn a dynamical encoding E: xt → ψt of
a molecular system into a latent space spanned by its leading
slow modes, learn a surrogate model P: ψt → ψt+τ to
propagate the dynamics autonomously within this low-
dimensional slow subspace, and learn a decoding D: ψt+τ
→ xt+τ to generate molecular configurations from the
dynamical trajectory generated within the latent space.
Crucially, molecular systems generically exhibit a separation
of time scales (i.e., a spectral gap) arising from cooperative
couplings between the constituent atomic degrees of
freedom.11,34−38 This engenders an emergent low dimension-
ality of the long-time dynamical evolution within a slow
subspace spanned by the leading maximally autocorrelated
dynamical modes ψ that are kinetically decoupled from the
fast degrees of freedom residing beyond the spectral
gap.11,39−41 If this slow subspace can be discovered and is
sufficiently low-dimensional (≲10), then learning of the
transition density elements pτ(ψt+τ|ψt) becomes a computa-
tionally tractable low-dimensional learning problem and
decoding back to the molecular space ψt+τ → xt+τ becomes
a well-posed conditional generation problem that requires
learning to sample from the annealed distribution of fast
degrees of freedom conditioned on the slow variable state xt+τ
∼ p(xt+τ|ψt+τ).

Mathematically, the LSS can be expressed as an alternative
pathway from xt to xt+τ,

29,31,32

+ +

P

x

x
MD

t E t

t D t (1)

where the encoder E, propagator P, and decoder D can be
learned from training data and, once trained, enable xt+τ to be
generated at a fraction of the cost of MD. Framed in this
manner, E, P, and D can be treated as three separate learning
problems that can be trained using the same MD training
data. Once E is trained to furnish a dynamically meaningful
latent space, both P and D can be trained independently
using these latent coordinates as inputs. Furthermore, deep
neural network architectures ideally suited to each of these
learning problems have been previously developed and can be
modularly deployed to serve as the three constituent
components of the LSS.29,30 A pedagogical introduction to
the LSS approach and demonstration of a user-friendly
Python package implementing the LSS pipeline (https://
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github.com/Ferg-Lab/LSS) is the subject of the present
tutorial.
1.1. Strengths and Limitations. LSSs share many

similarities with MSMs, and it can be instructive to draw a
comparison between these approaches to illuminate sim-
ilarities and differences and strengths and limitations within
the context of the more established and familiar MSM
formalism. The underlying principle of LSSs is similar to
MSMs, but whereas MSMs learn a discrete partitioning of the
configurational phase space and the transition rates of a jump
process between these states, LSSs learn a slow subspace
within which the long-time dynamics evolve and a
continuous-time effective dynamical model within this
space. In both cases, a separation of time scales motivates
and enables parametrization of a dynamical model in a set of
slow collective variables governing the long-time dynamical
evolution of the system and discarding of the quickly relaxing
fast degrees of freedom that are effectively equilibrated to the
slow variables. In MSMs, the fast variables rapidly relax
within the discrete coarse-grained states that contain
dynamically distinct configurations of the slow collective
variables. In LSSs, the dynamical coarse-graining procedure is
more analogous to the Born−Oppenheimer approximation,
wherein the fast electronic degrees of freedom are annealed
to the slow nuclear dynamics,42 and embodies the Mori−
Zwanzig projection operator formalism, wherein the effective
dynamics of a dynamical system can be written in a subspace
of slowly evolving collective variables to which the remaining
degrees of freedom couple as noise.43−46

Like MSMs, LSSs can also be parametrized by short,
discontinuous training trajectories generated by distributed
computing, provided that these trajectories sufficiently

densely sample the relevant states and transitions in the
molecular phase space to enable learning of the underlying
microscopic dynamics. Unlike MSMs, LSSs do not induce a
discretization of the configurational phase space and can,
therefore, furnish spatially and temporally continuous
trajectories in the slow collective variables. Moreover, the
LSS is generative in the sense that trajectories in the slow
subspace can be decoded or backmapped to synthetic MD
trajectories using a trained generative model to in-paint the
fast degrees of freedom conditioned on the state of the slow
collective variables.

Finally, LSSs and MSMs are similar in that they learn the
underlying probabilistic and memoryless transition density
elements of the microscopic dynamics from the training data.
The learned dynamical model can then be used to
inexpensively generate temporally continuous�and, in the
case of LSSs, spatially continuous in the slow collective
variables�synthetic trajectories over the learned phase space.
Since these trajectories are generated stochastically from the
learned transition density elements, the generated trajectories
are not simply carbon copies of the training trajectories but
are rather novel trajectories through phase space based on the
microscopic transition density elements learned from the
data. Synthetic trajectories can be generated at a fraction of
the cost of MD simulations and may therefore be used to
densely sample states and events that may have only
appeared a few times within the training set. Subject to the
quality of the LSS model learned from the data, inexpensive
synthetic trajectories may be used to greatly reduce statistical
uncertainties in structural, thermodynamic, and kinetic
observables. By the same token, LSSs are, like MSMs,
fundamentally data-driven models. As such, they are only as

Figure 1. Overview of the molecular LSS approach. (a) SRV encoder E is trained on MD training data to learn a low-dimensional embedding
into a latent space spanned by the maximally autocorrelated (i.e., slowest relaxing) dynamical modes ψ = E(x). (b) MDN propagator P is
trained on time-lagged snapshots of the MD training data projected into the latent space to learn transition density elements within the latent
space that define the latent space propagator ψt+τ = P(ψt) ∼ pτ(ψt+τ|ψt). (c) Decoder D is trained to generate a realization of the molecular
configuration conditioned on latent space coordinates x̂t = D(ψt) ∼ p(x̂t|ψt). The decoding operation produces molecular configurations
consistent with the slow degrees of freedom encoded by the latent space coordinate with a realization (i.e., in-painting) of the fast degrees of
freedom consistent with the learned distribution of molecular configurations at that latent space embedding. We have implemented decoders
based on cWGANs and DDPMs. (d) The final LSS model comprising the trained encoder E, propagator P, and decoder D can be deployed to
generate novel synthetic molecular simulation trajectories consistent with the learned microscopic dynamics of the slow modes at approximately
6 orders of magnitude (i.e., 1 million fold) faster than standard MD calculations.
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good as their training data: they cannot be expected to
accurately parametrize states or transitions that are not well
represented within the training data, and, while some modest
extrapolation into new regions of phase space can be
anticipated, they are not generally expected to prospectively
discover novel states or transitions. Further, the surrogate
dynamical model learned from the data pertains only to that
particular molecular system under those particular thermody-
namic conditions. As such, in the absence of physical
inductive biases, the trained model is not necessarily expected
to be transferable to other molecules or other thermodynamic
conditions. Finally, the trained models are, by construction,
subject to the same systematic errors that may be present in
the molecular force fields used to furnish the training data.

We note that a few other methods sharing similarities with
the LSS formalism have recently been proposed.47−51 Of
these, the LSS approach is perhaps most closely related to
learning of effective dynamics (LED),50 which uses an
autoencoding neural network to learn a latent space
representation and employs a recurrent structure to add
long-term memory to the propagator.
1.2. Components of the LSS. LSSs employ three deep

learning architectures to solve three learning problems over
the training data: (i) an encoding of the high-dimensional
MD into a low-dimensional slow latent space using state-free
reversible VAMPnets (SRVs), (ii) a propagator of the
microscopic dynamics within the low-dimensional latent
space using mixture density networks (MDNs), and (iii) a
generative decoding of the low-dimensional latent coordinates
back to the original high-dimensional molecular configuration
space using conditional Wasserstein generative adversarial
networks (cWGANs) or denoising diffusion probability
models (DDPMs) (Figure 1). The three learning problems
are independent and can be trained over the same MD
training set. Full details of these three components have
previously been reported elsewhere, and the specific
architectures and hyperparameter choices depend on the
target molecular system,29,30 but we provide an overview
herein of the mathematical and algorithmic underpinnings.
1.2.1. Encoder, E: State-Free Reversible VAMPnets (SRVs).

State-free reversible VAMPnets (SRVs) were introduced in
2019 as a deep neural network approach to perform data-
driven nonlinear unsupervised learning of the slowest
evolving (i.e., maximally autocorrelated) collective variables
in dynamical systems.39 The name of the approach stems
from its algorithmic kinship with variational approach for
Markov processes networks (VAMPnets) introduced by Noe ́
and co-workers52 and can also be considered as a deep
variant of time-lagged independent component analysis
(Deep-TICA)53−56 or deep canonical correlation analysis
(DCCA).57 The mathematical basis of SRVs rests upon the
transfer operator as the mathematical object that
propagates the probability distribution over the microstates
of a dynamical system as a function of time according to the
transition density elements pτ(xt+τ|xt), where τ is the time
increment between successive states.58,59 Molecular systems
at equilibrium obey a detailed balance. This induces the
transfer operator to become self-adjoint with respect to
the equilibrium distribution and admit a spectrum of
eigenfunctions {ψi(x)} with real eigenvalues 1 = λ0 > λ1 ≥
λ2 ≥ ···.29,31,39,40,58,60 The leading eigenfunction corresponds
to the equilibrium distribution over microstates and the
higher-order eigenfunctions form a natural basis of increas-

ingly more quickly relaxing deviations from the equilibrium
distribution with associated relaxation times of ti = −τ/ln
λi.31,39,61 For sufficiently long lag times τ, the transfer
operator becomes effectively low-dimensional as manifested
by a gap in the eigenvalue spectrum separating the leading
eigenfunctions spanning a slow subspace from the rapidly
relaxing higher-order eigenfunctions.31 This emergent low
dimensionality is what makes the entire LSS approach
possible since it becomes numerically tractable to learn a
low-dimensional surrogate dynamical model from limited MD
trajectory data.

The variational approach to conformational dynamics
(VAC) provides a route to optimally approximate the transfer
operator eigenfunctions within a finite dimensional basis
expansion, ψ̃i(x) = ∑jsijζj(x).39−41 Given a particular choice
of basis functions over the microstates {ζj(x)}, the VAC
prescribes the optimal expansion coefficients {sij} via solution
of the generalized eigenvalue equation Csi = λ̃iQsi, where C is
the time-lagged correlation matrix of the basis functions
{ζj(x)} under a time lag of τ, Q is the instantaneous
correlation matrix of the basis functions {ζj(x)}, si is the
(eigen)vector of linear expansion coefficients for the
approximate eigenfunction ψ̃i(x), and λ̃i is the corresponding
approximate eigenvalue with an associated implied relaxation
time scale of tĩ = −τ/ln λ̃i.31,39 In practice, C and Q are
numerically estimated from training data comprising simu-
lation trajectories of the molecular system, and we solve the
generalized eigenvalue problem by standard techniques. It is
useful to observe that the mathematical underpinnings of the
VAC are isomorphic to the Roothaan−Hall equations in
quantum mechanics where one can identify C as the Fock
matrix and Q as the overlap matrix: instead of finding the
lowest energy wave function of the Hamiltonian operator
within a defined basis, we are finding the slowest
eigenfunction of the transfer operator within a defined
basis.31,41,42 We also observe that an MSM is a special case of
the VAC formalism when the basis functions are selected to
be indicator functions over a discrete partitioning of
configurational states.31,58

The VAC guarantees that the approximated eigenfunctions
will be no slower than the true eigenfunctions, and, as a
corollary, asserts that better choices of basis functions are
those that result in slower eigenfunctions.39−41 The
fundamental idea underpinning SRVs is to use deep neural
networks as flexible, nonlinear, and data-driven functional
approximators to discover basis functions that result in the
slowest possible approximations to the leading transfer
operator eigenfunctions. As opposed to generic and
preselected basis functions (e.g., pairwise distances, atom-
centered symmetry functions), the networks learn basis
functions tailored to each molecular system that can result
in superior approximations to the true leading eigenfunctions
of the transfer operator. In this sense, SRVs can simply be
viewed as a VAC with a neural network bolted on at the
front end whose task is to perform data-driven discovery of
bespoke basis functions from MD training data. The
networks are trained to learn optimal basis functions with
which to construct linear expansions as approximations to the
slowest m eigenfunctions by maximizing their implied time
scales via the loss function = =i

m
i
r

SRV 1 , where we
typically adopt r = 2, and an appropriate value of m is
selected by resolving a gap in the eigenvalue spectrum
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(Figure 1a). The learning task can be made end-to-end
differentiable through the VAC. It is typically desirable to
employ molecular featurizations or symmetrization operations
that ensure the basis functions respect the underlying
symmetries of the molecular system (e.g., translational
invariance, rotational invariance, and permutational invari-
ance).62 In our applications to date, we have found that
simple fully connected feedforward neural networks compris-
ing a handful of layers containing a few hundred neurons per
layer have proven adequate for very satisfactory perform-
ance.29,30,39 Conceptually, the success of very simple neural
networks can perhaps be understood by the fact that they are
tasked only with finding good basis functions and that the
mathematical heavy lifting is taken care of by the VAC.

For nonequilibrium systems that do not obey detailed
balance, the VAC must be replaced by a more general
variational principle termed the variational approach to
Markov processes (VAMP).31,52 This results in a more
complex mathematical development that rests upon singular
vectors and singular values and underpins the more general
state-free nonreversible VAMPnets (SNRV) approach.24 For
multimolecular systems, we must contend with the
combinatorial explosion in the state space resulting from
the approximately independent nature of the dynamical
evolution of each molecule when they are in noninteracting
or weakly interacting regions of configurational space.63,64

This challenge can be engaged by extending the LSS
paradigm to contain multiple encoders for each independent
and interacting subsystem, multiple propagators to evolve the
dynamics of each subsystem and the relative locations of each
subsystem, and multiple decoders for each independent and
interacting subsystem.30 In this tutorial, we shall restrict our
focus to the equilibrium scenario where the VAC applies and
to applications to single molecular systems.

A full description of the mathematical underpinnings of
VAC and VAMP31,52 and the numerical implementation of
S(N)RVs29,30,39 are available in prior publications, and an
open-source and user-friendly Python package implementing
S(N)RVs is freely available from https://github.com/Ferg-
Lab/snrv.
1.2.2. Propagator, P: Mixture Density Networks (MDNs).

The SRV furnishes a slow subspace spanned by learned
approximations to the m leading transfer operator eigenfunc-
tions { } =x( )i i

m
1 prior to the spectral gap. The separation of

time scales delimited by the spectral gap means that at
sufficiently long lag times τ, a surrogate model for the
dynamical evolution of the system can be constructed within
the slow latent subspace. This assumes rapid relaxation of the
fast degrees of freedom contained in the eigenvectors beyond
the spectral gap on sub-τ time scales, permitting the
evolution of the slow variables to be accurately approximated
as Markovian (i.e., memoryless) and, at equilibrium, sta-
tionary (i.e., time-invariant).43−46 The effective dynamics
within the slow subspace (i.e., approximations to the
transition density elements pτ(ψt+τ|ψt)) can be learned by
projection of the MD training data through the trained SRV
model. The low dimensionality of the slow subspace m ≪ 3N
is induced by adopting a sufficiently long lag time, wherein
only a small number of collective modes contribute to the
long-time system evolution. This allows us to break the curse
of dimensionality and define a tractable low-dimensional
learning problem for a surrogate model of effective MD.
Beyond the low dimensionality, the learning problem is also

significantly simplified within the transfer operator eigenfunc-
tion basis since, by construction, these eigenfunctions
diagonalize the transfer operator and make the dynamical
evolution linear within the eigenfunction basis.31

Conceptually, the transition density elements in the latent
space, pτ(ψt+τ|ψt), define the jump probabilities to any other
location in the latent space after time τ given that the system
currently exists at location ψt. We recall that the loss of
configurational degrees of freedom under projection and
neglect of the velocity information mean that these transition
density elements are typically distributions over microstates
that reflect the stochastic nature of the effective dynamics in
the slow subspace. Mixture density networks (MDNs)
combine Gaussian mixture models with deep neural networks
to efficiently approximate multimodal distributions,65,66 and
the LSS approach uses MDNs to learn the transition density
elements pτ(ψt+τ|ψt) via linear combinations of C m-
dimensional Gaussian kernels ϕc,

| =+
=

+p ( ) ( ) ( ; ( ), ( ))t t
c

C

c t c t c t c t
1 (2)

During training, the MDN is trained to learn the ψt-
dependent means μc and variances σc of the constituent
Gaussians and ψt-dependent linear mixing coefficients αc from
the projected MD training trajectories to minimize the loss
function = |+pln ( )t tMDN over time-lagged pairs
of training points (Figure 1b). Once trained, the MDN is
then pressed into service as the latent space propagator P, by
iteratively sampling from the learned pτ(ψt+τ|ψt) distributions
to drive the dynamics of the system through the slow latent
space in time increments of τ.

Importantly, the MDN propagator learns the microscopic
transition density elements from the training data as a
surrogate model of the effective latent space dynamics and
then stochastically samples from them to generate novel
trajectories. As such, the trajectories generated by MDN are
novel in the sense that they obey the learned microscopic
dynamics and are not just carbon copies of the MD training
trajectories. On the other hand, the MDN is unlikely to be
able to extrapolate far beyond the MD training data and thus
is unlikely to spontaneously discover novel states or
transitions not present in the training ensemble. Sampling
from the MDN is extremely computationally efficient.
Numerical benchmarks on the systems we have studied to
date indicate that propagating the dynamical evolution of the
system through the latent space is approximately 6 orders of
magnitude (i.e., 1 million fold) faster than standard MD
computations, primarily due to the fact that the learned
MDN model does not require the expensive force
calculations at each time step that are inherently required
by standard MD.29,30 Importantly, propagation of the system
dynamics occurs in a time-invariant, autonomous manner
completely within the slow latent subspace. The learned
MDN surrogate model for the effective dynamics is expressed
exclusively in ψ, so there is no requirement to decode the
system back up to the molecular space and re-encode back
into the slow subspace at each time step in order to
propagate the dynamics. This is a valuable attribute of the
approach since decoding and encoding during each step of
the propagator is computationally slow and can also result in
the accumulation of destabilizing errors in the dynamical
evolution of the system.31,67
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In practice, we have found that simple MDN networks
comprising two hidden layers of 100 neurons and
approximately 50 Gaussian kernels have been sufficient for
the systems we have studied to date.29,30 An open-source and
user-friendly Python package implementing MDNs is freely
available from https://github.com/Ferg-Lab/mdn_
propagator.
1.2.3. Decoder, D: Conditional Wasserstein GANs

(cWGANs) and Denoising Diffusion Probabilistic Models
(DDPMs). The trained MDN is used to efficiently generate
synthetic trajectories within the slow latent space by sampling
from the learned microscopic transition density elements at a
fraction of the cost of standard MD. The final component of
the LSS is a generative model to decode these latent space
trajectories back into the molecular configuration space.
Importantly, this decoding is passive in the sense that there is
no requirement that it be done contemporaneously with the
MDN trajectory generation or that every frame of the latent
space trajectory must be decoded. By construction, the latent
space trajectories describe the time evolution of the leading
slow variables. The task of the decoder can be conceived of
as mapping the slow variables back to molecular configura-
tional space by, in a sense, inverting the operation of the SRV
encoder. To do so requires restoration of the fast degrees of
freedom omitted in the slow latent space which were
assumed to be in quasi-equilibrium with the slow variables
at each time step. Accordingly, we should expect the decoder
to be able to generate a smooth, temporally continuous
molecular trajectory in the slow collective variables since
there is a bijective mapping between the molecular
configurational state in these slow variables and each point
in the latent space. Conversely, there are multiple realizations
of the fast degrees of freedom associated with each point in
the latent space, so the decoding operation is one-to-many.
The trained decoder should therefore generate molecular
configurations drawn from a distribution over the annealed,
quasi-equilibrium distribution of fast degrees of freedom that
is consistent with the state of the slow collective variables. In
the limit of large training data volumes and good training of
the decoder over a molecular system at equilibrium, the
ensemble of fast degrees of freedom produced by the decoder
is expected to approach the Boltzmann distribution.

Mathematically, the decoder is a conditional generative
model tasked with learning to sample molecular config-
urations consistent with each possible state of the slow
collective variables xt+τ ∼ p(xt+τ|ψt+τ). Computationally, we
have developed two alternative implementations to accom-
plish this generative decoding: cWGANs and DDPMs. While
we have observed that both models achieve excellent
reconstruction, we find DDPMs to be typically more stable
to train and less sensitive to hyperparameters, whereas
cWGANs tend to be more computationally efficient during
inference. Given the overall better performance in adherence
to conditioning variables and reconstruction quality, we
recommend employing the DDPM unless decoding speed is
of the highest priority.

The cWGAN comprises two components: a generator G(z)
that is tasked to output realizations of molecular config-
urations x from inputs z and a critic C(x) that is tasked with
evaluating the quality of a molecular configuration x. The
generator and critic are cotrained in an adversarial manner to
minimize the Wasserstein (i.e., earth mover’s) distance,

= [ ] [ ]C C Gx zmax ( ) ( ( ))
w W

w wx zWGAN x z (3)

where x( )x is the distribution over molecular configurations
sampled in the MD training data, =z 0 1( ) ( , )z

d is
d-dimensional Gaussian noise, and {Cw}w ∈ W is a family of K-
Lipschitz functions enforced through a gradient penalty68,69

(Figure 1c). Conditioning is introduced by additionally
passing the latent space location ψ we wish to decode into
a molecular configuration to both the generator and critic.70

As such, the generator is driven by both white noise z, which
induces diversity into the generated ensemble of fast degrees
of freedom, and a conditioning variable ψ, which informs and
restrains the state of the slow degrees of freedom encoded
within the latent space. Once trained, the cWGAN critic is
discarded and the generator serves as the LSS decoder. To
date, we have typically been concerned with biomolecules in
isotropic environments and have trained our cWGAN
implementations over rotationally and translationally aligned
configurations x from the MD training data. Alternatively,
one could conceive of training the cWGAN to operate on
internal molecular coordinates. For nonisotropic applications
(e.g., interactions of molecules with surfaces), it may be
desirable to preserve the center-of-mass translation and
rotation within the decoding. For weakly coupled two-
molecule systems, we trained cWGANs on each system
independently oriented to their respective frames of
reference.30 So far, we have restricted our decoder to operate
on biomolecular solutes and have not tasked it to also decode
the coordinates of solvent molecules. To do so would require
engaging the permutational invariance of the solvent
molecules using brute force data augmentation or, as a
more scalable and elegant solution, permutationally invariant
descriptors of the solvent environment.62,71−80

We have also developed an alternative decoder that
leverages a DDPM to conditionally denoise samples from
an isotropic Gaussian distribution. The model is based on the
pioneering work of Ho et al.81 and the code is adapted from
the work of Wang et al.82 which used a DDPM to predict
distributions of backbone dihedrals conditioned on temper-
ature. Training consists of a forward noising process in which
the Euclidean positions of MD configurations xT are gradually
converted into an isotropic Gaussian x0. During inference,
this process is reversed and realistic samples are generated
over T steps by gradually denoising intermediate samples xt
via predictions from a neural network which is exposed to the
latent space coordinates z. The forward diffusion process
represents the conditional probability between subsequent
steps p(xt|xt−1) and has a Gaussian form represented by

x I( 1 , )t i t1 , where βt is defined by a variance
schedule and gradually ascends as a function of diffusion time
t. An intermediate sample xt can be computed directly from
x T a n d t b y = +x x 1t T0 0 , w h e r e

= =
= (1 )t j t

j
j

1 and I(0, ). This direct sampling
trick is crucial, as it allows an arbitrary intermediate
configuration to be retrieved during training. We use a
neural network with a one-dimensional U-net architecture to
make a prediction of the noise ϵ ̂ as a function of the
intermediate configuration, diffusion time step, and latent
space coordinates and regress this prediction against the
actual noise that is deposited (Figure 1c),
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= [ ]tx z( , , )t txDDPM , ,
2

T (4)

The reverse diffusion process estimates qθ(xt+1|xt) by drawing
from another Gaussian distribution parametrized by

tx z I( ( , , ), )t t
2 . The reverse time diffusion process is

therefore conditioned on the time step with a learnable mean
function μθ and an untrained time-dependent variance σt2I =
βtI.81 Our learned model is essentially tasked with learning
the mean function μθ of this reverse time denoising diffusion
process.81 Inference proceeds from a given latent space
coordinate z by sampling random noise x0 and making a
prediction of the noise using the trained U-net to remove
ϵθ̂(x0, z, t = 0),

=t tx z x x z( , , )
1

(
1

( , , ))t
t

t
t

t
t

(5)

=I It t
2

(6)

+ tx x z I( ( , , ), )t t t1
2

(7)

This process is repeated until t = T, at which point no
additional noise is added to the mean prediction. By default,
the DDPM decoder uses 1000 diffusion steps during training
and inference; however, we have demonstrated successful
results with a related model83 using as few as 50 diffusion
steps to realize a 20× acceleration in inference time. The
number of diffusion steps is a hyperparameter that can be
tuned based on the size and complexity of the encoded
molecular system.

In practice, we have found that even for the largest systems
studied to date, relatively simple networks were sufficient to
achieve high generative performance: cWGANs comprising
generators and discriminator networks comprising two hidden
layers of 200 neurons each and DDPMs employing a 1D U-
net architecture with 32 channels and three up/down
sampling layers. An open-source and user-friendly Python
package implementing the cWGAN and DDPM decoders is
freely available from https://github.com/Ferg-Lab/molgen.
1.2.4. Deployment. Once all three components of the

LSS�the SRV encoder, MDN propagator, and cWGAN/
DDPM decoder�have been trained, the LSS model can then
be deployed for computationally efficient synthetic trajectory
generation in three successive steps (Figure 1d).

1. An initial molecular configuration xt=0 is deterministi-
cally encoded into the latent space via the trained SRV
encoder to define the initial coordinates ψt=0 = E(xt=0)
of the latent space trajectory.

2. The MDN propagator then samples from the learned
distribution of jump probabilities to define the next
state in the latent space trajectory ψt=τ = P(ψt=0) ∼
pτ(ψt+τ|ψt), and sampling is iteratively repeated to
construct the succession of states [ψt=0, ψt=τ, ψt=2τ, ···]
defining the latent space trajectory in increments of τ.
Since the MDN stochastically samples from the learned
jump probability distributions, the latent space
trajectories are not simply copies of the training data
but generate novel trajectories that obey the statistics
of the learned microscopic dynamics projected into the
latent space and encoded within the trained MDN.

3. The latent space trajectory can be passed to the trained
cWGAN or DDPM decoder to generate corresponding

molecular configurations consistent with each frame of
the latent space trajectory x ̂t = D(ψt) ∼ p(x̂t|ψt). Since
the MDN trajectory generation proceeds autonomously
within the latent space (i.e., successive frames depend
only on the latent space coordinates of the prior
frame), decoding is typically conducted after MDN
trajectory generation is completed. There is no
requirement to decode every frame, but since the
decoding operations are independent, decoding is an
embarrassingly parallel computational task. The decod-
ing operation can be conceived of as in-painting a
realization of the equilibrated fast degrees of freedom
consistent with the state of the slow degrees of
freedom encoded into the latent space coordinate ψt.
As such, the decoded trajectory [xt̂=0, xt̂=τ, x ̂t=2τ, ···] is
expected to be temporally and structurally continuous
in the slow degrees of freedom encoded in the latent
space but may be discontinuous in the fast degrees of
freedom drawn from the learned distribution of
molecular configurations consistent with each latent
space coordinate p(x̂t|ψt). Accordingly, it may be
desirable to generate multiple decoded realizations
associated with each step of the latent space trajectory
to produce an ensemble of K molecular configurations
at each time step [{x̂t=0

(i) }i=1··· K, {x ̂t=τ
(i) }i=1··· K, and

{x̂t=2τ
(i) }i=1··· K, ···]. It is also possible to select from the

ensemble of configurations at each time step that is
most structurally consistent with that produced from
the prior time step in order to generate a synthetic
molecular trajectory that is temporally coherent in both
the slow and fast degrees of freedom.84

1.2.5. Uncertainty Quantification, Adaptive Retraining,
and Model Transferability. The LSS is a fundamentally data-
driven model that is only as good as the training data it is
provided. As such, the trained LSS model will contain biases
associated with systematic errors contained within the
training trajectories due to approximations and biases
inherent to the force field and the finite nature of the
training data.4 It can be instructive to quantify the epistemic
uncertainties in the model by training an ensemble of LSS
models over different partitions of the training data. One
useful way of doing so is to train the SRV encoder and
cWGAN/DDPM decoder over the full training data but an
ensemble of MDN propagators over temporally contiguous
stratifications of the training data. Analyzing the variability in
the learned transition density elements across the ensemble
of MDN propagators within a consistent latent space
embedding can help expose regions of the latent space that
are undersampled in the training data. This can also naturally
inform an adaptive retraining paradigm, wherein additional
MD simulations are initialized in the vicinity of undersampled
states and transitions within the latent space to improve the
predictions of the model in the regions where it carries the
most uncertainty.27 Iterative cycles of model training and
adaptive sampling can be conducted to optimally deploy
collection of MD training data and efficiently converge the
LSS model.

The trained LSS model is also constrained to learn a latent
space embedding and latent space transition probabilities
consistent with the MD training data for the molecular
system and thermodynamic conditions under which it was
collected. The LSS model, as presented, contains no physical
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model or inductive biases that ensure its transferability to
other thermodynamic state points (e.g., temperatures,
pressures, salt concentrations, and solvent conditions) or
molecules (e.g., protein mutants). We have previously
demonstrated transferability of the encoder and decoder
across temperatures and salt conditions for DNA oligomer
hybridization/dehybridization, requiring only retraining of the
propagator.30 Very recent work by Dobers et al. employing a
variant of an LSS using a SE(3)-invariant encoder-decoder
has demonstrated limited transferability across an ensemble
of dipeptides.85 Realizing generic and scalable transferability
to larger molecules will likely require more substantial
innovations, such as the inclusion of inductive biases and/
or conditioning within the LSS paradigm.

2. PREREQUISITES AND INSTALLATION
The LSS software is made freely available as open-source
Python packages implementing the SRV encoder, MDN
propagator, and cWGAN or DDPM decoders via https://
github.com/Ferg-Lab/LSS. The three packages themselves
require a small number of common publicly available Python
packages to run, which can be easily installed via conda
(https://anaconda.org/) or pip (https://www.python.org/).
For the purposes of this tutorial, we have created
demonstration exercises in Google Colab notebooks
(https://colab.research.google.com/) where prerequisite
packages are most straightforwardly installed via pip.

Within a Google Colab notebook, we first install the
necessary prerequisite packages.

Next, we enable the widgets required to view molecular
structures and trajectories by using nglview.

Finally, we install the Python packages implementing the
SRV encoder, MDN propagator, and cWGAN and DDPM
decoders.

The installation of all prerequisites should require no more
than a few minutes for download and installation under a
typical high-speed network connection.

3. EXERCISES
3.1. Alanine Dipeptide. As a first exercise, we

demonstrate the training and deployment of an LSS for the
“hydrogen atom of protein folding”, alanine dipeptide. Full
instructions and materials necessary to run this tutorial are

available at https://github.com/Ferg-Lab/IMSI_LSS. This

tutorial was developed for and presented at the workshop

“Learning Collective Variables and Coarse Grained Models”

held April 22−26, 2024 at the Institute for Mathematical and

Statistical Innovation (IMSI) at the University of Chicago.
3.1.1. Preparing Environment. We first load the various

required components from the prerequisite packages installed

above. To improve model training and inference speeds,

GPU runtime can be optionally enabled within the Colab

notebook environment.

3.1.2. Loading and Processing Training Data. Next, we

upload the alanine dipeptide training trajectory provided

within the GitHub. The 250 ns trajectory contains 250,000

frames saved at 1 ps intervals.

We then proceed to process the trajectory data for LSS

training. We use mdtraj to center the trajectory to the origin

for visualization convenience and then proceed to extract the

pairwise distances between all atoms in the molecule as a

translationally and rotationally invariant featurization of the

molecular configuration that we pass to the SRV and from

which it learns basis functions {ζj(x)} and constructs

approximations to the eigenfunctions of the transfer operator

ψ̃i(x) = ∑jsijζj(x). We also visualize the trajectory, a snapshot

of which is presented in Figure 2.
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3.1.3. Training the SRV Encoder. We now proceed to train

the SRV encoder to learn the leading slow modes of the

alanine dipeptide conformational dynamics. Training should

require no more than a few minutes with GPU runtime

enabled. We elect to learn three slow modes. The first of

these corresponds to the equilibrium distribution with a

formally infinite implied time scale, which we discard. The

next two correspond to the two slowest relaxing collective

modes defining the SRV approximations to the dynamical

processes with the longest autocorrelation times.
Optionally, we can create visualizations of the training and

validation loss curves and a bar plot of the learned leading

implied time scales.

It is well-known that the conformational dynamics of
alanine dipeptide are well represented within a Ramachan-
dran plot of the backbone ϕ and ψ dihedral angles. An
intuition for the learned SRV slow modes can be gained by
constructing a Ramachandran plot of the training data and
generating a heat map of the slow modes.39 We note that
alanine dipeptide is a particularly simple and well-understood

Figure 2. Snapshot of the nglview visualization of the alanine
dipeptide training trajectory. Carbon atoms are colored in gray,
hydrogen in white, oxygen in red, and nitrogen in blue.
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system, and physical interpretability can be more challenging
to develop for systems for which good structural order
parameters are not known a priori. The leading slow modes
of the SRV spanning the LSS latent space are themselves, by
construction, good order parameters for tracking the long-
time dynamical evolution of the system but can be
challenging to physically interpret as they are typically
complicated nonlinear functions of the molecular featuriza-
tion. We can optionally construct this visualization directly
within the notebook, which we present in Figure 3.

Finally, we extract the embeddings of the training data into
the latent space coordinates ψ = (ψ1, ψ2) = E(x) in
preparation for training the MDN propagator and DDPM
decoder.

3.1.4. Training and Deploying the MDN Propagator. We
now train the MDN propagator to learn the latent space
transition density elements pτ(ψt+τ|ψt) from the projection of
the training trajectories into the latent space, where we adopt
a lag time of τ = 10 frames = 10 ps. Training takes only a few
minutes with GPU runtime enabled.

Once trained, the MDN can then be deployed to generate
a synthetic trajectory in the latent space by defining an initial
state within the latent space corresponding, arbitrarily, to the
embedding of the first frame of the training data ψt=0 =
E(xt=0), then repeatedly sampling from the learned jump
distributions ψt=τ = P(ψt=0) ∼ pτ(ψt+τ|ψt) to generate a
succession of 100 states within the latent space at τ = 10 ps
intervals that defines the synthetic latent space simulation
trajectory.

3.1.5. Training and Deploying the DDPM Decoder.
Finally, we train a DDPM decoder to learn to generatively
decode molecular configurations from latent space coordi-
nates by learning the relationship p(x̂t|ψt). To do so, we train
over (xi, ψi = E(xi)) pairs corresponding to translationally
and rotationally aligned molecular configurations from the
training trajectories and their projected images in the latent
space. We note that the training trajectory is already
translationally and rotationally aligned, so we do not need
to conduct this operation here, but it is easy to do so using
the functionality within the mdtraj package. Additionally,

Figure 3. Ramachandran plots of the 250,000 frames constituting the alanine dipeptide training data embedded according to the backbone ϕ
and ψ dihedral angles and colored by the value of the SRV approximations to the first (left) and second (right) eigenfunctions of the transfer
operator corresponding to the two leading most slowly relaxing dynamical modes of the molecular system. As expected, the leading mode is
highly correlated with ϕ and describes transitions between the triplet well at −π < ϕ < 0 comprising the β, P||, and α states, from the doublet
well at ϕ ≈ 1 containing the αL and γ states, while the second leading mode is strongly correlated with ψ in the half space −π < ϕ < 0 and
subdivides the triplet well to characterize transitions between the (β, P||) and α states.39
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DDPM training can be quite computationally burdensome, so
for the purposes of this tutorial, we reduce the molecular
representation to only the backbone atoms to reduce the
training time. Having done so, the DDPM trains in just a few
minutes with GPU runtime enabled.

Once trained, the DDPM can then be deployed to decode
the synthetic latent space trajectory generated by the trained
MDN by performing the generative decoding operation x̂t =
D(ψt) ∼ p(x̂t|ψt). This requires only a couple of minutes with
GPU runtime enabled. We then visualize the resulting
trajectory using nglview and save it to a file. A snapshot
from the synthetic trajectory is presented in Figure 4. We

note that the quality of the reconstruction can be somewhat
improved by training the DDPM for additional epochs, but

we choose to train for only three epochs in this tutorial to
limit the required training time.

3.2. BBA. As a second, more sophisticated exercise, we
illustrate the training and deployment of an LSS for the de
novo designed beta−beta−alpha (BBA) protein (PDB:
1FME). BBA is a 28-residue fast-folding protein that was
designed based on a zinc finger template (PDB: 1AAY) to
stabilize a native structure containing two short β-sheets and
one α-helix.86 A long simulation of this protein was
performed by Lindorff-Larsen et al.3 at D.E. Shaw Research
(DESRES), which uncovered numerous (un)folding events
that traverse through an ensemble of metastable states. We
use 200 μs of these simulation data saved every 200 ps
(resulting in 1,000,000 frames) to train our LSS. Given the
larger size of BBA compared to alanine dipeptide, we reduce
our representation of the system to the Cα atoms only and
use the set of pairwise distances between each of these atoms
as our feature set. A more aggressively parsimonious
featurization may retain only every nth Cα atom. The training
process is very similar to that of alanine dipeptide, with the
main difference being the scale and composition of features
and the number of learned SRV coordinates. Based on the
substantially larger size of the training set and increased
training time, we provide a walkthrough that loads pretrained
models for the SRV, MDN, and DDPM decoder and show
some quantitative results below. Full instructions and
materials necessary to run this tutorial are available at
https://github.com/Ferg-Lab/LSS_BBA including an addi-
tional code that can be used to train the models from scratch.
3.2.1. Loading and Processing Training Data. We have

provided the reduced representation of DESRES trajectories
in the collab_files directory, with frames strided at 10 ns
(compared to 200 ps during training), reducing the number

Figure 4. Snapshot of nglview visualization of backbone-only
reconstruction of alanine dipeptide from the synthetic trajectory
produced by the trained LSS. Carbon atoms are colored in gray,
oxygen in red, and nitrogen in blue.

Figure 5. Hyperparameter selection for training the SRV encoder applied to BBA trajectories. (a) Implied time scale of leading models based on
SRV models trained at various lag times. Each curve corresponds to a different mode, where the blue curve shows the slowest process, and
brown shows the fastest process. A lag time of 10 ns (dashed line) was selected based on approximate convergence of these modes. (b)
Training and validation loss calculated by the sum of leading eigenvalues squared (VAMP-2 loss). Training time of three epochs was selected
based on convergence of validation loss. (c) Implied time scales corresponding to the leading eight nontrivial modes. A spectral gap is observed
after the sixth mode, and we retrain our model and perform subsequent analysis using only the six leading modes.
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of frames from 1,000,000 to 20,000. These files can be
downloaded locally and then loaded into the notebook.
Alternatively, users can pass in their custom trajectories and
topologies by setting trj_fnames and top_fname to their
corresponding paths. Trajectory data are contained in 10 .dcd
files, and the topology is specified by a single .pdb file. To
simplify visualization, after data are loaded, we select the first
frame of the first trajectory as our reference configuration and
superpose each subsequent frame with respect to this
configuration.

We then use the torch.pdist function to calculate all
pairwise distances between the 28 Cα atoms, resulting in a
(28 × 27)/2 = 378-dimensional feature set.

3.2.2. Loading and Deploying the SRV Encoder. We load
our pretrained SRV, which is stored in the collab_files
directory. We select a lag of 50 steps (10 ns) based on the
approximate convergence of leading time scales (Figure 5a).
We train our SRV for three epochs based on convergence of
the validation loss (Figure 5b) and project into the six
leading nontrivial eigenvectors based on a spectral gap after
the sixth mode (Figure 5c). We recall that we discard the
trivial leading eigenvector ψ0 corresponding to the equili-
brium distribution and possessing a formally infinite implied
time scale. In addition to loading the model weights, we load
the expansion coefficients and specify that the model has
already been fitted. The code for retraining the SRV from
scratch is also available in the notebook.

Figure 6. Projection of the 20,000 frames of the BBA training data into the leading two TICA modes. (a) Heat maps coloring the points by the
values of the six leading SRV modes { } =i i 1

6 onto which we have also projected representative molecular configurations. Changes in the values of
the SRV modes expose interconversions between different configurational populations. ψ1, for example, is strongly correlated with TIC1 and
corresponds to global (un)folding. Noting the striking, but purely serendipitous, similarity of our TICA embedding to a map of Australia, ψ2
corresponds to transitions between the red partially unfolded β-sheet state located in Melbourne to the rest of the island, whereas ψ3
corresponds to transitions between the blue “folded-in-half” state in Canberra to the more populated red unfolded states in Melbourne and
Sydney. (b) Pearson correlation coefficients between each of the 378 pairwise distance features and three leading SRV modes. Analysis of these
linear correlations can help expose the interpretability of the learned SRV modes.
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We then encode our molecular features into SRV
eigenvectors using the snrv.transform method. These
eigenvectors define the latent space coordinates, which will
be used later to train both the propagator and decoder. We
save another copy of CVs_cat which concatenates latent
space coordinates across all trajectories and converts the data
to an np.ndarray in order to perform additional analysis.

Without access to good a priori collective variables, such as
phi/psi angles for alanine dipeptide, it can be more
challenging to interpret our learned SRV coordinates. As an
initial check, we first plot comparisons against the leading
modes of time-lagged independent component analysis
(TICA).55 TICA solves a linear time-lagged eigenvalue
problem (without using a neural network to optimize the
basis) and can serve as a reasonable linear approximation for
the slowest modes. TICA modes also tend to possess higher
variance than SRV modes, which can make them better
suited to interpretable visualizations. We obtain the leading
TICA coordinates using the deeptime Python package87 as
shown below. We specify a lag of one time step,
corresponding to a lag time of 10 ns, since we loaded the
trajectories with a 10 ns stride.

In Figure 6a, we show our leading SRV modes overlaid on
the first two TIC coordinates. We see a strong correlation
between ψ1 and TIC1, corresponding to the global (un)-
folding process. Higher-order eigenvectors differentiate small-
er regions of TIC space from the greater ensemble,
corresponding to transitions in and out of metastable states.
The code for generating the SRV heatmaps projected into the
leading TIC coordinates is provided below, and in Figure 6a,
we manually annotate these with representative molecular
configurations.

Physical interpretation of the SRV coordinates can be
aided by examining their linear correlations with candidate
input features. In Figure 6b, we illustrate the Pearson
correlation coefficients between the leading three modes and
each of the 378 pairwise distance features used to train the
encoder. We observe strong positive correlations between ψ1
and pairwise distances within the group of residues 15−23,
which correspond to interactions within the α-helix. These
correlations appear to strongly emerge since the α-helix tends
to be the last secondary structural element that forms during

the folding process. We also observe significant negative
correlations between ψ2 and pairwise distances from residues
(1−7) to residues (10−19) which correspond to changes in
distance between the two β-sheets. Indeed, we find that ψ2
distinguishes partially unfolded states that contain a β-sheet
structure from those that do not. The ψ3 coordinate
correlates with transitions into a more rare metastable state
in which the protein is effectively folded in half and the
termini are in close proximity. The strong negative
correlations of ψ3 with pairwise distances from residues
(1−12) ascending to residues (17−28) descending correlate
with the relative proximity of these residue pairs extending
from the termini (residues 1 and 28) down to the hinge at
residues 14−16. The code to generate these correlation plots
is provided below.

3.2.3. Loading and Deploying the MDN Propagator.
Next, we deploy our MDN propagator to generate synthetic
trajectories in the learned latent space. We load our
pretrained model which was run for 100 epochs and predicts
conditional probabilities in the six-dimensional latent space.
We trained the MDN using the same 10 ns lag time as that
of the SRV encoder. It is not a requirement that the same lag
time be used for training the SRV and the MDN; however,
using a shorter MDN lag time risks breaking the Markovian
(i.e., memoryless) assumption, and longer lag times
unnecessarily reduce the temporal resolution of the trajectory
generated by the propagator.

We use our pretrained model to generate a synthetic
trajectory that is 10× longer than the training data,
corresponding to an effective simulation time of 2 ms. This
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time scale represents an extremely large computational
expense at both all-atom and coarse-grained resolution, but
the MDN generates this trajectory in less than 2 min on a
single GPU. In order to ensure consistency with our MD
trajectory, we calculate the number of integration steps by
dividing by the MDN lag time. Our initial configuration x is
set to the latent coordinates of the first frame of our SRV
embedding and each subsequent frame is sampled from the
predicted MDN distribution.

To inspect the consistency of our model with the training
data, we plot in Figure 7a the first 10% of our synthetic
trajectory as a function of time (orange) and compare it with
the SRV embedding of MD data (blue). We show each of the
six leading modes on a separate axis and observe similar
dynamical trends between the corresponding modes of the
two trajectories. As described above, ψ1 corresponds to the
global (un)folding process, and we observe several transitions
occurring at distinct time points for each trajectory. Higher-
order modes mainly correspond to rare excursions through
metastable states, and we see the abruptness of transitions
and the relatively short lifetime of these states recapitulated
in the synthetic trajectory. Because synthetic trajectories are
substantially cheaper to generate than standard MD, we can
sample many more transitions than are available in the
training data and use these to greatly reduce the statistical
uncertainty in structural, thermodynamic, and kinetic
observables. The code to generate these trajectory compar-
isons is provided below.

Additionally, we may be interested in a thermodynamic

comparison between the MD trajectories and the synthetic

LSS trajectories generated by the MDN. In Figure 7b, we

plot a kernel density estimate of the probability distributions

along the six leading SRV modes from each trajectory. In this

plot, we include data from the complete synthetic trajectory,

which effectively represents a 10× longer time scale than the

MD data. As such, we expect strong similarities between the

synthetic and MD distributions but also expect differences

that reflect both the stochasticity in the generated trajectory

and the disparate data volumes. Indeed, there is a close

correspondence overall, but, for example, we observe that the

MDN predicts a slightly higher population in the ψ1 < −4

region and a slightly lower population near ψ2 = 0 than is

seen in the MD data. The code to plot these distributions is

provided below.

Figure 7. Comparison of synthetic LSS MDN trajectory dynamics and thermodynamics with ground-truth D.E. Shaw molecular dynamics
(DES-MD) training data for BBA. (a) DES-MD trajectory data (blue) projected into the leading six SRV modes as a function of time. The LSS
MDN trajectory (orange) initialized from the same starting coordinates as the MD data and propagated for an equivalent time scale, where each
step is separated by a lag of 10 ns corresponding to a total simulation time of 200 μs. (b) Probability distributions of each leading mode for the
MD trajectory (blue) and the synthetic LSS MDN trajectory (orange) constructed by kernel density estimation.
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3.2.4. Loading and Deploying the DDPM Decoder.
Finally, we load our pretrained DDPM decoder in order to
restore the Cα resolution of the original MD training data.
This model was trained for 40 epochs and used 100 diffusion
steps. The first frame was selected as a reference
configuration to align all subsequent frames. We tested
several reference configurations and did not find a difference
in DDPM performance in this case, but in general, we
recommend selecting a frame close to the native state or an
otherwise highly populated state. To ensure that the model
was not overfit, we performed a 90/10 split on segments of

each of our 10 training trajectories. All subsequent analyses
will be shown on the 10% hold-out test data.

To evaluate the quality of our decoder, we can first apply
the model to SRV embeddings of our MD data and compare
against the corresponding reference structure. In the
following code, we aggregate the trajectory frames corre-

Figure 8. Performance of the DDPM decoder applied to BBA. (a) Synthetic configurations (red) conditionally generated from the SRV latent
space coordinates superposed on the corresponding reference configurations (blue). (b) Synthetic configurations generated from randomly
selected frames of an MDN trajectory. No corresponding reference configurations exist, but configurations are physically plausible with respect
to the MD ensemble. (c) Distribution of RMSDs of all conditionally generated structures with respect to their corresponding (matched)
reference structures (blue) and with respect to randomly selected structures (red). The matched structures have on average significantly lower
RMSDs, indicating that the decoder is paying attention to the conditioning provided by the latent space coordinates. (d) All pairwise distances
between Cα carbons for five evenly spaced frames within the test trajectory of reference (top row) and generated (bottom row) configurations.
Given the correct adherence to SRV conditioning, pairwise distance maps of reference and generated structures are expected to approximately
match.
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sponding to our test set and generate synthetic trajectories
conditioned on each SRV embedding.

To compare generated structures against their correspond-
ing reference configurations, in Figure 8a, we visualize three
structures from distinct regions of SRV latent space to
compare the generated structure (red) superposed on the
reference structure (blue). We do not expect these structures
to be identical given that information about fast degrees of
freedom is lost during the SRV encoding and the model is
based on a denoising diffusion process that will stochastically
produce distinct samples for identical conditionings, but as
expected, we observe structural similarities associated with
the slow dynamics governing the (un)folding of the protein.
In Figure 8b, we illustrate synthetic configurations decoded
from randomly selected frames of an MDN trajectory. In this
case, no corresponding reference configurations exist, but
configurations are physically plausible with respect to the MD
ensemble.

To verify that the model is paying attention to the latent
space coordinate conditioning, we compared the root-mean-
square deviation (RMSD) of rototranslationally aligned
generated samples with respect to their corresponding
matched reference structures versus their alignment to
randomly selected frames. We show a comparison of these
two distributions in Figure 8c, which, as expected, reveals
significantly lower mean RMSDs for the matched samples
than for the random ones. The code to perform this analysis
is provided below.

As an additional comparison, we visualize all Cα carbon
pairwise distances between the reference and generated

configurations. Although not identical, we would expect
overall structural trends to remain consistent at samples
corresponding to the same regions of SRV space. In Figure
8d, we observe strong similarities between reference (top
row) and generated (bottom row) structures for five evenly
spaced frames in the test trajectory. The code to generate
these plots is provided below.

After verifying that our DDPM is correctly adhering to the
conditioning and predicting a physically plausible structure,
we employ the model to decode our synthetic MDN
trajectory to high-resolution molecular structures. As
visualized in Figure 8b, these structures are physically robust
and retain characteristics of the MD data. The transformation
from latent space trajectories to Cα-resolution synthetic
structures is performed by the code below.

4. CONCLUSIONS
The LSS approach offers a powerful tool to expand the
effective time scales of MD simulations. The model leverages
deep learning architectures to construct a surrogate dynamical
model from modest training data and enable the generation
of synthetic trajectories at a drastically reduced computational
cost at approximately 6 orders of magnitude lower than that
of standard MD. This approach facilitates dense sampling of
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molecular phase space and enables a large reduction in the
statistical errors in structural, thermodynamic, and kinetic
observables. The LSS framework employs three distinct deep
learning architectures to encode high-dimensional dynamics
into a low-dimensional latent space, propagate dynamics
within this space, and decode these dynamics back to the
original molecular configuration. This software tutorial
introduces the theoretical underpinnings and practical
applications of LSS, with examples demonstrated on alanine
dipeptide and the 28-residue BBA protein within accessible
Google Colab notebooks.

The LSS framework has been extended to multimolecular
and highly distributed systems,30 and going forward, we are
interested in developing conditioning on thermodynamic
parameters such as temperature as well as chemical features
like protein sequence. We also acknowledge current
limitations in terms of the flexibility of the encoding and
decoding frameworks. For example, molecular featurizations
are currently selected by the user but could instead be
learned by a structure-agnostic graph encoding similar to
Schnet.88 Additionally, the decoder currently requires align-
ment to a reference configuration, which may be ambiguous
for larger and more complex systems and could be replaced
by an equivariant decoding mechanism. Indeed, the field is
developing rapidly, and an advantage of the LSS framework is
that novel architectures can be modularly deployed to
enhance or replace any of the three components. Going
forward, we hope that the molecular modeling community
will find utility in the LSS framework, collaboratively build
upon this approach by experimenting with novel learning
methods and network architectures, and apply these models
to increasingly complex and challenging systems.
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