Rigidity and compensated compactness in L^{1}

Filip Rindler
F.Rindler@warwick.ac.uk
www.ercsingularity.org

WARWICK
 THE UNIVERSITY OF WARWICK
 erc SINGUL RITY

Convex Integration and Nonlinear Partial Differential Equations Workshop

General compensated compactness

Tartar framework: Sequence of maps $u_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with

$$
u_{j} \rightharpoonup u \quad \text { weakly/weakly* in a Sobolev space or space of measures }
$$

and
linear PDE constraint: $\mathscr{A} u_{j}=0$
nonlinear pointwise constraint: $u_{j} \in K \subset \mathbb{R}^{m}$

Question: Is there unexpected (compensated) compactness in the sequence (u_{j}), e.g.,

$$
u_{j} \rightarrow u \quad \text { strongly }
$$

or at least convergence for some (nonlinear) functions of u_{j} ?

Goal: Compensated compactness theory with concentrations ($u \in \mathrm{~L}^{1}$ or $u \in \mathscr{M}_{\text {loc }}$; weak* convergence in the sense of measures)

Hidden (or not so hidden) PDEs

PDE constraints for vector measures $\mu \in \mathscr{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{N}\right), \sigma \in \mathscr{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)$:

$$
\mathscr{A} \mu:=\sum_{|\alpha| \leq k} A_{\alpha} \partial^{\alpha} \mu=\sigma \quad \text { in } \mathscr{D}^{\prime},
$$

where $A_{\alpha} \in \mathbb{R}^{n \times N}, \partial^{\alpha}=\partial_{1}^{\alpha_{1}} \ldots \partial_{d}^{\alpha_{d}}$ for each multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$.

Example 1 - Functions of bounded variation: For $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$, we have that $D u=\left(\mu_{j}^{k}\right) \in \mathscr{M}\left(\Omega ; \mathbb{R}^{m \times d}\right)$ satisfies

$$
0=\mathscr{A}(D u):=\operatorname{curl}(D u):=\left(\partial_{j} \mu_{i}^{k}-\partial_{i} \mu_{j}^{k}\right)_{i, j=1, \ldots, d ; k=1, \ldots, m} .
$$

Application: Deformations with jumps and fractal parts.

Examples

Example 2 - Functions of bounded deformation: For $u \in \operatorname{BD}(\Omega)$, we have that $E u:=\frac{1}{2}\left(D u+D u^{T}\right)=\left(\mu_{j}^{k}\right) \in \mathscr{M}\left(\Omega, \mathbb{R}_{\mathrm{sym}}^{d \times d}\right)$ satisfies Saint-Venant's compatibility conditions (1864):

$$
0=\mathscr{A}(E u):=\operatorname{curl} \operatorname{curl}(E u):=\left(\sum_{i=1}^{d} \partial_{i k} \mu_{i}^{j}+\partial_{i j} \mu_{i}^{k}-\partial_{j k} \mu_{i}^{i}-\partial_{i i} \mu_{j}^{k}\right)_{j, k=1, \ldots, d}
$$

Application: Displacements (e.g., perfect plasticity).

Example 3 - Normal 1-currents: A vector measure $T \in \mathscr{M}_{\text {loc }}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ is called a normal 1-current if

$$
\partial T:=-\operatorname{div} T \in \mathscr{M}_{\mathrm{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}\right),
$$

thus:

$$
\mathscr{A} T:=\partial T=\sigma \in \mathscr{M}_{\mathrm{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}\right) .
$$

Application: Dislocations (they are loops within a crystal grain).

Wanted: Fine structure theory

Central question: Restrictions on the singular part μ^{s} of solutions μ of $\mathscr{A} \mu=\sigma$.

$$
\mu=g \mathscr{L}^{d}+\mu^{s} ?
$$

$\mu^{s}=$ jumps, fractals, Cantor measures, \ldots ?

Major goal 1: Restrictions (rigidity) on singularities:

Major goal 2: Fine structure theory for singularities:

- Shape?
- Dimensions?
- Local structure?

Major goal 3: Compensated compactness theory

Rigidity I (polar differential inclusions)

Rigidity in BV

Let $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)\left(\Omega \subset \mathbb{R}^{d}\right.$ a Lipschitz domain $)$. At $|D u|$-almost every $x_{0} \in \Omega$, a blow-up v satisfies

$$
D v=P_{0}|D v|, \quad \text { where } \quad P_{0}=\frac{D^{s} u}{\left|D^{s} u\right|}\left(x_{0}\right) \quad \in \mathbb{R}^{m \times d} .
$$

Hence: Need to investigate the structure of solutions to

$$
D v=P_{0}|D v|, \quad v \in \mathrm{BV}_{\mathrm{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}^{m}\right), P_{0} \in \mathbb{R}^{m \times d},\left|P_{0}\right|=1
$$

Lemma (Rigidity)

Let $v \in \mathrm{BV}_{\text {loc }}\left(\mathbb{R}^{d} ; \mathbb{R}^{m}\right)$ satisfy (\star). Then:
(i) If rank $P_{0} \geq 2$, then v is affine.
(ii) If $P_{0}=a \otimes \xi\left(\Leftrightarrow \operatorname{rank} P_{0} \leq 1\right)$, then v is one-directional, i.e. there exists $\tilde{v} \in \mathrm{BV}_{\text {loc }}(\mathbb{R})$ such that

$$
v(y)=\tilde{v}(y \cdot \xi) a, \quad y \in \mathbb{R}^{d} \text { a.e. }
$$

Theorem ($\mathscr{A}=$ curl, Alberti's Rank-One Theorem 1993)
Let $u \in \operatorname{BV}\left(\mathbb{R}^{d} ; \mathbb{R}^{m}\right)$. Then, for the singular part $D^{s} u$ of $D u$:

$$
\operatorname{rank}\left(\frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right)=1 \quad\left|D^{s} u\right| \text {-a.e. }
$$

Rigidity for symmetrized gradients

Idea: Investigate the structure of solutions to

$$
E v:=\frac{1}{2}\left(D v+D v^{T}\right)=P_{0}|E v|, \quad v \in \mathrm{BD}_{\mathrm{loc}}\left(\mathbb{R}^{d}\right), P_{0} \in \mathbb{R}_{\mathrm{sym}}^{d \times d},\left|P_{0}\right|=1 .
$$

Would like to have (by analogy to BV):

(i) If $P_{0} \notin\left\{a \odot b: a, b \in \mathbb{R}^{d}\right\}$, then v is affine.
(ii) If $P_{0}=a \odot b$ for some $a, b \in \mathbb{R}^{d} \backslash\{0\}$, then there exists $h_{1}, h_{2} \in \mathrm{BV}_{\text {loc }}(\mathbb{R})$, $v_{0} \in \mathbb{R}^{d}$ and a skew-symmetric matrix $R \in \mathbb{R}_{\text {skew }}^{d \times d}$ such that

$$
v(x)=v_{0}+h_{1}(x \cdot b) a+h_{2}(x \cdot a) b+R x, \quad x \in \mathbb{R}^{d} \text { a.e. }
$$

But: Both assertions are wrong in general!
(i) Take $P_{0}=\left(\begin{array}{ll}1 & 1\end{array}\right)$ and $v(x)=\binom{\mathrm{e}^{x_{1}} \sin \left(x_{2}\right)}{-\mathrm{e}^{x_{1}} \cos \left(x_{2}\right)}$ (harmonic!).
(ii) Take $P_{0}=\left(\begin{array}{ll}1 & 0\end{array}\right)=\mathrm{e}_{1} \odot \mathrm{e}_{1}$ and $v(x)=\binom{4 x_{1}^{3} x_{2}}{-x_{1}^{4}}$.

General structure

Question

What is the general structure of a measure $\mu \in \mathscr{M}_{\operatorname{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}^{N}\right)$ with

$$
\mathscr{A} \mu=0 \quad\left(\text { or } \mathscr{A} \mu=\sigma \in \mathscr{M}\left(\mathbb{R}^{d} ; \mathbb{R}^{n}\right)\right)
$$

and

$$
\mu=P_{0} \nu
$$

where $P_{0} \in \mathbb{R}^{N}$ and $\nu \in \mathscr{M}_{\text {loc }}^{+}\left(\mathbb{R}^{d}\right)$? In particular, when does it hold that

$$
\mu=\tau_{1}+\ldots+\tau_{N} \quad \bmod \mathrm{C}^{\infty}
$$

with $\tau_{1}, \ldots, \tau_{N}$ of a "simple structure"?

BD case: $N=2$ (two one-directional parts) - R. '11, De Philippis-R. '17, De Philippis-R. '20

Divergence: Structure of boundaryless currents (e.g. Smirnov's theorem). Also: Garroni \& Nesi '04 and Palombaro-Ponsiglione '04, Arroyo-Rabasa '19.

Singular Density Theorem

Let $\mathscr{A} \mu=\sigma$ distributionally for

$$
\mathscr{A} \mu:=\sum_{|\alpha| \leq k} A_{\alpha} \partial^{\alpha} \mu .
$$

Principal symbol: $\mathbb{A}^{k}(\xi):=\sum_{|\alpha|=k}(2 \pi \mathrm{i})^{k} A_{\alpha} \xi^{\alpha}$
Tartar wave cone: $\wedge_{\mathscr{A}}:=\bigcup_{|\xi|=1} \operatorname{ker} \mathbb{A}^{k}(\xi)$
Rigidity/ellipticity: If $\mathscr{A}\left[P_{0} \nu\right]=0$ with $P_{0} \notin \Lambda_{\mathscr{A}}$, then $\nu \in \mathrm{C}^{\infty}(N=0$ in Question).

Theorem (De Philippis \& R. '16)
If $\mu=g \mathscr{L}^{d}+\mu^{s}$, then

$$
\frac{\mathrm{d} \mu^{s}}{\mathrm{~d}\left|\mu^{s}\right|}(x) \in \Lambda_{\mathscr{A}} \quad \text { for }\left|\mu^{s}\right|-\text { a.e. } x \in \Omega
$$

Corollary (Converse Rademacher Theorem)

Let ν be a positive Radon measure on \mathbb{R}^{d} such that every Lipschitz function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is differentiable ν-almost everywhere. Then, $\nu \ll \mathscr{L}^{d}$.

Rigidity II (dimensionality and rectifiability)

Question: Given two smooth curves T_{1}, T_{2} in \mathbb{R}^{2} that intersect on a set S (but do not self-intersect). What do we know about \vec{T}_{1}, \vec{T}_{2} on the intersection S ?

Answer: $\vec{T}_{1} \| \vec{T}_{2} \mathscr{H}^{1}$-almost everywhere on the intersection S ("up to single points").
"The lines do not see the crossing points":
If span $\left\{\vec{T}_{1}, \vec{T}_{2}\right\}=\mathbb{R}^{2}$ on S, then $\mathscr{H}^{1}(S)=0$. Actually, $\operatorname{dim}_{\mathscr{H}} S=0$.

Singularity of ν

Theorem (De Philippis \& R. '16)
Let T_{1}, \ldots, T_{d} be normal 1-currents in \mathbb{R}^{d}, i.e.,

$$
T_{i} \in \mathscr{M}_{\mathrm{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right) \quad \text { with } \quad \operatorname{div} T_{i}=\sigma_{i} \in \mathscr{M}_{\mathrm{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}\right)
$$

and $\nu \in \mathscr{M}^{+}\left(\mathbb{R}^{d}\right)$ a positive measure with
(i) $\nu \ll\left\|T_{i}\right\|$ for $i=1, \ldots, d$;
(ii) for $|\nu|$-a.e. $x: \operatorname{span}\left\{\vec{T}_{1}(x), \ldots, \vec{T}_{d}(x)\right\}=\mathbb{R}^{d}$.

Then, $\nu \ll \mathscr{L}^{d}$.
Proof: Put

$$
\mathbf{T}:=\left(\begin{array}{c}
T_{1} \\
\vdots \\
T_{d}
\end{array}\right), \quad \text { so } \quad \operatorname{div} \mathbf{T}=\sigma \in \mathscr{M}_{\mathrm{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)
$$

By (ii),

$$
\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d}|\mathbf{T}|}(x) \notin \Lambda_{\text {div }}=\left\{M \in \mathbb{R}^{d \times d}: \operatorname{det} M=0\right\} \quad \text { for } \nu \text {-a.e. } x \text {. }
$$

Now use $\mathscr{A}=\operatorname{div}$ in the Singular Density Theorem. This gives

$$
\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d}|\mathbf{T}|}(x) \in \Lambda_{\text {div }} \quad \text { for }|\mathbf{T}|^{s} \text {-a.e. } x .
$$

Since also $\nu^{s} \ll|\mathbf{T}|^{s}$ by (i), we get $\nu^{s}=0$.

Co-cancelling operators

Definition (van Schaftingen '13)

The operator \mathscr{A} is called co-cancelling if

$$
\Lambda_{\mathscr{A}}^{1}:=\bigcap_{\xi \in \mathbb{R}^{d} \backslash\{0\}} \operatorname{ker} \mathbb{A}^{k}(\xi)=\{0\}
$$

Example: $\mathscr{A}=\operatorname{div}$ is co-cancelling.

Theorem (van Schaftingen '13)

Assume that \mathscr{A} is homogeneous and co-cancelling. If

$$
\mathscr{A}\left(P_{0} \delta_{0}\right)=0 \quad \text { for some } P_{0} \in \mathbb{R}^{m}
$$

then $P_{0}=0$.

Example: There is no $P_{0} \neq 0$ such that $\operatorname{div}\left(P_{0} \delta_{0}\right)=0$.

Corollary

Let $\mathscr{A} \mu=0$ with \mathscr{A} co-cancelling. If μ is " 0 -rectifiable", then $\mu=0$.
Conclusion: Other wave cones might give information about the dimension of $\mu \ldots$

Hierarchy of wave cones

Definition

For $\ell=1, \ldots, d$ we define the ℓ-dimensional wave cone as

$$
\Lambda_{\mathscr{A}}^{\ell}:=\bigcap_{\pi \in \operatorname{Gr}(\ell, d)} \bigcup_{\xi \in \pi \backslash\{0\}} \operatorname{ker} \mathbb{A}^{k}(\xi),
$$

where $\operatorname{Gr}(\ell, d)$ is the G rassmanian of ℓ-planes in \mathbb{R}^{d}.

Inclusions:

$$
\Lambda_{\mathscr{A}}^{1}=\bigcap_{\xi \in \mathbb{R}^{d} \backslash\{0\}} \operatorname{ker} \mathbb{A}^{k}(\xi) \subset \Lambda_{\mathscr{A}}^{j} \subset \Lambda_{\mathscr{A}}^{\ell} \subset \Lambda_{\mathscr{A}}^{d}=\Lambda_{\mathscr{A}}, \quad 1 \leq j \leq \ell \leq d
$$

Dimensional estimates

Theorem (Arroyo-Rabasa, De Philippis, Hirsch \& R. '19)
Let $\mathscr{A} \mu=\sigma$. If $\mathscr{H}^{\ell}(E)=0$ for some $\ell \in\{0, \ldots, d\}$, then

$$
\frac{\mathrm{d} \mu}{\mathrm{~d}|\mu|}(x) \in \Lambda_{\mathscr{A}}^{\ell} \quad \text { for }|\mu| \text {-a.e. } x \in E .
$$

Remark: For $\ell=d$, this recovers the '16 Singular Density Theorem.

Corollary

Let $\mathscr{A} \mu=\sigma$. Define

$$
\ell_{\mathscr{A}}:=\max \left\{\ell \in \mathbb{N}: \Lambda_{\mathscr{A}}^{\ell}=\{0\}\right\} .
$$

Then,

$$
\mu \ll \mathscr{H}^{\ell}
$$

Remark: For $\ell=1$, this also improves the result of van Schaftingen '13 ($\operatorname{dim}_{\mathscr{H}} \mu \geq 1$ as opposed to $\operatorname{dim}_{\mathscr{H}} \mu>0$).

Rectifiability

Define the upper ℓ-density of $|\mu|$:

$$
\theta_{\ell}^{*}(|\mu|)(x):=\limsup _{r \rightarrow 0} \frac{|\mu|\left(B_{r}(x)\right)}{(2 r)^{\ell}}
$$

Theorem (Arroyo-Rabasa, De Philippis, Hirsch \& R. '19)
Let $\mathscr{A} \mu=\sigma$ and assume

$$
\Lambda_{\mathscr{A}}^{\ell}=\{0\} .
$$

Then, $\mu\left\llcorner\left\{\theta_{\ell}^{*}(|\mu|)>0\right\}\right.$ is concentrated on an ℓ-rectifiable set R and

$$
\mu\left\llcorner R=P(x) \mathscr{H}_{x}^{\ell} L R,\right.
$$

where

$$
P\left(x_{0}\right) \in \bigcap_{\xi \in\left(T_{x_{0}} R\right)^{\perp}} \operatorname{ker} \mathbb{A}^{k}(\xi) \quad \text { for } \mathscr{H}^{\ell} \text {-a.e. } x_{0} \in R\left(\text { or }|\mu| \text {-a.e. } x_{0} \in R\right) .
$$

Here, $T_{x_{0}} R$ is the the approximate tangent plane to R at x_{0}.
Remark: Recovers rectifiability results for BV-maps $\left(\mathscr{A}=\right.$ curl, $\left.\ell_{\text {curl }}=d-1\right)$ and for BD-maps $\left(\mathscr{A}=\right.$ curl curl, $\left.\ell_{\text {curl curl }}=d-1\right)$.

Rectifiability for divergence constraint

Theorem (Arroyo-Rabasa, De Philippis, Hirsch \& R. '19)
Let $\operatorname{div} \mu=\sigma$. Assume that

$$
\operatorname{rank}\left(\frac{\mathrm{d} \mu}{\mathrm{~d}|\mu|}(x)\right) \geq \ell \quad \text { for }|\mu| \text {-a.e. } x .
$$

Then, $|\mu| \ll \mathscr{H}^{\ell}$ and there exist an ℓ-rectifiable set $R \subset U$ such that

$$
\mu\left\llcorner\left\{\theta_{\ell}^{*}(|\mu|)>0\right\}=P(x) \mathscr{H}_{x}^{\ell} L R, \quad \text { rank } P(x)=\ell .\right.
$$

Remark: Recovers several known rectifiability criteria for varifolds (Allard '72, Ambrosio-Soner '97, Lin '99, Moser '03, De Philippis-De Rosa-Ghiraldin '18).

Proof: Let $\widetilde{\mu}:=(\mu, \sigma)$ and $\mathscr{A}(\widetilde{\mu}):=\operatorname{div} \mu-\sigma$. Then,

$$
\Lambda_{\mathscr{A}}^{\ell}=\left\{M \in \mathbb{R}^{d \times d}: \operatorname{rank} M<\ell\right\} .
$$

Question

Are these dimensionality/rectifiability results sharp?

Compensated compactness I: Differential inclusions

Laminates, I

- Let $A, B \in \mathbb{R}^{d \times d}$ with $B-A=a \otimes n:=a n^{T}$ for $a, n \in \mathbb{R}^{d} \backslash\{0\}$.
- Let $\theta \in[0,1]$ and $F:=\theta A+(1-\theta) B$.

- These u_{j} satisfy the differential inclusion

$$
\nabla u_{j}(x) \in\{A, B\} \quad \text { for a.e. } x \in \Omega
$$

and the convergence

$$
\nabla u_{j} \stackrel{*}{\rightharpoonup} F \quad \text { in } \mathrm{W}_{\mathrm{loc}}^{1, \infty} .
$$

Ball-James theorem

Theorem (Ball \& James 1987)

Let $\Omega \subset \mathbb{R}^{d}$ be an open, bounded, and connected set and let $A, B \in \mathbb{R}^{m \times d}$ with

$$
\operatorname{rank}(A-B) \geq 2
$$

(A) If $u \in \mathrm{~W}^{1, \infty}\left(\Omega ; \mathbb{R}^{m}\right)$ satisfies the differential inclusion

$$
\nabla u(x) \in\{A, B\} \quad \text { for a.e. } x \in \Omega,
$$

then either $\nabla u \equiv A$ or $\nabla u \equiv B$.
(B) Let $\left(u_{j}\right) \subset \mathrm{W}^{1, \infty}\left(\Omega ; \mathbb{R}^{m}\right)$ be a norm-bounded sequence such that

$$
\operatorname{dist}\left(\nabla u_{j},\{A, B\}\right) \rightarrow 0 \quad \text { in measure. }
$$

Then, up to extracting a subsequence, either

$$
\int_{\Omega}\left|\nabla u_{j}(x)-A\right| \mathrm{d} x \rightarrow 0 \quad \text { or } \quad \int_{\Omega}\left|\nabla u_{j}(x)-B\right| \mathrm{d} x \rightarrow 0
$$

as $j \rightarrow \infty$.

Two-state problem

Theorem (De Philippis, Palmieri \& R. '18)

Let $\Omega \subset \mathbb{R}^{d}$ be a domain. Suppose that $\lambda, \mu \in \mathbb{R}^{N}$ with

$$
\lambda-\mu \notin \wedge_{\mathscr{A}} .
$$

(A) If $v \in \mathrm{~L}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ is such that

$$
\mathscr{A} v=0 \quad \text { and } \quad v(x) \in\{\lambda, \mu\} \quad \text { for a.e. } x \in \Omega
$$

then either $v \equiv \lambda$ or $v \equiv \mu$.
(B) Let $\left(v_{j}\right) \subset L^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ be a uniformly norm-bounded sequence of maps such that

$$
\mathscr{A} v_{j}=0 \quad \text { and } \quad \lim _{j \rightarrow \infty} \int_{\Omega} \operatorname{dist}\left(v_{j}(x),\{\lambda, \mu\}\right) \mathrm{d} x=0
$$

Then, up to extracting a subsequence, either

$$
\int_{\Omega}\left|v_{j}(x)-\lambda\right| \mathrm{d} x \rightarrow 0 \quad \text { or } \quad \int_{\Omega}\left|v_{j}(x)-\mu\right| \mathrm{d} x \rightarrow 0
$$

as $j \rightarrow \infty$.
Other work: Garroni \& Nesi '04 and Palombaro-Ponsiglione '04 ($\mathscr{A}=\mathrm{div}$), Barchiesi '03 (some first-order \mathscr{A}), Sorella-Tione '21 (flexibility for 4-state problem).

Conjecture

Suppose $\mu \in \mathscr{M}\left(\Omega ; \mathbb{R}^{m}\right)$ solve

$$
\mathscr{A} \mu=\sigma \quad \text { in } \mathscr{D}^{\prime}\left(\Omega ; \mathbb{R}^{n}\right)
$$

and its polar satisfies

$$
\frac{\mathrm{d} \mu}{\mathrm{~d}|\mu|}(x) \in K \quad \text { for }|\mu| \text {-a.e. } x \in \Omega
$$

with $K \subset\left(\mathbb{R}^{m} \backslash \wedge_{\mathscr{A}}\right) \cup\{0\}$ a convex and closed (one-sided) cone. Then, we conjecture that

$$
\mu \in \mathrm{L}_{\mathrm{loc}}^{p}\left(\Omega ; \mathbb{R}^{m}\right)
$$

for every $1 \leq p<\frac{d}{d-k}$ if $k<d$ and all $p \in[1, \infty)$ otherwise.

Perturbative first results: Bate \& Orponen '20 (for $\mathscr{A}=\operatorname{div}$), Arroyo-Rabasa-De Philippis-Hirsch-R.-Skorobogatova '21.

Compensated compactness II: Shape optimization

Optimal structures

Size opt.

Shape opt.

Topology opt.

picture from Gebisa \& Lemu 2017 IOP Conf. Ser.: Mater. Sci. Eng. 276012026
Objective: Given a bounded domain $\Omega \subset \mathbb{R}^{d}(d=2,3)$, find the optimal shape $\omega \subset \Omega$ of prescribed volume $\mathscr{L}^{d}(\omega)=\varepsilon$ that is maximally strong:

Minimize the (rescaled) compliance $\min _{\sigma \in \mathrm{L}^{2}\left(\omega ; \mathbb{R}_{\mathrm{Sym}}^{d \times d}\right)}\left\{\varepsilon \int_{\omega} j^{*}(\sigma) \mathrm{d} x:-\operatorname{div}\left(\sigma \mathbb{1}_{\omega}\right)=f\right\}$
over all shapes $\omega \in \mathscr{A}_{\varepsilon}:=\left\{\omega \subset \Omega: \omega\right.$ Lipschitz domain, $\left.\partial \Omega \subset \partial \omega, \mathscr{L}^{d}(\omega)=\varepsilon\right\}$.
"Light" structures: What happens in the vanishing-mass limit $\varepsilon \downarrow 0$?

Bouchitté's conjecture

$$
\mathscr{C}_{\varepsilon}(\mu):= \begin{cases}\min _{\sigma \in \mathrm{L}^{2}\left(\mu ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right)}\left\{\int j^{*}(\sigma) \mathrm{d} \mu:-\operatorname{div}(\sigma \mu)=f\right\} & \text { if } \mu=\frac{\mathscr{L}^{d} L^{\omega} \omega}{\varepsilon} \text { for } \omega \in \mathscr{A}_{\varepsilon} \\ +\infty & \text { otherwise }\end{cases}
$$

Conjecture (Bouchitté '01)

The limit compliance $\overline{\mathscr{C}}$, for which

$$
\inf _{\omega \in \mathscr{A}_{\varepsilon}} \mathscr{C}_{\varepsilon}\left(\frac{\mathscr{L}^{d} L \omega}{\varepsilon}\right) \rightarrow \inf _{\mu \in \mathscr{M}^{1}(\bar{\Omega})} \overline{\mathscr{C}}(\mu) \quad \text { as } \varepsilon \downarrow 0
$$

is given as

$$
\overline{\mathscr{C}}(\mu)=\min _{\sigma \in \mathrm{L}^{2}\left(\mu ; \mathbb{R}_{\text {sym }}^{d \times d}\right)}\left\{\int \bar{j}^{*}(\sigma) \mathrm{d} \mu:-\operatorname{div}(\sigma \mu)=f\right\},
$$

where the infinitesimal-mass integrand $\overline{j^{*}}$ is defined as the convex conjugate to

$$
\bar{j}(\xi):=\sup _{\substack{\tau \in \mathbb{R}_{\text {sym }}^{d \times d} \\ \operatorname{det} \tau=0}}\left\{\xi: \tau-j^{*}(\tau)\right\}, \quad \xi \in \mathbb{R}_{\text {sym }}^{d \times d}
$$

Main theorem

Theorem (Babadjian \& Iurlano \& R. 2021)

Assume that Ω is a bounded C^{2}-domain in \mathbb{R}^{2} or \mathbb{R}^{3}. Then, Bouchitté's vanishing-mass conjecture holds (near a minimum) for the integrand $j(\xi):=\frac{1}{2}|\cdot|^{2}$, that is,

$$
\inf _{\omega \in \mathscr{A}_{\varepsilon}} \mathscr{C}_{\varepsilon}\left(\frac{\mathscr{L}^{d} L \omega}{\varepsilon}\right) \rightarrow \inf _{\mu \in \mathscr{M}^{1}(\bar{\Omega})} \overline{\mathscr{C}}(\mu) \quad \text { as } \varepsilon \downarrow 0 .
$$

Further:

- Approximate minimizers of $\mathscr{C}_{\varepsilon}$ converge weakly* to a minimizer of $\overline{\mathscr{C}}$.
- Every minimizer of $\overline{\mathscr{C}}$ is the limit of approximate minimizers of $\mathscr{C}_{\varepsilon}$.

Corollary: Justification of the theory of Michell trusses (Michell 1904, Prager 1970s)

Previous results: Olbermann '17, '20 (soft constraint)
All other cases of the conjecture: open!

Thank you!

www.ercsingularity.org

