Rigidity and compensated compactness in L^1

Filip Rindler

F.Rindler@warwick.ac.uk www.ercsingularity.org

Convex Integration and Nonlinear Partial Differential Equations Workshop ICMS Edinburgh 9 November 2021 **Tartar framework:** Sequence of maps $u_j : \mathbb{R}^d \to \mathbb{R}^m$ with

 $u_i
ightarrow u$ weakly/weakly* in a Sobolev space or space of measures

and

linear PDE constraint:
$$\mathscr{A}u_j = 0$$

nonlinear pointwise constraint: $u_i \in K \subset \mathbb{R}^m$

Question: Is there unexpected (compensated) compactness in the sequence (u_i) , e.g.,

 $u_i \rightarrow u$ strongly

or at least convergence for some (nonlinear) functions of u_i ?

Goal: Compensated compactness theory with concentrations $(u \in L^1 \text{ or } u \in \mathscr{M}_{loc}; \text{ weak}^* \text{ convergence in the sense of measures})$

PDE constraints for vector measures $\mu \in \mathscr{M}(\mathbb{R}^d; \mathbb{R}^N)$, $\sigma \in \mathscr{M}(\mathbb{R}^d; \mathbb{R}^n)$:

$$\mathscr{A}\mu := \sum_{|\alpha| \leq k} A_{\alpha} \partial^{\alpha} \mu = \sigma \quad \text{in } \mathscr{D}',$$

where $A_{\alpha} \in \mathbb{R}^{n \times N}$, $\partial^{\alpha} = \partial_1^{\alpha_1} \dots \partial_d^{\alpha_d}$ for each multi-index $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$.

Example 1 – Functions of bounded variation: For $u \in BV(\Omega; \mathbb{R}^m)$, we have that $Du = (\mu_i^k) \in \mathcal{M}(\Omega; \mathbb{R}^{m \times d})$ satisfies

$$\mathbf{0} = \mathscr{A}(\mathbf{D}u) := \mathsf{curl}\left(\mathbf{D}u\right) := \left(\partial_{j}\mu_{i}^{k} - \partial_{i}\mu_{j}^{k}\right)_{i,j=1,\ldots,d;\ k=1,\ldots,m}$$

Application: Deformations with jumps and fractal parts.

Examples

Example 2 – Functions of bounded deformation: For $u \in BD(\Omega)$, we have that $Eu := \frac{1}{2}(Du + Du^{T}) = (\mu_{j}^{k}) \in \mathscr{M}(\Omega, \mathbb{R}^{d \times d}_{sym})$ satisfies Saint-Venant's compatibility conditions (1864):

$$\mathbf{0} = \mathscr{A}(\mathbf{E}\mathbf{u}) := \operatorname{curl}\operatorname{curl}(\mathbf{E}\mathbf{u}) := \left(\sum_{i=1}^{d} \partial_{ik}\mu_{i}^{j} + \partial_{ij}\mu_{i}^{k} - \partial_{jk}\mu_{i}^{i} - \partial_{ii}\mu_{j}^{k}\right)_{j,k=1,\ldots,d}$$

Application: Displacements (e.g., perfect plasticity).

Example 3 – Normal 1-currents: A vector measure $T \in \mathscr{M}_{loc}(\mathbb{R}^d; \mathbb{R}^d)$ is called a normal 1-current if

$$\partial T := -\operatorname{div} T \in \mathscr{M}_{\operatorname{loc}}(\mathbb{R}^d; \mathbb{R}),$$

thus:

$$\mathscr{A} T := \partial T = \sigma \in \mathscr{M}_{\mathrm{loc}}(\mathbb{R}^d; \mathbb{R}).$$

Application: Dislocations (they are loops within a crystal grain).

Wanted: Fine structure theory

Central question: Restrictions on the *singular part* μ^s of solutions μ of $\mathscr{A}\mu = \sigma$.

$$\mu = g \mathscr{L}^d + \mu^s$$
 ?

 μ^{s} = jumps, fractals, Cantor measures, ...?

+ ///?

Major goal 1: Restrictions (rigidity) on singularities:

Major goal 2: Fine structure theory for singularities:

- Shape?
- Dimensions?
- Local structure?

Major goal 3: Compensated compactness theory

Rigidity I (polar differential inclusions)

Rigidity in BV

Let $u \in BV(\Omega; \mathbb{R}^m)$ ($\Omega \subset \mathbb{R}^d$ a Lipschitz domain). At |Du|-almost every $x_0 \in \Omega$, a blow-up v satisfies

$$Dv = P_0 |Dv|,$$
 where $P_0 = \frac{D^s u}{|D^s u|}(x_0) \in \mathbb{R}^{m \times d}$

Hence: Need to investigate the structure of solutions to

$$Dv = P_0 |Dv|, \qquad v \in BV_{loc}(\mathbb{R}^d; \mathbb{R}^m), \ P_0 \in \mathbb{R}^{m \times d}, \ |P_0| = 1. \tag{(\star)}$$

Lemma (Rigidity)

Let $v \in BV_{loc}(\mathbb{R}^d; \mathbb{R}^m)$ satisfy (\star) . Then:

(i) If rank $P_0 \ge 2$, then v is affine.

(ii) If $P_0 = a \otimes \xi$ (\Leftrightarrow rank $P_0 \leq 1$), then v is one-directional, i.e. there exists $\tilde{v} \in BV_{loc}(\mathbb{R})$ such that

$$v(y) = \tilde{v}(y \cdot \xi)a, \qquad y \in \mathbb{R}^d \ a.e.$$

Theorem ($\mathscr{A} = \operatorname{curl}$, Alberti's Rank-One Theorem 1993)

Let $u \in BV(\mathbb{R}^d; \mathbb{R}^m)$. Then, for the singular part $D^s u$ of Du:

$$\operatorname{rank}\left(\frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) = 1 \qquad |D^{s}u|\text{-}a.e$$

Rigidity for symmetrized gradients

Idea: Investigate the structure of solutions to

$$\mathsf{E}\mathsf{v} := \frac{1}{2}(\mathsf{D}\mathsf{v} + \mathsf{D}\mathsf{v}^{\mathsf{T}}) = \mathsf{P}_0|\mathsf{E}\mathsf{v}|, \qquad \mathsf{v} \in \mathrm{BD}_{\mathrm{loc}}(\mathbb{R}^d), \ \mathsf{P}_0 \in \mathbb{R}^{d \times d}_{\mathrm{sym}}, \ |\mathsf{P}_0| = 1.$$

Would like to have (by analogy to BV):

(i) If $P_0 \notin \{ a \odot b : a, b \in \mathbb{R}^d \}$, then v is affine.

(ii) If $P_0 = a \odot b$ for some $a, b \in \mathbb{R}^d \setminus \{0\}$, then there exists $h_1, h_2 \in BV_{loc}(\mathbb{R})$, $v_0 \in \mathbb{R}^d$ and a skew-symmetric matrix $R \in \mathbb{R}^{d \times d}_{skew}$ such that

$$v(x) = v_0 + h_1(x \cdot b)a + h_2(x \cdot a)b + Rx, \qquad x \in \mathbb{R}^d$$
 a.e.

But: Both assertions are wrong in general!

(i) Take
$$P_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $v(x) = \begin{pmatrix} e^{x_1} \sin(x_2) \\ -e^{x_1} \cos(x_2) \end{pmatrix}$ (harmonic!).
(ii) Take $P_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_1 \odot e_1$ and $v(x) = \begin{pmatrix} 4x_1^3x_2 \\ -x_1^4 \end{pmatrix}$.

Question

What is the general structure of a measure $\mu \in \mathscr{M}_{loc}(\mathbb{R}^d; \mathbb{R}^N)$ with

$$\mathscr{A}\mu = 0$$
 (or $\mathscr{A}\mu = \sigma \in \mathscr{M}(\mathbb{R}^d; \mathbb{R}^n)$)

and

 $\mu=P_0\nu,$

where $P_0 \in \mathbb{R}^N$ and $\nu \in \mathscr{M}^+_{\mathrm{loc}}(\mathbb{R}^d)$? In particular, when does it hold that

 $\mu = \tau_1 + \ldots + \tau_N \mod \mathbf{C}^\infty$

with τ_1, \ldots, τ_N of a "simple structure"?

BD case: N = 2 (two one-directional parts) – R. '11, De Philippis–R. '17, De Philippis–R. '20

Divergence: Structure of boundaryless currents (e.g. Smirnov's theorem). Also: Garroni & Nesi '04 and Palombaro–Ponsiglione '04, Arroyo-Rabasa '19.

Singular Density Theorem

Let $\mathscr{A}\mu = \sigma$ distributionally for

$$\mathscr{A}\mu := \sum_{|\alpha| \leq k} \mathsf{A}_{\alpha}\partial^{\alpha}\mu.$$

Principal symbol: $\mathbb{A}^{k}(\xi) := \sum_{|\alpha|=k} (2\pi i)^{k} A_{\alpha} \xi^{\alpha}$ Tartar wave cone: $\Lambda_{\mathscr{A}} := \bigcup_{|\xi|=1} \ker \mathbb{A}^{k}(\xi)$

Rigidity/ellipticity: If $\mathscr{A}[P_0\nu] = 0$ with $P_0 \notin \Lambda_{\mathscr{A}}$, then $\nu \in C^{\infty}$ (N = 0 in Question).

Corollary (Converse Rademacher Theorem)

Let ν be a positive Radon measure on \mathbb{R}^d such that every Lipschitz function $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable ν -almost everywhere. Then, $\nu \ll \mathscr{L}^d$.

Rigidity II (dimensionality and rectifiability)

Intersections of lines

Question: Given two smooth curves T_1 , T_2 in \mathbb{R}^2 that intersect on a set S (but do not self-intersect). What do we know about \vec{T}_1 , \vec{T}_2 on the intersection S?

Answer: $\vec{T}_1 \parallel \vec{T}_2 \mathscr{H}^1$ -almost everywhere on the intersection *S* ("up to single points").

"The lines do not see the crossing points": If span $\{\vec{T}_1, \vec{T}_2\} = \mathbb{R}^2$ on *S*, then $\mathscr{H}^1(S) = 0$. Actually, dim $_{\mathscr{H}} S = 0$.

Singularity of ν

Theorem (De Philippis & R. '16) Let $T_1, ..., T_d$ be normal 1-currents in \mathbb{R}^d , i.e., $T_i \in \mathscr{M}_{loc}(\mathbb{R}^d; \mathbb{R}^d)$ with div $T_i = \sigma_i \in \mathscr{M}_{loc}(\mathbb{R}^d; \mathbb{R})$, and $\nu \in \mathscr{M}^+(\mathbb{R}^d)$ a positive measure with (i) $\nu \ll ||T_i||$ for i = 1, ..., d; (ii) for $|\nu|$ -a.e. \times : span{ $\vec{T}_1(\times), ..., \vec{T}_d(\times)$ } = \mathbb{R}^d . Then, $\nu \ll \mathscr{L}^d$.

Proof: Put

$$\mathbf{T} := \begin{pmatrix} \mathcal{T}_1 \\ \vdots \\ \mathcal{T}_d \end{pmatrix}, \qquad \text{so} \qquad \text{div} \, \mathbf{T} = \sigma \in \mathscr{M}_{\mathrm{loc}}(\mathbb{R}^d; \mathbb{R}^d).$$

By (ii),

$$\frac{\mathrm{d}\mathbf{T}}{\mathrm{d}|\mathbf{T}|}(x)\notin\Lambda_{\mathrm{div}}=\Big\{M\in\mathbb{R}^{d\times d}\ :\ \mathrm{det}\,M=0\Big\}\qquad\text{for ν-a.e. x.}$$

Now use $\mathscr{A} = \operatorname{div}$ in the Singular Density Theorem. This gives

$$\frac{\mathrm{d} \mathbf{T}}{\mathrm{d} |\mathbf{T}|}(x) \in \Lambda_{\mathrm{div}} \qquad \text{for } |\mathbf{T}|^{s}\text{-a.e. } x.$$

Since also $\nu^{s} \ll |\mathbf{T}|^{s}$ by (i), we get $\nu^{s} = 0$. \Box

Co-cancelling operators

Definition (van Schaftingen '13)

The operator \mathscr{A} is called **co-cancelling** if

$$\Lambda^1_{\mathscr{A}} := \bigcap_{\xi \in \mathbb{R}^d \setminus \{0\}} \ker \mathbb{A}^k(\xi) = \{0\}.$$

Example: $\mathscr{A} = \operatorname{div}$ is co-cancelling.

```
Theorem (van Schaftingen '13)
```

Assume that \mathscr{A} is homogeneous and co-cancelling. If

 $\mathscr{A}(P_0\delta_0)=0$ for some $P_0\in\mathbb{R}^m$,

then $P_0 = 0$.

Example: There is no $P_0 \neq 0$ such that $div(P_0\delta_0) = 0$.

Corollary

Let $\mathscr{A}\mu = 0$ with \mathscr{A} co-cancelling. If μ is "0-rectifiable", then $\mu = 0$.

Conclusion: Other wave cones might give information about the dimension of μ ...

Definition

For $\ell=1,\ldots,d$ we define the ℓ -dimensional wave cone as

$$\Lambda^\ell_{\mathscr{A}} := igcap_{\pi\in\mathrm{Gr}(\ell,d)} igcup_{\xi\in\pi\setminus\{0\}} \ker \mathbb{A}^k(\xi),$$

where $Gr(\ell, d)$ is the Grassmanian of ℓ -planes in \mathbb{R}^d .

Inclusions:

$$\Lambda^1_{\mathscr{A}} = \bigcap_{\xi \in \mathbb{R}^d \setminus \{0\}} \ker \mathbb{A}^k(\xi) \subset \Lambda^j_{\mathscr{A}} \subset \Lambda^\ell_{\mathscr{A}} \subset \Lambda^d_{\mathscr{A}} = \Lambda_{\mathscr{A}}, \qquad 1 \leq j \leq \ell \leq d.$$

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. '19)
Let
$$\mathscr{A}\mu = \sigma$$
. If $\mathscr{H}^{\ell}(E) = 0$ for some $\ell \in \{0, ..., d\}$, then
$$\frac{\mathrm{d}\mu}{\mathrm{d}|\mu|}(x) \in \bigwedge_{\mathscr{A}}^{\ell} \qquad \text{for } |\mu|\text{-a.e. } x \in E.$$

Remark: For $\ell = d$, this recovers the '16 Singular Density Theorem.

Corollary

Let $\mathscr{A}\mu = \sigma$. Define

$$\ell_{\mathscr{A}} := \max \big\{ \, \ell \in \mathbb{N} \; : \; \Lambda_{\mathscr{A}}^{\ell} = \{ 0 \} \, \big\}.$$

Then,

 $\mu \ll \mathscr{H}^{\ell_{\mathscr{A}}}.$

Remark: For $\ell = 1$, this also improves the result of van Schaftingen '13 (dim $\mathscr{H} \mu \ge 1$ as opposed to dim $\mathscr{H} \mu > 0$).

Rectifiability

Define the **upper** ℓ -density of $|\mu|$:

$$heta_\ell^*(|\mu|)(x) \coloneqq \limsup_{r o 0} rac{|\mu|(B_r(x))}{(2r)^\ell}.$$

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. '19)

Let $\mathscr{A}\mu = \sigma$ and assume

$$\Lambda^{\ell}_{\mathscr{A}} = \{0\}.$$

Then, $\mu \bigsqcup \{\theta_{\ell}^*(|\mu|) > 0\}$ is concentrated on an ℓ -rectifiable set R and

$$\mu \bigsqcup R = P(x) \mathscr{H}_x^{\ell} \bigsqcup R,$$

where

$$P(x_0) \in igcap_{\xi \in (T_{x_0}R)^{\perp}} \ker \mathbb{A}^k(\xi) \qquad ext{for } \mathscr{H}^\ell ext{-a.e. } x_0 \in R \ (ext{or } |\mu| ext{-a.e. } x_0 \in R).$$

Here, $T_{x_0}R$ is the the approximate tangent plane to R at x_0 .

Remark: Recovers rectifiability results for BV-maps ($\mathscr{A} = \text{curl}, \ell_{\text{curl}} = d - 1$) and for BD-maps ($\mathscr{A} = \text{curl curl}, \ell_{\text{curl curl}} = d - 1$).

Rectifiability for divergence constraint

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. '19)

Let div $\mu = \sigma$. Assume that

$$\operatorname{rank}\left(\frac{\mathrm{d}\mu}{\mathrm{d}|\mu|}(x)\right) \geq \ell$$
 for $|\mu|$ -a.e. x.

Then, $|\mu| \ll \mathscr{H}^{\ell}$ and there exist an ℓ -rectifiable set $R \subset U$ such that

$$\mu \bigsqcup \{\theta_{\ell}^*(|\mu|) > 0\} = P(x) \mathscr{H}_x^{\ell} \bigsqcup R, \qquad \operatorname{rank} P(x) = \ell.$$

Remark: Recovers several known rectifiability criteria for varifolds (Allard '72, Ambrosio–Soner '97, Lin '99, Moser '03, De Philippis–De Rosa–Ghiraldin '18).

Proof: Let
$$\tilde{\mu} := (\mu, \sigma)$$
 and $\mathscr{A}(\tilde{\mu}) := \operatorname{div} \mu - \sigma$. Then,

$$\Lambda_{\mathscr{A}}^{\ell} = \left\{ M \in \mathbb{R}^{d \times d} : \operatorname{rank} M < \ell \right\}.$$

Question

Are these dimensionality/rectifiability results sharp?

Compensated compactness I: Differential inclusions

Laminates, I

• Let $A, B \in \mathbb{R}^{d \times d}$ with $B - A = a \otimes n := an^T$ for $a, n \in \mathbb{R}^d \setminus \{0\}$.

• Let
$$\theta \in [0,1]$$
 and $F := \theta A + (1-\theta)B$.

■ These *u_i* satisfy the differential inclusion

$$\nabla u_i(x) \in \{A, B\}$$
 for a.e. $x \in \Omega$

and the convergence

$$\nabla u_j \stackrel{*}{\rightharpoonup} F$$
 in $W^{1,\infty}_{loc}$.

Theorem (Ball & James 1987)

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded, and connected set and let $A, B \in \mathbb{R}^{m \times d}$ with

 $\operatorname{rank}(A - B) \geq 2.$

(A) If $u \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ satisfies the differential inclusion

 $\nabla u(x) \in \{A, B\}$ for a.e. $x \in \Omega$,

then either $\nabla u \equiv A$ or $\nabla u \equiv B$.

(B) Let $(u_j) \subset W^{1,\infty}(\Omega; \mathbb{R}^m)$ be a norm-bounded sequence such that

 $dist(\nabla u_i, \{A, B\}) \rightarrow 0$ in measure.

Then, up to extracting a subsequence, either

$$\int_{\Omega} |\nabla u_j(x) - A| \, \mathrm{d}x \to 0 \qquad \text{or} \qquad \int_{\Omega} |\nabla u_j(x) - B| \, \mathrm{d}x \to 0$$

as $j \to \infty$.

Two-state problem

Theorem (*De Philippis, Palmieri & R. '18*)

Let $\Omega \subset \mathbb{R}^d$ be a domain. Suppose that $\lambda, \mu \in \mathbb{R}^N$ with

 $\lambda - \mu \notin \Lambda_{\mathscr{A}}.$

(A) If $v \in L^{\infty}(\Omega; \mathbb{R}^N)$ is such that

 $\mathscr{A}v = 0$ and $v(x) \in \{\lambda, \mu\}$ for a.e. $x \in \Omega$,

then either $\mathsf{v}\equiv\lambda$ or $\mathsf{v}\equiv\mu.$

(B) Let $(v_j) \subset L^1(\Omega; \mathbb{R}^N)$ be a uniformly norm-bounded sequence of maps such that

$$\mathscr{A} v_j = 0$$
 and $\lim_{j \to \infty} \int_{\Omega} \operatorname{dist}(v_j(x), \{\lambda, \mu\}) \, \mathrm{d}x = 0$

Then, up to extracting a subsequence, either

$$\int_{\Omega} |v_j(x) - \lambda| \, \mathrm{d}x \to 0 \qquad \text{or} \qquad \int_{\Omega} |v_j(x) - \mu| \, \mathrm{d}x \to 0$$

as $j \to \infty$.

Other work: Garroni & Nesi '04 and Palombaro–Ponsiglione '04 ($\mathscr{A} = \text{div}$), Barchiesi '03 (some first-order \mathscr{A}), Sorella-Tione '21 (flexibility for 4-state problem).

Conjecture

Suppose $\mu \in \mathscr{M}(\Omega; \mathbb{R}^m)$ solve

$$\mathscr{A}\mu = \sigma \quad in \ \mathscr{D}'(\Omega; \mathbb{R}^n).$$

and its polar satisfies

$$rac{\mathrm{d}\mu}{\mathrm{d}|\mu|}(x)\in {\sf K}$$
 for $|\mu|$ -a.e. $x\in \Omega$

with $K \subset (\mathbb{R}^m \setminus \Lambda_{\mathscr{A}}) \cup \{0\}$ a convex and closed (one-sided) cone. Then, we conjecture that

 $\mu \in \mathrm{L}^p_{\mathrm{loc}}(\Omega; \mathbb{R}^m)$

for every $1 \leq p < \frac{d}{d-k}$ if k < d and all $p \in [1,\infty)$ otherwise.

Perturbative first results: Bate & Orponen '20 (for $\mathscr{A} = div$), Arroyo-Rabasa–De Philippis–Hirsch-R.–Skorobogatova '21.

Compensated compactness II: Shape optimization

Optimal structures

picture from Gebisa & Lemu 2017 IOP Conf. Ser.: Mater. Sci. Eng. 276 012026

Objective: Given a bounded domain $\Omega \subset \mathbb{R}^d$ (d = 2, 3), find the optimal shape $\omega \subset \Omega$ of prescribed volume $\mathscr{L}^d(\omega) = \varepsilon$ that is maximally strong:

Minimize the (rescaled) compliance $\min_{\sigma \in L^2(\omega; \mathbb{R}_{sym}^{d \times d})} \left\{ \varepsilon \int_{\omega} j^*(\sigma) \, \mathrm{d}x : -\operatorname{div}(\sigma \mathbb{1}_{\omega}) = f \right\}$

 $\text{ over all shapes } \omega \in \mathscr{A}_{\varepsilon} := \big\{ \, \omega \subset \Omega \ : \ \omega \text{ Lipschitz domain, } \partial \Omega \subset \partial \omega, \, \mathscr{L}^{d}(\omega) = \varepsilon \, \big\}.$

"Light" structures: What happens in the vanishing-mass limit $\varepsilon \downarrow 0$?

$$\mathscr{C}_{\varepsilon}(\mu) := \begin{cases} \min_{\sigma \in \mathrm{L}^{2}(\mu; \mathbb{R}^{d \times d}_{\mathrm{sym}})} \left\{ \int j^{*}(\sigma) \, \mathrm{d}\mu \; : \; -\operatorname{div}(\sigma\mu) = f \right\} & \text{if } \mu = \frac{\mathscr{L}^{d} \bigsqcup_{\omega}}{\varepsilon} \text{ for } \omega \in \mathscr{A}_{\varepsilon}, \\ +\infty & \text{otherwise} \end{cases}$$

Conjecture (Bouchitté '01)

The limit compliance $\overline{\mathcal{C}}$, for which

$$\inf_{\omega \in \mathscr{A}_{\varepsilon}} \mathscr{C}_{\varepsilon} \left(\frac{\mathscr{L}^{d} \bigsqcup \omega}{\varepsilon} \right) \to \inf_{\mu \in \mathscr{M}^{1}(\overline{\Omega})} \overline{\mathscr{C}}(\mu) \qquad \text{as } \varepsilon \downarrow 0$$

is given as

$$\overline{\mathscr{C}}(\mu) = \min_{\sigma \in \mathrm{L}^2(\mu; \mathbb{R}^{d \times d}_{\mathrm{sym}})} \left\{ \int \overline{j}^*(\sigma) \, \mathrm{d}\mu \; : \; -\operatorname{div}(\sigma\mu) = f \right\},$$

where the infinitesimal-mass integrand \overline{j}^* is defined as the convex conjugate to

$$\bar{j}(\xi) := \sup_{\substack{\tau \in \mathbb{R}^{d \times d}_{\mathrm{sym}} \\ \det \tau = 0}} \{\xi : \tau - j^*(\tau)\}, \qquad \xi \in \mathbb{R}^{d \times d}_{\mathrm{sym}}.$$

Main theorem

Theorem (Babadjian & Iurlano & R. 2021)

Assume that Ω is a bounded C²-domain in \mathbb{R}^2 or \mathbb{R}^3 . Then, Bouchitté's vanishing-mass conjecture holds (near a minimum) for the integrand $j(\xi) := \frac{1}{2} |\bullet|^2$, that is,

$$\inf_{\omega \in \mathscr{A}_{\varepsilon}} \mathscr{C}_{\varepsilon} \bigg(\frac{\mathscr{L}^d \, \bigsqcup \omega}{\varepsilon} \bigg) \to \inf_{\mu \in \mathscr{M}^1(\overline{\Omega})} \overline{\mathscr{C}}(\mu) \qquad \text{as } \varepsilon \downarrow 0.$$

Further:

- Approximate minimizers of $\mathscr{C}_{\varepsilon}$ converge weakly* to a minimizer of $\overline{\mathscr{C}}$.
- Every minimizer of $\overline{\mathscr{C}}$ is the limit of approximate minimizers of $\mathscr{C}_{\varepsilon}$.

Corollary: Justification of the theory of Michell trusses (Michell 1904, Prager 1970s)

Previous results: Olbermann '17, '20 (soft constraint)

All other cases of the conjecture: open!

Thank you!

www.ercsingularity.org