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General compensated compactness

Tartar framework: Sequence of maps uj : Rd → Rm with

uj ⇀ u weakly/weakly* in a Sobolev space or space of measures

and

linear PDE constraint: A uj = 0

nonlinear pointwise constraint: uj ∈ K ⊂ Rm

Question: Is there unexpected (compensated) compactness in the sequence (uj ), e.g.,

uj → u strongly

or at least convergence for some (nonlinear) functions of uj?

Goal: Compensated compactness theory with concentrations
(u ∈ L1 or u ∈Mloc; weak* convergence in the sense of measures)



Hidden (or not so hidden) PDEs

PDE constraints for vector measures µ ∈M (Rd ;RN), σ ∈M (Rd ;Rn):

A µ :=
∑
|α|≤k

Aα∂
αµ = σ in D ′,

where Aα ∈ Rn×N , ∂α = ∂α1
1 . . . ∂

αd
d for each multi-index α = (α1, . . . , αd ) ∈ Nd

0 .

Example 1 – Functions of bounded variation: For u ∈ BV(Ω;Rm), we have that
Du = (µkj ) ∈M (Ω;Rm×d ) satisfies

0 = A (Du) := curl (Du) :=
(
∂jµ

k
i − ∂iµ

k
j

)
i,j=1,...,d ; k=1,...,m

.

Application: Deformations with jumps and fractal parts.



Examples

Example 2 – Functions of bounded deformation: For u ∈ BD(Ω), we have that

Eu := 1
2

(Du + DuT ) = (µkj ) ∈M (Ω,Rd×d
sym ) satisfies Saint-Venant’s compatibility

conditions (1864):

0 = A (Eu) := curl curl (Eu) :=

( d∑
i=1

∂ikµ
j
i + ∂ijµ

k
i − ∂jkµ

i
i − ∂iiµ

k
j

)
j,k=1,...,d

Application: Displacements (e.g., perfect plasticity).

Example 3 – Normal 1-currents: A vector measure T ∈Mloc(Rd ;Rd ) is called a
normal 1-current if

∂T := − div T ∈Mloc(Rd ;R),

thus:
A T := ∂T = σ ∈Mloc(Rd ;R).

Application: Dislocations (they are loops within a crystal grain).



Wanted: Fine structure theory

Central question: Restrictions on the singular part µs of solutions µ of A µ = σ.

µ = gL d + µs ?

µs = jumps, fractals, Cantor measures, . . . ?
↑

Major goal 1: Restrictions (rigidity) on singularities:

Major goal 2: Fine structure theory for singularities:

Shape?

Dimensions?

Local structure?

= + ?

Major goal 3: Compensated compactness theory



Rigidity I (polar differential inclusions)



Rigidity in BV

Let u ∈ BV(Ω;Rm) (Ω ⊂ Rd a Lipschitz domain). At |Du|-almost every x0 ∈ Ω, a
blow-up v satisfies

Dv = P0|Dv |, where P0 =
Dsu

|Dsu|
(x0) ∈ Rm×d .

Hence: Need to investigate the structure of solutions to

Dv = P0|Dv |, v ∈ BVloc(Rd ;Rm), P0 ∈ Rm×d , |P0| = 1. (?)

Lemma (Rigidity)

Let v ∈ BVloc(Rd ;Rm) satisfy (?). Then:

(i) If rankP0 ≥ 2, then v is affine.

(ii) If P0 = a⊗ ξ (⇔ rankP0 ≤ 1), then v is one-directional, i.e.
there exists ṽ ∈ BVloc(R) such that

v(y) = ṽ(y · ξ)a, y ∈ Rd a.e.

Theorem (A = curl, Alberti’s Rank-One Theorem 1993)

Let u ∈ BV(Rd ;Rm). Then, for the singular part Dsu of Du:

rank

(
dDsu

d|Dsu|

)
= 1 |Dsu|-a.e.



Rigidity for symmetrized gradients

Idea: Investigate the structure of solutions to

Ev :=
1

2
(Dv + DvT ) = P0|Ev |, v ∈ BDloc(Rd ), P0 ∈ Rd×d

sym , |P0| = 1.

Would like to have (by analogy to BV):

(i) If P0 /∈ { a� b : a, b ∈ Rd }, then v is affine.

(ii) If P0 = a� b for some a, b ∈ Rd \ {0}, then there exists h1, h2 ∈ BVloc(R),

v0 ∈ Rd and a skew-symmetric matrix R ∈ Rd×d
skew such that

v(x) = v0 + h1(x · b)a + h2(x · a)b + Rx , x ∈ Rd a.e.

But: Both assertions are wrong in general!

(i) Take P0 =
(

1
1

)
and v(x) =

(
ex1 sin(x2)
−ex1 cos(x2)

)
(harmonic!).

(ii) Take P0 =
(

1
0

)
= e1 � e1 and v(x) =

(
4x3

1 x2

−x4
1

)
.



General structure

Question

What is the general structure of a measure µ ∈Mloc(Rd ;RN) with

A µ = 0 (or A µ = σ ∈M (Rd ;Rn))

and
µ = P0ν,

where P0 ∈ RN and ν ∈M +
loc(Rd )? In particular, when does it hold that

µ = τ1 + . . .+ τN mod C∞

with τ1, . . . , τN of a “simple structure”?

BD case: N = 2 (two one-directional parts) – R. ’11, De Philippis–R. ’17, De
Philippis–R. ’20

Divergence: Structure of boundaryless currents (e.g. Smirnov’s theorem). Also:
Garroni & Nesi ’04 and Palombaro–Ponsiglione ’04, Arroyo-Rabasa ’19.



Singular Density Theorem

Let A µ = σ distributionally for

A µ :=
∑
|α|≤k

Aα∂
αµ.

Principal symbol: Ak (ξ) :=
∑
|α|=k

(2πi)kAαξ
α

Tartar wave cone: ΛA :=
⋃
|ξ|=1

ker Ak (ξ)

Rigidity/ellipticity: If A [P0ν] = 0 with P0 /∈ ΛA , then ν ∈ C∞ (N = 0 in Question).

Theorem (De Philippis & R. ’16)

If µ = gL d + µs , then

dµs

d|µs |
(x) ∈ ΛA for |µs |-a.e. x ∈ Ω.

Corollary (Converse Rademacher Theorem)

Let ν be a positive Radon measure on Rd such that every Lipschitz function
f : Rd → R is differentiable ν-almost everywhere. Then, ν � L d .



Rigidity II (dimensionality and rectifiability)



Intersections of lines

Question: Given two smooth curves T1,T2 in R2 that intersect on a set S (but do not

self-intersect). What do we know about ~T1, ~T2 on the intersection S?

Answer: ~T1 ‖ ~T2 H 1-almost everywhere on the intersection S (“up to single points”).

“The lines do not see the crossing points”:
If span

{
~T1, ~T2

}
= R2 on S , then H 1(S) = 0. Actually, dimH S = 0.



Singularity of ν

Theorem (De Philippis & R. ’16)

Let T1, . . . ,Td be normal 1-currents in Rd , i.e.,

Ti ∈Mloc(Rd ;Rd ) with div Ti = σi ∈Mloc(Rd ;R),

and ν ∈M +(Rd ) a positive measure with

(i) ν � ‖Ti‖ for i = 1, . . . , d;

(ii) for |ν|-a.e. x: span{ ~T1(x), . . . , ~Td (x)} = Rd .

Then, ν � L d .

Proof: Put

T :=

T1

...
Td

 , so div T = σ ∈Mloc(Rd ;Rd ).

By (ii),

dT

d|T|
(x) /∈ Λdiv =

{
M ∈ Rd×d : detM = 0

}
for ν-a.e. x .

Now use A = div in the Singular Density Theorem. This gives

dT

d|T|
(x) ∈ Λdiv for |T|s -a.e. x .

Since also νs � |T|s by (i), we get νs = 0.



Co-cancelling operators

Definition (van Schaftingen ’13)

The operator A is called co-cancelling if

Λ1
A :=

⋂
ξ∈Rd\{0}

ker Ak (ξ) = {0}.

Example: A = div is co-cancelling.

Theorem (van Schaftingen ’13)

Assume that A is homogeneous and co-cancelling. If

A (P0δ0) = 0 for some P0 ∈ Rm,

then P0 = 0.

Example: There is no P0 6= 0 such that div(P0δ0) = 0.

Corollary

Let A µ = 0 with A co-cancelling. If µ is “ 0-rectifiable”, then µ = 0.

Conclusion: Other wave cones might give information about the dimension of µ. . .



Hierarchy of wave cones

Definition

For ` = 1, . . . , d we define the `-dimensional wave cone as

Λ`A :=
⋂

π∈Gr(`,d)

⋃
ξ∈π\{0}

ker Ak (ξ),

where Gr(`, d) is the Grassmanian of `-planes in Rd .

Inclusions:

Λ1
A =

⋂
ξ∈Rd\{0}

ker Ak (ξ) ⊂ Λj
A ⊂ Λ`A ⊂ Λd

A = ΛA , 1 ≤ j ≤ ` ≤ d .



Dimensional estimates

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. ’19)

Let A µ = σ. If H `(E) = 0 for some ` ∈ {0, . . . , d}, then

dµ

d|µ|
(x) ∈ Λ`A for |µ|-a.e. x ∈ E .

Remark: For ` = d , this recovers the ’16 Singular Density Theorem.

Corollary

Let A µ = σ. Define
`A := max

{
` ∈ N : Λ`A = {0}

}
.

Then,
µ� H `A .

Remark: For ` = 1, this also improves the result of van Schaftingen ’13
(dimH µ ≥ 1 as opposed to dimH µ > 0).



Rectifiability

Define the upper `-density of |µ|:

θ∗` (|µ|)(x) := lim sup
r→0

|µ|(Br (x))

(2r)`
.

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. ’19)

Let A µ = σ and assume
Λ`A = {0}.

Then, µ {θ∗` (|µ|) > 0} is concentrated on an `-rectifiable set R and

µ R = P(x) H `
x R,

where

P(x0) ∈
⋂

ξ∈(Tx0
R)⊥

ker Ak (ξ) for H `-a.e. x0 ∈ R (or |µ|-a.e. x0 ∈ R).

Here, Tx0R is the the approximate tangent plane to R at x0.

Remark: Recovers rectifiability results for BV-maps (A = curl, `curl = d − 1) and for
BD-maps (A = curl curl, `curl curl = d − 1).



Rectifiability for divergence constraint

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. ’19)

Let div µ = σ. Assume that

rank

(
dµ

d|µ|
(x)

)
≥ ` for |µ|-a.e. x.

Then, |µ| � H ` and there exist an `-rectifiable set R ⊂ U such that

µ {θ∗` (|µ|) > 0} = P(x) H `
x R, rankP(x) = `.

Remark: Recovers several known rectifiability criteria for varifolds (Allard ’72,
Ambrosio–Soner ’97, Lin ’99, Moser ’03, De Philippis–De Rosa–Ghiraldin ’18).

Proof: Let µ̃ := (µ, σ) and A (µ̃) := div µ− σ. Then,

Λ`A =
{
M ∈ Rd×d : rankM < `

}
.

Question

Are these dimensionality/rectifiability results sharp?



Compensated compactness I: Differential inclusions



Laminates, I

Let A,B ∈ Rd×d with B − A = a⊗ n := anT for a, n ∈ Rd \ {0}.

Let θ ∈ [0, 1] and F := θA + (1− θ)B.

These uj satisfy the differential inclusion

∇uj (x) ∈ {A,B} for a.e. x ∈ Ω

and the convergence

∇uj
∗
⇀ F in W1,∞

loc .



Ball–James theorem

Theorem (Ball & James 1987)

Let Ω ⊂ Rd be an open, bounded, and connected set and let A,B ∈ Rm×d with

rank(A− B) ≥ 2.

(A) If u ∈W1,∞(Ω;Rm) satisfies the differential inclusion

∇u(x) ∈ {A,B} for a.e. x ∈ Ω,

then either ∇u ≡ A or ∇u ≡ B.

(B) Let (uj ) ⊂W1,∞(Ω;Rm) be a norm-bounded sequence such that

dist(∇uj , {A,B})→ 0 in measure.

Then, up to extracting a subsequence, either∫
Ω
|∇uj (x)− A| dx → 0 or

∫
Ω
|∇uj (x)− B| dx → 0

as j →∞.



Two-state problem

Theorem (De Philippis, Palmieri & R. ’18)

Let Ω ⊂ Rd be a domain. Suppose that λ, µ ∈ RN with

λ− µ /∈ ΛA .

(A) If v ∈ L∞(Ω;RN) is such that

A v = 0 and v(x) ∈ {λ, µ} for a.e. x ∈ Ω,

then either v ≡ λ or v ≡ µ.

(B) Let (vj ) ⊂ L1(Ω;RN) be a uniformly norm-bounded sequence of maps such that

A vj = 0 and lim
j→∞

∫
Ω

dist(vj (x), {λ, µ}) dx = 0.

Then, up to extracting a subsequence, either∫
Ω
|vj (x)− λ| dx → 0 or

∫
Ω
|vj (x)− µ| dx → 0

as j →∞.

Other work: Garroni & Nesi ’04 and Palombaro–Ponsiglione ’04 (A = div), Barchiesi
’03 (some first-order A ), Sorella-Tione ’21 (flexibility for 4-state problem).



A conjecture

Conjecture

Suppose µ ∈M (Ω;Rm) solve

A µ = σ in D ′(Ω;Rn).

and its polar satisfies

dµ

d|µ|
(x) ∈ K for |µ|-a.e. x ∈ Ω

with K ⊂ (Rm \ ΛA ) ∪ {0} a convex and closed (one-sided) cone. Then, we
conjecture that

µ ∈ Lp
loc(Ω;Rm)

for every 1 ≤ p < d
d−k

if k < d and all p ∈ [1,∞) otherwise.

Perturbative first results: Bate & Orponen ’20 (for A = div),
Arroyo-Rabasa–De Philippis–Hirsch-R.–Skorobogatova ’21.



Compensated compactness II: Shape optimization



Optimal structures

picture from Gebisa & Lemu 2017 IOP Conf. Ser.: Mater. Sci. Eng. 276 012026

Objective: Given a bounded domain Ω ⊂ Rd (d = 2, 3), find the optimal shape ω ⊂ Ω
of prescribed volume L d (ω) = ε that is maximally strong:

Minimize the (rescaled) compliance min
σ∈L2(ω;Rd×d

sym)

{
ε

∫
ω
j∗(σ) dx : − div(σ1ω) = f

}

over all shapes ω ∈ Aε :=
{
ω ⊂ Ω : ω Lipschitz domain, ∂Ω ⊂ ∂ω, L d (ω) = ε

}
.

“Light” structures: What happens in the vanishing-mass limit ε ↓ 0?



Bouchitté’s conjecture

Cε(µ) :=


min

σ∈L2(µ;Rd×d
sym)

{∫
j∗(σ) dµ : − div(σµ) = f

}
if µ = L d ω

ε
for ω ∈ Aε,

+∞ otherwise

Conjecture (Bouchitté ’01)

The limit compliance C , for which

inf
ω∈Aε

Cε

(
L d ω

ε

)
→ inf

µ∈M1(Ω)
C (µ) as ε ↓ 0,

is given as

C (µ) = min
σ∈L2(µ;Rd×d

sym)

{∫
j̄∗(σ) dµ : − div (σµ) = f

}
,

where the infinitesimal-mass integrand j̄∗ is defined as the convex conjugate to

j̄(ξ) := sup
τ∈Rd×d

sym
det τ=0

{
ξ : τ − j∗(τ)

}
, ξ ∈ Rd×d

sym .



Main theorem

Theorem (Babadjian & Iurlano & R. 2021)

Assume that Ω is a bounded C2-domain in R2 or R3. Then, Bouchitté’s
vanishing-mass conjecture holds (near a minimum) for the integrand j(ξ) := 1

2
| q|2,

that is,

inf
ω∈Aε

Cε

(
L d ω

ε

)
→ inf

µ∈M1(Ω)
C (µ) as ε ↓ 0.

Further:

Approximate minimizers of Cε converge weakly* to a minimizer of C .

Every minimizer of C is the limit of approximate minimizers of Cε.

Corollary: Justification of the theory of Michell trusses (Michell 1904, Prager 1970s)

Previous results: Olbermann ’17, ’20 (soft constraint)

All other cases of the conjecture: open!



Thank you!
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