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General compensated compactness

Tartar framework: Sequence of maps u;: RY — R™ with
uj = u  weakly/weakly* in a Sobolev space or space of measures
and

linear PDE constraint: </u; =0
nonlinear pointwise constraint: u; € K C R”

Question: Is there unexpected (compensated) compactness in the sequence (u;), e.g.,
uj — u strongly

or at least convergence for some (nonlinear) functions of u;?

Goal: Compensated compactness theory with concentrations
(u € Lt or u € Mo.; weak* convergence in the sense of measures)



Hidden (or not so hidden) PDEs

PDE constraints for vector measures u € #(R?;RV), 0 € .#(R9;R"):

dpi= Y Adn=0 in9,
o <k

where A, € RPN 9o = 921 | 999 for each multi-index o = (o, . .., ag) € N¢.
1 d 0

Example 1 — Functions of bounded variation: For u € BV(Q; R™), we have that
Du = (uj") € 4 (Q; R™*9) satisfies

0 = &/(Du) := curl (Du) := (@uf-‘ - Biujf)ijzl P

Application: Deformations with jumps and fractal parts.



Examples

Example 2 — Functions of bounded deformation: For u € BD(2), we have that
Eu:= %(Du +DuT) = (,ujk) € (9, R satisfies Saint-Venant's compatibility
conditions (1864):

d
0 = /(Eu) := curlcurl (Eu) := <Z 6,~ku{- + (9,-juf-‘ — Bjku:: — 8,-,-;11’-‘)
i=1 Jk=1,...,d

Application: Displacements (e.g., perfect plasticity).

Example 3 — Normal 1-currents: A vector measure T € J/AOC(Rd;Rd) is called a

normal 1-current if
AT := —div T € Moc(R%;R),

thus:
AT =0T = 0 € Mioc(R%R).

Application: Dislocations (they are loops within a crystal grain).



Wanted: Fine structure theory

Central question: Restrictions on the singular part p° of solutions p of &/ = o.
p=gZ+p° ?

n® = jumps, fractals, Cantor measures, ...?7

Major goal 1: Restrictions (rigidity) on singularities:

Major goal 2: Fine structure theory for singularities:

_ Y

Major goal 3: Compensated compactness theory

m Shape?

m Dimensions?

m Local structure?



Rigidity | (polar differential inclusions)




Rigidity in BV

Let u € BV(Q;R™) (2 C RY a Lipschitz domain). At |Dul-almost every xo € , a
blow-up v satisfies
S

Dv = Py|Dv|,  where Py= — " (x) €RM™.
B
Hence: Need to investigate the structure of solutions to
Dv=Po|Dv], v E€BViee(R%R™), P € R™*, |Po| = 1. (*)

Lemma (Rigidity)
Let v € BV},c(RY; R™) satisfy (x). Then:
(i) Ifrank Py > 2, then v is affine.

(i) If Pp=a®& (< rank Py < 1), then v is one-directional, i.e.
there exists V € BV1oc(R) such that

v(y) = (y - §a, y eRY ae

Theorem (&7 = curl, Alberti’s Rank-One Theorem 1993)
Let u € BV(Rd; R™). Then, for the singular part D°u of Du:

S
rank( dbeu ) =1 |Dful-a.e.
u




Rigidity for symmetrized gradients

Idea: Investigate the structure of solutions to

1
Ev = _(Dv+ DvT) = Py|Ev], v € BD1oc(RY), Po € REXY, |Po| = 1.

Would like to have (by analogy to BV):
(i) IfPog {a®b : a,bc R}, then v is affine.
(i) If Pp = a@® b for some a, b € RY \ {0}, then there exists h1, hy € BV|,.(R),

vo € R? and a skew-symmetric matrix R € ngxegv such that

v(x) = v + hi(x - b)a+ ha(x - a)b+ Rx, x €RY ae.

But: Both assertions are wrong in general!
(i) Take Py = (1;) and v(x) = ( e sinCe) ) (harmonic!).

—e*1 cos(xp)
3
(ii) Take Pp= (1) =e1 @ ey and v(x) = (4??).

X1



General structure

Question

What is the general structure of a measure p € s///loc(Rd; ]RN) with
=0 (or p =0 € M (RY;R"))

and
= Pov,

where Py € RN and v € .4} (RY)? In particular, when does it hold that
pu=71+...+7n mod C*°

with 11, ..., 7y of a “simple structure”?

BD case: N = 2 (two one-directional parts) — R. '11, De Philippis-R. '17, De
Philippis-R. '20

Divergence: Structure of boundaryless currents (e.g. Smirnov’s theorem). Also:
Garroni & Nesi '04 and Palombaro—Ponsiglione '04, Arroyo-Rabasa '19.



Singular Density Theorem

Let &/ = o distributionally for
A= Z Aa 0% .

|| <k
Principal symbol: A¥(¢) := ) (27i)Aag®
|a|=k
Tartar wave cone: A, = U ker A¥(¢)
[&l=1

Rigidity/ellipticity: If «/[Pov] = 0 with Py ¢ Aoy, then v € C*° (N = 0 in Question).

Theorem (De Philippis & R. '16)

If u=g&? + 1°, then
du®

dps|

(x) eAy for |1 |-a.e. x € Q.

Corollary (Converse Rademacher Theorem)

Let v be a positive Radon measure on RY such that every Lipschitz function
f: RY — R is differentiable v-almost everywhere. Then, v < ¥ d,



Rigidity Il (dimensionality and rectifiability)




Intersections of lines

AS <\ T, | Tl

Question: Given two smooth curves Ty, T in R? that intersect on a set S (but do not
self-intersect). What do we know about Ti, T2 on the intersection S?

Answer: T || To s -almost everywhere on the intersection S (“up to single points”).

“The lines do not see the crossing points”:
If span{Tl, T2} R? on S, then #1(S) = 0. Actually, dim 4 S = 0.



Singularity of v

Theorem (De Philippis & R. '16)
Let Tq,..., T4 be normal 1-currents in RY, i.e.,
T; € Moc(RYRY)  with  div T = 0j € Mioe(RY;R),
and v € .#*(R?) a positive measure with
(i) v | T;|| fori=1,...,d;
(i) for |v|-a.e. x: span{Ti(x), ..., Ta(x)} = RY.

Then, v < %9
Proof: Put
T
T=1:1, so divT = 0 € Moc(R?; RY).
Tq
By (ii),
dT
AT (x) & Ngiv = { M e RI¥9 : detM = 0} for v-a.e. x.
Now use &/ = div in the Singular Density Theorem. This gives
dT

ﬁ(x) € Agiv for |T|*-a.e. x.

Since also v° < |T|® by (i), we get v* =0. [



Co-cancelling operators

Definition (van Schaftingen '13)

The operator &7 is called co-cancelling if

ANyi= [ kera*(¢) = {0}.
g€Rrd\{0}

Example: </ = div is co-cancelling.

Theorem (van Schaftingen '13)

Assume that </ is homogeneous and co-cancelling. If
o/ (Podp) =0 for some Py € R™,

then Py = 0.
Example: There is no Py # 0 such that div(Pydp) = 0.

Corollary
Let o/ = 0 with o/ co-cancelling. If p is “O-rectifiable”, then p = 0.

Conclusion: Other wave cones might give information about the dimension of (...



Hierarchy of wave cones

Definition
For £ =1,...,d we define the /-dimensional wave cone as

Nyg= [ U kerak),
TeGr(¢,d) £em\{0}

where Gr(¢, d) is the Grassmanian of £-planes in RY.

Inclusions:

Ny= [ kerAk@©) c N, A, cAl =N, 1<j<i<d
£eRrd\ {0}



Dimensional estimates

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. '19)
Let /= o. If #(E) =0 for some £ € {0, ...,d}, then

dp

(x) € A for |u|-a.e. x € E.
dlp| “

Remark: For ¢ = d, this recovers the '16 Singular Density Theorem.

Corollary
Let o/ = o. Define
by =max{£eN : A%, ={0}}.

Then,
TR At

Remark: For ¢ = 1, this also improves the result of van Schaftingen '13
(dim e p > 1 as opposed to dim y p > 0).



Rectifiability

Define the upper ¢-density of |u:

|1(Br(x))

07 (Jul)(x) := lim sup T

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. '19)

Let o/ = o and assume
N = {0}.

Then, pl_{0;(|u|) > 0} is concentrated on an (-rectifiable set R and
pl_R=P(x). 2R,

where

P(x0) € ﬂ ker AK(€) for #*-a.e. xo € R (or |p|-a.e. xo € R).
§€(TX0R)J-

Here, Tx, R is the the approximate tangent plane to R at xg.

Remark: Recovers rectifiability results for BV-maps (&7 = curl, £,y = d — 1) and for
BD-maps (& = curlcurl, beyricun = d — 1).



Rectifiability for divergence constraint

Theorem (Arroyo-Rabasa, De Philippis, Hirsch & R. '19)
Let div x = 0. Assume that

rank(d—u(x)) >0 for |pu]-a.e. x.
dlul

Then, |u| < 2" and there exist an (-rectifiable set R C U such that

pl {67 (|u]) > 0} = P(x) 2L LR, rank P(x) = £.

Remark: Recovers several known rectifiability criteria for varifolds (Allard '72,
Ambrosio—Soner '97, Lin '99, Moser '03, De Philippis—De Rosa—Ghiraldin '18).

Proof: Let [i := (u,0) and /(1) := divp — 0. Then,

/\i‘,:{MERdXd 1 rankM < £}, O

Question

Are these dimensionality/rectifiability results sharp?



Compensated compactness |: Differential inclusions




Laminates, |

m Let A, BE€RI* with B— A=a®n:=an' fora,nc R\ {0}.

= Let 0 € [0,1] and F := 0A+ (1 — 6)B.

A
B A
A
Vuj: B F
A
B
B

= These u; satisfy the differential inclusion
Vuj(x) € {A,B} forae xe€Q
and the convergence

Vup S F in WS

loc



Ball-James theorem

Theorem (Ball & James 1987)
Let Q C RY be an open, bounded, and connected set and let A, B € R™*9 with

rank(A — B) > 2.
(A) If u € WhHoo(Q;R™) satisfies the differential inclusion
Vu(x) € {A,B} forae x€Q,

then either Vu = A or Vu = B.
(B) Let (u;) C WH(Q;R™) be a norm-bounded sequence such that

dist(Vuj, {A, B}) — 0 in measure.
Then, up to extracting a subsequence, either

/Q |[Vuj(x) — Al dx — 0 or /n |[Vuj(x) — Bl dx — 0

as j — oo.



Two-state problem

Theorem (De Philippis, Palmieri & R. '18)
Let Q C RY be a domain. Suppose that X\, u € RN with

A—p &Ny
(A) If v € L°(Q;RN) is such that
dv=0 and v(x) € {\,u} forae x€Q,

then either v =\ or v = p.

(B) Let (v;) C LY(;RN) be a uniformly norm-bounded sequence of maps such that

v; =0 and lim /dlst vi(x), {\, p}) dx

Jj—oo

Then, up to extracting a subsequence, either
/|Vj(x)—)\| dx — 0 or /|\/j(x)—u| dx — 0
Q Q
as j — oo.

Other work: Garroni & Nesi '04 and Palombaro—Ponsiglione '04 (o7 = div), Barchiesi
'03 (some first-order &), Sorella-Tione '21 (flexibility for 4-state problem).



A conjecture

Conjecture
Suppose p € 4 (2; R™) solve

du=o in 2 (4R").

and its polar satisfies

dp
dl |(x) eEK for |pl|-a.e. x € Q

with K C (R™\ Ay ) U{0} a convex and closed (one-sided) cone. Then, we
conjecture that

(2 R™)

loc

for every 1 < p < ﬁ if k < d and all p € [1,00) otherwise.

Perturbative first results: Bate & Orponen '20 (for & = div),
Arroyo-Rabasa—De Philippis—Hirsch-R.—Skorobogatova '21.



Compensated compactness |I: Shape optimization




Optimal structures

Size opt. l:>

TR m :Dm

picture from Gebisa & Lemu 2017 IOP Conf. Ser.: Mater. Sci. Eng. 276 012026

Objective: Given a bounded domain Q C R? (d = 2,3), find the optimal shape w C Q
of prescribed volume .Z%(w) = ¢ that is maximally strong:

Minimize the (rescaled) compliance min {e/ J(e)dx : —div(cly,) = f}
ceL2(wRIX) w

over all shapes w € @ := {w C Q : w Lipschitz domain, 9Q C Ow, ,Efd(w) =¢ }

“Light” structures: What happens in the vanishing-mass limit ¢ | 07



Bouchitté's conjecture

){/j*(a)d,u : —div(a,u):f} ify:%forweds,

400 otherwise

mind ;
Ce(p) = { o€L2(uRYSE

Conjecture (Bouchitté '01)

The limit compliance %, for which

) — inf _ B(w) ase ] 0,
pEA(Q)

is given as

7= i, {[FE)a: —div(au)=f},

GELQ(I"?Rsym
where the infinitesimal-mass integrand j* is defined as the convex conjugate to

J©) = sup {e:7-j"(M},  €eRL

sym
det 7=0



Main theorem

Theorem (Babadjian & lurlano & R. 2021)

Assume that Q is a bounded C2-domain in R? or R3. Then, Bouchitté's
vanishing-mass conjecture holds (near a minimum) for the integrand j(§) := %|-|2,
that is,

d f—
inf €. (.,?_Lw) — inf _ E(n) ase ] 0.
wEale 2 ne#1(Q)
Further:

m Approximate minimizers of 6. converge weakly* to a minimizer of €.

u Every minimizer of € is the limit of approximate minimizers of 6.

Corollary: Justification of the theory of Michell trusses (Michell 1904, Prager 1970s)

~

Previous results: Olbermann '17, 20 (soft constraint)

All other cases of the conjecture: open!



Thank you!
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