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Introduction

Given b: (0, T) x T? — R? on T? := RY/Z9 with divb = 0, we want to
study the transport/continuity equation

(TE)

Ou+b-Vu=0 in(0,T)xTd
ule=o = o in T9,

where up: T¢ — R is a given initial datum.
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Introduction

Given b: (0, T) x T¢ — R? on T9 := RY/Z? with divb = 0, we want to
study the transport/continuity equation

(CE)

Oru+div(bu) =0 in (0, T) x T¢
Ult=0 = Up in T9,

where up: T¢ — R is a given initial datum.

m Method of characteristics: if b € L}WLP, for some p > 1, we define
the Lagrangian solution

ut(t, x) = up(X(t,-) " (x)),

being X the Regular Lagrangian Flow of b.

w If be LWHP and g € L9 with 1/p 4+ 1/qg < 1, then u* is the unique
distributional solution in Lg°LZ to (CE) [DiPerna-Lions '89].



Taming non-uniqueness

Outside DiPerna-Lions’ regime, there are several ill-posedness results,
obtained via convex integration schemes [Modena-Székelyhidi,
Modena-Sattig, Brue-Colombo-De Lellis, Cheskidov-Luo et al. '18 - '21].

Pivotal problem

Tame this non-uniqueness phenomenon, establishing selection criteria.



Taming non-uniqueness

Outside DiPerna-Lions’ regime, there are several ill-posedness results,
obtained via convex integration schemes [Modena-Székelyhidi,
Modena-Sattig, Brue-Colombo-De Lellis, Cheskidov-Luo et al. '18 - '21].

Pivotal problem

Tame this non-uniqueness phenomenon, establishing selection criteria.

Inspired by convervation laws, we consider the vanishing viscosity
scheme, i.e. study fore >0

. _ . d
{8tvE +div(bv,) =eAv, in(0,T)xT (W,)

_ s ond
Velt=0 = Vo, in T

and understand compactness/convergence of (v.). as € | 0. This
naturally leads to the study of advection-diffusion equations.



Advection-diffusion equation

Given a vector field b: [0, T] x T¢ — R9 on T9 :=R9/Z9, we thus study

. _ . d
{Btv—i- div(vb) = Av !n (OC; T)xT (ADE)
V|t—o = vo in TY,

where divb =0 and vo: TY - Ris a given initial datum. In this talk, we
address two peculiar aspects:
multiple notions of solutions (based on their regularity) can be

given for (ADE) and, contrary to (TE), the presence of the
Laplacian allows one to obtain well-posedness results even without

weak differentiability of b;



Advection-diffusion equation

Given a vector field b: [0, T] x T¢ — R? on T9 := R?/Z9, we thus study

Orv +div(vb) = Av in (Od, T) x T? (ADE)
V|t—o = vo in TY,
where divb =0 and vo: TY - Ris a given initial datum. In this talk, we
address two peculiar aspects:
multiple notions of solutions (based on their regularity) can be
given for (ADE) and, contrary to (CE), the presence of the
Laplacian allows one to obtain well-posedness results even without

weak differentiability of b;
ill-posedness results via convex integration are available also for
(ADE) and should thus be taken into account.



Advection-diffusion equation: notions of solutions

Let us assume b € L1LP with divb =0 and vy € L9.
. _ . d
{6tv +div(vb)=Av in(0,T)xT (ADE)

V|t—o = vo in T9.

If 1/p +1/q < 1 we can give a distributional definition of solution.
Existence results for these solutions are easily obtained from energy
estimates;

if, in addition, p > 2 and g > 2, then one can find parabolic
solutions, i.e. distributional solutions with u € L2H}. Existence
follows again from energy estimates. Furthermore, in this regime,
parabolic solutions are unique (classical commutators’ estimate);

if be LWL and vy € L™, then there always exists a unique
parabolic solution [Le Bris-Lions '03].



Advection-diffusion equation: a regularity result for
distributional solutions

Convex integration [Modena-Sattig '20]

There exists a divergence-free vector field b € L2°L2 for which (ADE)
admits infinitely many distributional solutions v € L3°L2 (the parabolic
one being unique).

It is important to understand if there is a condition that guarantees the
parabolic regularity (therefore uniqueness) of a distributional solution.

B.-Ciampa-Crippa '21

Let p, g € [1,00) such that I/p+1/g < 1/2. If b€ L2LP is a
divergence-free vector field and u € Lg°L is a distributional solution to
(ADE), then u € L2H!.

The proof is based on a simple commutators’ estimate in L2H_ 1.



The selection principle via vanishing viscosity

We now consider Sobolev b, with divb = 0. Our starting point was

{a,,u +div(bu ) =0 in (0, T) x T¢ (TE)

U |e=0 = up in T¢
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We now consider Sobolev b, with divb = 0. We consider for € > 0
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o md
Velt=0 = Vo,c in T
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Let b € LIWD1 divergence-free and up € L. Let (vo.). C L™ be any
sequence of functions such that vo. — up in L!. Then the vanishing
viscosity sequence (V.)e=o C L2°L2° N L2H} of parabolic solutions to
(VV.) converges in C([0, T]; L}(T%)) to the Lagrangian solution u" to
(CE).



The selection principle via vanishing viscosity

We now consider Sobolev b, with divb = 0. We consider for € > 0

(VVe)

O¢ve +div(bv.) =cAv.  in (0,T) x T?
V6|t=0 = W,e in T¢

for some approximant vg . of ug. For each € > 0, (VV.) is parabolically
well-posed [LeBris-Lions '03].

B.-Ciampa-Crippa 21

Let b € LIWD1 divergence-free and up € L. Let (vo.). C L™ be any
sequence of functions such that vo. — up in L!. Then the vanishing
viscosity sequence (V.)e=o C L2°L2° N L2H} of parabolic solutions to
(VV.) converges in C([0, T]; L}(T%)) to the Lagrangian solution u" to
(CE).

Remark

This selection principle works also beyond the distributional regime
(b e LW and ug € L1).



Glimpses of the proofs of the vanishing viscosity scheme

We present two proofs:

one is purely Eulerian, based on a duality argument [DiPerna-Lions
'89];

the other proof is instead Lagrangian in nature, has its roots in
stochastic flows and yields quantitative rates of convergence of

v® — . Such rates depend on the form of approximation/the
regularity of the initial datum.
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We present two proofs:

one is purely Eulerian, based on a duality argument [DiPerna-Lions
'89];

the other proof is instead Lagrangian in nature, has its roots in
stochastic flows and yields quantitative rates of convergence of
v® — . Such rates depend on the form of approximation/the
regularity of the initial datum.

Corollary |

If up € H N L*°, then there exists a constant C > 0, with
C = (T, p, ||luolls, luoll e, [|Bllwar) s.t.

sup |[ve(t, ) — u(t, )|z < C|Ine|~1/2 as e — 0.
te(0,T)

Compare with [Brue-Nguyen '20].



Glimpses of the proofs of the vanishing viscosity scheme

We present two proofs:

one is purely Eulerian, based on a duality argument [DiPerna-Lions
'89];

the other proof is instead Lagrangian in nature, has its roots in
stochastic flows and yields quantitative rates of convergence of
v® — . Such rates depend on the form of approximation/the
regularity of the initial datum.

Corollary Il

There is no anomalous dissipation, i.e. if b€ L}W}! and up € L?

-
E/ |Vve||%. dt — 0, ase— 0.
0



Thank youl!
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