Advection-diffusion equations with rough coefficients: weak solutions and vanishing viscosity

Paolo Bonicatto

University of Warwick

Joint work with G. Ciampa (BCAM) and G. Crippa (Basel)

Workshop "Convex Integration and Nonlinear PDEs" Edinburgh, 12 November 2021

Table of contents

1 Introduction

2 On the advection-diffusion equation

- Notions of solutions and L^p theory
- A regularity result for distributional solutions

3 The selection principle via vanishing viscosity

Given $\boldsymbol{b}: (0, T) \times \mathbb{T}^d \to \mathbb{R}^d$ on $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$ with div $\boldsymbol{b} = 0$, we want to study the *transport/continuity* equation

$$\begin{cases} \partial_t u + \boldsymbol{b} \cdot \nabla u = 0 & \text{ in } (0, T) \times \mathbb{T}^d \\ u|_{t=0} = u_0 & \text{ in } \mathbb{T}^d, \end{cases}$$
(TE)

where $u_0 \colon \mathbb{T}^d \to \mathbb{R}$ is a given initial datum.

Given $\boldsymbol{b}: (0, T) \times \mathbb{T}^d \to \mathbb{R}^d$ on $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$ with div $\boldsymbol{b} = 0$, we want to study the *transport/continuity* equation

$$\begin{cases} \partial_t u + \operatorname{div}(\boldsymbol{b} u) = 0 & \text{ in } (0, T) \times \mathbb{T}^d \\ u|_{t=0} = u_0 & \text{ in } \mathbb{T}^d, \end{cases}$$
(CE)

where $u_0 \colon \mathbb{T}^d \to \mathbb{R}$ is a given initial datum.

Given $\boldsymbol{b}: (0, T) \times \mathbb{T}^d \to \mathbb{R}^d$ on $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$ with div $\boldsymbol{b} = 0$, we want to study the *transport/continuity* equation

$$\begin{cases} \partial_t u + \operatorname{div}(\boldsymbol{b} u) = 0 & \text{ in } (0, T) \times \mathbb{T}^d \\ u|_{t=0} = u_0 & \text{ in } \mathbb{T}^d, \end{cases}$$
(CE)

where $u_0 \colon \mathbb{T}^d \to \mathbb{R}$ is a given initial datum.

■ Method of characteristics: if b ∈ L¹_tW^{1,p}, for some p ≥ 1, we define the Lagrangian solution

$$u^{\mathsf{L}}(t,x) := u_0(\mathbf{X}(t,\cdot)^{-1}(x)),$$

being X the Regular Lagrangian Flow of b.

Given $\boldsymbol{b}: (0, T) \times \mathbb{T}^d \to \mathbb{R}^d$ on $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$ with div $\boldsymbol{b} = 0$, we want to study the *transport/continuity* equation

$$\begin{cases} \partial_t u + \operatorname{div}(\boldsymbol{b} u) = 0 & \text{ in } (0, T) \times \mathbb{T}^d \\ u|_{t=0} = u_0 & \text{ in } \mathbb{T}^d, \end{cases}$$
(CE)

where $u_0 \colon \mathbb{T}^d \to \mathbb{R}$ is a given initial datum.

■ Method of characteristics: if b ∈ L¹_tW^{1,p}, for some p ≥ 1, we define the Lagrangian solution

$$u^{\mathsf{L}}(t,x) := u_0(\mathbf{X}(t,\cdot)^{-1}(x)),$$

being X the Regular Lagrangian Flow of b.

■ If $\boldsymbol{b} \in L^1_t W^{1,p}_x$ and $u_0 \in L^q_x$ with $1/p + 1/q \le 1$, then u^L is the unique distributional solution in $L^{\infty}_t L^q_x$ to (CE) [DiPerna-Lions '89].

Outside DiPerna-Lions' regime, there are several ill-posedness results, obtained via *convex integration schemes* [Modena-Székelyhidi, Modena-Sattig, Bruè-Colombo-De Lellis, Cheskidov-Luo et al. '18 - '21].

Pivotal problem

Tame this non-uniqueness phenomenon, establishing selection criteria.

Outside DiPerna-Lions' regime, there are several ill-posedness results, obtained via *convex integration schemes* [Modena-Székelyhidi, Modena-Sattig, Bruè-Colombo-De Lellis, Cheskidov-Luo et al. '18 - '21].

Pivotal problem

Tame this non-uniqueness phenomenon, establishing selection criteria.

Inspired by convervation laws, we consider the vanishing viscosity scheme, i.e. study for $\varepsilon>0$

$$\begin{cases} \partial_t v_{\varepsilon} + \operatorname{div}(\boldsymbol{b} v_{\varepsilon}) = \varepsilon \Delta v_{\varepsilon} & \text{ in } (0, T) \times \mathbb{T}^d \\ v_{\varepsilon}|_{t=0} = v_{0,\varepsilon} & \text{ in } \mathbb{T}^d \end{cases}$$
(VV_{\varepsilon})

and understand compactness/convergence of $(v_{\varepsilon})_{\varepsilon}$ as $\varepsilon \downarrow 0$. This naturally leads to the study of **advection-diffusion equations**.

Given a vector field $\boldsymbol{b} \colon [0,T] \times \mathbb{T}^d \to \mathbb{R}^d$ on $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$, we thus study

$$\begin{cases} \partial_t v + \operatorname{div}(v \boldsymbol{b}) = \Delta v & \text{ in } (0, T) \times \mathbb{T}^d \\ v|_{t=0} = v_0 & \text{ in } \mathbb{T}^d, \end{cases}$$
(ADE)

where div $\boldsymbol{b} = 0$ and $v_0 : \mathbb{T}^d \to \mathbb{R}$ is a given initial datum. In this talk, we address two peculiar aspects:

multiple notions of solutions (based on their regularity) can be given for (ADE) and, contrary to (TE), the presence of the Laplacian allows one to obtain well-posedness results even without weak differentiability of b; Given a vector field $\boldsymbol{b} \colon [0, T] \times \mathbb{T}^d \to \mathbb{R}^d$ on $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$, we thus study

$$\begin{cases} \partial_t v + \operatorname{div}(v \boldsymbol{b}) = \Delta v & \text{ in } (0, T) \times \mathbb{T}^d \\ v|_{t=0} = v_0 & \text{ in } \mathbb{T}^d, \end{cases}$$
(ADE)

where div $\boldsymbol{b} = 0$ and $v_0 : \mathbb{T}^d \to \mathbb{R}$ is a given initial datum. In this talk, we address two peculiar aspects:

- multiple notions of solutions (based on their regularity) can be given for (ADE) and, contrary to (CE), the presence of the Laplacian allows one to obtain well-posedness results even without weak differentiability of b;
- Ill-posedness results via convex integration are available also for (ADE) and should thus be taken into account.

Let us assume $\boldsymbol{b} \in L_t^1 L_x^p$ with div $\boldsymbol{b} = 0$ and $v_0 \in L^q$.

$$\begin{cases} \partial_t \mathbf{v} + \operatorname{div}(\mathbf{v} \mathbf{b}) = \Delta \mathbf{v} & \text{ in } (0, T) \times \mathbb{T}^d \\ \mathbf{v}|_{t=0} = \mathbf{v}_0 & \text{ in } \mathbb{T}^d. \end{cases}$$
(ADE)

- If 1/p + 1/q ≤ 1 we can give a *distributional* definition of solution. Existence results for these solutions are easily obtained from energy estimates;
- If, in addition, p ≥ 2 and q ≥ 2, then one can find parabolic solutions, i.e. distributional solutions with u ∈ L²_tH¹_x. Existence follows again from energy estimates. Furthermore, in this regime, parabolic solutions are unique (classical commutators' estimate);
- 3 if $\boldsymbol{b} \in L_t^1 W_x^{1,1}$ and $v_0 \in L^{\infty}$, then there always exists a unique parabolic solution [Le Bris-Lions '03].

Advection-diffusion equation: a regularity result for distributional solutions

Convex integration [Modena-Sattig '20]

There exists a divergence-free vector field $\mathbf{b} \in L_t^{\infty} L_x^2$ for which (ADE) admits infinitely many distributional solutions $v \in L_t^{\infty} L_x^2$ (the parabolic one being unique).

It is important to understand if there is a condition that guarantees the *parabolic regularity* (therefore uniqueness) of a distributional solution.

B.-Ciampa-Crippa '21

Let $p, q \in [1, \infty)$ such that $1/p + 1/q \le 1/2$. If $\boldsymbol{b} \in L^2_t L^p_x$ is a divergence-free vector field and $u \in L^\infty_t L^q_x$ is a distributional solution to (ADE), then $u \in L^2_t H^1_x$.

The proof is based on a simple commutators' estimate in $L_t^2 H_x^{-1}$.

We now consider Sobolev \boldsymbol{b} , with div $\boldsymbol{b} = 0$. Our starting point was

$$\begin{cases} \partial_t u + \operatorname{div}(\boldsymbol{b} u) = 0 & \text{ in } (0, T) \times \mathbb{T}^d \\ u \mid_{t=0} = u_0 & \text{ in } \mathbb{T}^d \end{cases}$$
(TE)

We now consider Sobolev \boldsymbol{b} , with div $\boldsymbol{b}=0.$ We consider for $\varepsilon>0$

$$\begin{cases} \partial_t \mathbf{v}_{\varepsilon} + \operatorname{div}(\mathbf{b}\mathbf{v}_{\varepsilon}) = \varepsilon \Delta \mathbf{v}_{\varepsilon} & \text{ in } (0, T) \times \mathbb{T}^d \\ \mathbf{v}_{\varepsilon}|_{t=0} = \mathbf{v}_{0,\varepsilon} & \text{ in } \mathbb{T}^d \end{cases}$$
(VV_{\varepsilon})

for some approximant $v_{0,\varepsilon}$ of u_0 .

We now consider Sobolev \boldsymbol{b} , with div $\boldsymbol{b}=0$. We consider for $\varepsilon>0$

$$\begin{cases} \partial_t \mathbf{v}_{\varepsilon} + \operatorname{div}(\mathbf{b}\mathbf{v}_{\varepsilon}) = \varepsilon \Delta \mathbf{v}_{\varepsilon} & \text{ in } (0, T) \times \mathbb{T}^d \\ \mathbf{v}_{\varepsilon}|_{t=0} = \mathbf{v}_{0,\varepsilon} & \text{ in } \mathbb{T}^d \end{cases}$$
(VV_{\varepsilon})

for some approximant $v_{0,\varepsilon}$ of u_0 . For each $\varepsilon > 0$, (VV_{ε}) is parabolically well-posed [LeBris-Lions '03].

We now consider Sobolev \boldsymbol{b} , with div $\boldsymbol{b}=0.$ We consider for $\varepsilon>0$

$$\begin{cases} \partial_t \mathbf{v}_{\varepsilon} + \operatorname{div}(\mathbf{b}\mathbf{v}_{\varepsilon}) = \varepsilon \Delta \mathbf{v}_{\varepsilon} & \text{ in } (0, T) \times \mathbb{T}^d \\ \mathbf{v}_{\varepsilon}|_{t=0} = \mathbf{v}_{0,\varepsilon} & \text{ in } \mathbb{T}^d \end{cases}$$
(VV_{\varepsilon})

for some approximant $v_{0,\varepsilon}$ of u_0 . For each $\varepsilon > 0$, (VV_{ε}) is parabolically well-posed [LeBris-Lions '03].

B.-Ciampa-Crippa '21

Let $\boldsymbol{b} \in L^1_t W^{1,1}_x$ divergence-free and $u_0 \in L^1$. Let $(v_{0,\varepsilon})_{\varepsilon} \subset L^{\infty}$ be any sequence of functions such that $v_{0,\varepsilon} \to u_0$ in L^1 . Then the vanishing viscosity sequence $(v_{\varepsilon})_{\varepsilon>0} \subseteq L^{\infty}_t L^{\infty}_x \cap L^2_t H^1_x$ of parabolic solutions to $(\bigvee V_{\varepsilon})$ converges in $C([0, T]; L^1(\mathbb{T}^d))$ to the Lagrangian solution u^{L} to (CE).

We now consider Sobolev \boldsymbol{b} , with div $\boldsymbol{b}=0.$ We consider for $\varepsilon>0$

$$\begin{cases} \partial_t \mathbf{v}_{\varepsilon} + \operatorname{div}(\mathbf{b}\mathbf{v}_{\varepsilon}) = \varepsilon \Delta \mathbf{v}_{\varepsilon} & \text{ in } (0, T) \times \mathbb{T}^d \\ \mathbf{v}_{\varepsilon}|_{t=0} = \mathbf{v}_{0,\varepsilon} & \text{ in } \mathbb{T}^d \end{cases}$$
(VV_{\varepsilon})

for some approximant $v_{0,\varepsilon}$ of u_0 . For each $\varepsilon > 0$, (VV_{ε}) is parabolically well-posed [LeBris-Lions '03].

B.-Ciampa-Crippa '21

Let $\boldsymbol{b} \in L^1_t W^{1,1}_x$ divergence-free and $u_0 \in L^1$. Let $(v_{0,\varepsilon})_{\varepsilon} \subset L^{\infty}$ be any sequence of functions such that $v_{0,\varepsilon} \to u_0$ in L^1 . Then the vanishing viscosity sequence $(v_{\varepsilon})_{\varepsilon>0} \subseteq L^{\infty}_t L^\infty_x \cap L^2_t H^1_x$ of parabolic solutions to $(\bigvee V_{\varepsilon})$ converges in $C([0, T]; L^1(\mathbb{T}^d))$ to the Lagrangian solution u^{L} to (CE).

Remark

This selection principle works also beyond the distributional regime $(\boldsymbol{b} \in L_t^1 W_x^{1,1} \text{ and } u_0 \in L^1).$

Glimpses of the proofs of the vanishing viscosity scheme

We present two proofs:

- one is purely Eulerian, based on a duality argument [DiPerna-Lions '89];
- 2 the other proof is instead Lagrangian in nature, has its roots in stochastic flows and yields *quantitative* rates of convergence of $v^{\varepsilon} \rightarrow u^{L}$. Such rates depend on the form of approximation/the regularity of the initial datum.

Glimpses of the proofs of the vanishing viscosity scheme

We present two proofs:

- one is purely Eulerian, based on a duality argument [DiPerna-Lions '89];
- 2 the other proof is instead Lagrangian in nature, has its roots in stochastic flows and yields *quantitative* rates of convergence of $v^{\varepsilon} \rightarrow u^{L}$. Such rates depend on the form of approximation/the regularity of the initial datum.

Corollary I

If $u_0 \in H^1 \cap L^\infty$, then there exists a constant C > 0, with $C = C(T, p, ||u_0||_{\infty}, ||u_0||_{H^1}, ||\mathbf{b}||_{W^{1,p}})$ s.t. $\sup_{t \in (0,T)} ||\mathbf{v}_{\varepsilon}(t, \cdot) - u^{\mathsf{L}}(t, \cdot)||_{L^2} \leq C |\ln \varepsilon|^{-1/2} \quad \text{as } \varepsilon \to 0.$

Compare with [Bruè-Nguyen '20].

Glimpses of the proofs of the vanishing viscosity scheme

We present two proofs:

- one is purely Eulerian, based on a duality argument [DiPerna-Lions '89];
- 2 the other proof is instead Lagrangian in nature, has its roots in stochastic flows and yields *quantitative* rates of convergence of $v^{\varepsilon} \rightarrow u^{L}$. Such rates depend on the form of approximation/the regularity of the initial datum.

Corollary II

There is no anomalous dissipation, i.e. if $\boldsymbol{b} \in L^1_t W^{1,1}_x$ and $u_0 \in L^2$

$$arepsilon \int_0^T \|
abla oldsymbol{v}^arepsilon \|_{L^2}^2 \, dt o 0, \quad ext{ as } arepsilon o 0.$$

Thank you!