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Introduction

Given b : (0,T )× Td → Rd on Td := Rd/Zd with div b = 0, we want to
study the transport/continuity equation{

∂tu + b · ∇u = 0 in (0,T )× Td

u|t=0 = u0 in Td ,
(TE)

where u0 : Td → R is a given initial datum.

Method of characteristics: if b ∈ L1tW
1,p
x , for some p ≥ 1, we define

the Lagrangian solution

uL(t, x) := u0(X (t, ·)−1(x)),

being X the Regular Lagrangian Flow of b.

If b ∈ L1tW
1,p
x and u0 ∈ Lqx with 1/p + 1/q ≤ 1, then uL is the unique

distributional solution in L∞t Lqx to (TE) [DiPerna-Lions ’89].
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Taming non-uniqueness

Outside DiPerna-Lions’ regime, there are several ill-posedness results,
obtained via convex integration schemes [Modena-Székelyhidi,
Modena-Sattig, Bruè-Colombo-De Lellis, Cheskidov-Luo et al. ’18 - ’21].

Pivotal problem

Tame this non-uniqueness phenomenon, establishing selection criteria.

Inspired by convervation laws, we consider the vanishing viscosity
scheme, i.e. study for ε > 0{

∂tvε + div(bvε) = ε∆vε in (0,T )× Td

vε|t=0 = v0,ε in Td
(VVε)

and understand compactness/convergence of (vε)ε as ε ↓ 0. This
naturally leads to the study of advection-diffusion equations.



Taming non-uniqueness

Outside DiPerna-Lions’ regime, there are several ill-posedness results,
obtained via convex integration schemes [Modena-Székelyhidi,
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Advection-diffusion equation

Given a vector field b : [0,T ]×Td → Rd on Td := Rd/Zd , we thus study{
∂tv + div(vb) = ∆v in (0,T )× Td

v |t=0 = v0 in Td ,
(ADE)

where div b = 0 and v0 : Td → R is a given initial datum. In this talk, we
address two peculiar aspects:

1 multiple notions of solutions (based on their regularity) can be
given for (ADE) and, contrary to (TE), the presence of the
Laplacian allows one to obtain well-posedness results even without
weak differentiability of b;

2 ill-posedness results via convex integration are available also for
(ADE) and should thus be taken into account.
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Advection-diffusion equation: notions of solutions

Let us assume b ∈ L1tL
p
x with div b = 0 and v0 ∈ Lq.{

∂tv + div(vb) = ∆v in (0,T )× Td

v |t=0 = v0 in Td .
(ADE)

1 If 1/p + 1/q ≤ 1 we can give a distributional definition of solution.
Existence results for these solutions are easily obtained from energy
estimates;

2 if, in addition, p ≥ 2 and q ≥ 2, then one can find parabolic
solutions, i.e. distributional solutions with u ∈ L2tH

1
x . Existence

follows again from energy estimates. Furthermore, in this regime,
parabolic solutions are unique (classical commutators’ estimate);

3 if b ∈ L1tW
1,1
x and v0 ∈ L∞, then there always exists a unique

parabolic solution [Le Bris-Lions ’03].



Advection-diffusion equation: a regularity result for
distributional solutions

Convex integration [Modena-Sattig ’20]

There exists a divergence-free vector field b ∈ L∞t L2x for which (ADE)
admits infinitely many distributional solutions v ∈ L∞t L2x (the parabolic
one being unique).

It is important to understand if there is a condition that guarantees the
parabolic regularity (therefore uniqueness) of a distributional solution.

B.-Ciampa-Crippa ’21

Let p, q ∈ [1,∞) such that 1/p + 1/q ≤ 1/2. If b ∈ L2tL
p
x is a

divergence-free vector field and u ∈ L∞t Lqx is a distributional solution to
(ADE), then u ∈ L2tH

1
x .

The proof is based on a simple commutators’ estimate in L2tH
−1
x .



The selection principle via vanishing viscosity

We now consider Sobolev b, with div b = 0. Our starting point was{
∂tu

ε

+ div(bu

ε

) = 0

ε∆vε

in (0,T )× Td

u

ε

|t=0 = u0

ε

in Td
(TE)

for some approximant v0,ε of u0. For each ε > 0, (VVε) is parabolically
well-posed [LeBris-Lions ’03].

B.-Ciampa-Crippa ’21

Let b ∈ L1tW
1,1
x divergence-free and u0 ∈ L1. Let (v0,ε)ε ⊂ L∞ be any

sequence of functions such that v0,ε → u0 in L1. Then the vanishing
viscosity sequence (vε)ε>0 ⊆ L∞t L∞x ∩ L2tH

1
x of parabolic solutions to

(VVε) converges in C ([0,T ]; L1(Td)) to the Lagrangian solution uL to
(TE).

Remark

This selection principle works also beyond the distributional regime
(b ∈ L1tW

1,1
x and u0 ∈ L1).
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Glimpses of the proofs of the vanishing viscosity scheme

We present two proofs:

1 one is purely Eulerian, based on a duality argument [DiPerna-Lions
’89];

2 the other proof is instead Lagrangian in nature, has its roots in
stochastic flows and yields quantitative rates of convergence of
vε → uL. Such rates depend on the form of approximation/the
regularity of the initial datum.
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2 the other proof is instead Lagrangian in nature, has its roots in
stochastic flows and yields quantitative rates of convergence of
vε → uL. Such rates depend on the form of approximation/the
regularity of the initial datum.

Corollary I

If u0 ∈ H1 ∩ L∞, then there exists a constant C > 0, with
C = C (T , p, ‖u0‖∞, ‖u0‖H1 , ‖b‖W 1,p ) s.t.

sup
t∈(0,T )

‖vε(t, ·)− uL(t, ·)‖L2 ≤ C | ln ε|−1/2 as ε→ 0.

Compare with [Bruè-Nguyen ’20].



Glimpses of the proofs of the vanishing viscosity scheme

We present two proofs:
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’89];

2 the other proof is instead Lagrangian in nature, has its roots in
stochastic flows and yields quantitative rates of convergence of
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Corollary II

There is no anomalous dissipation, i.e. if b ∈ L1tW
1,1
x and u0 ∈ L2

ε

∫ T

0

‖∇vε‖2L2 dt → 0, as ε→ 0.



Thank you!


	Introduction
	On the advection-diffusion equation
	Notions of solutions and Lp theory
	A regularity result for distributional solutions

	The selection principle via vanishing viscosity

