A Proof of Onsager's Conjecture for the Incompressible Euler Equations

Philip Isett

Caltech

November 8, 2021

Outline

- ▶ Motivation
 - Weak Solutions to the Euler Equations
 - ► Onsager's Conjecture and Turbulence
 - Brief Survey of Previous and New Results
- ► A Proof of Onsager's Conjecture
 - ▶ ...
 - ▶ ...
 - **>**
 - ▶ ...
 - ▶ ..
 - ▶ ...

Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

$$\partial_t v^\ell + \nabla_j (v^j v^\ell) + \nabla^\ell p = 0 \tag{1}$$

$$\nabla_j v^j = 0 \tag{2}$$

Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

$$\partial_t v^\ell + \nabla_j (v^j v^\ell) + \nabla^\ell p = 0 \tag{1}$$

$$\nabla_j v^j = 0 \tag{2}$$

make sense in integral form for continuous (v, p):

Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

$$\partial_t v^\ell + \nabla_j (v^j v^\ell) + \nabla^\ell p = 0 \tag{1}$$

$$\nabla_j v^j = 0 \tag{2}$$

make sense in integral form for continuous (v, p):

$$\frac{d}{dt} \int_{\Omega} v^{\ell}(t, x) dx = \int_{\partial \Omega} p(t, x) n^{\ell} d\sigma + \int_{\partial \Omega} v^{\ell}(t, x) (v \cdot n) d\sigma$$
 (3)

$$\int_{\partial\Omega} (v \cdot n)(t, x) d\sigma(x) = 0 \tag{4}$$

for all Ω with smooth boundary $\partial\Omega$ and interior unit normal n^ℓ .

Motivation: Sufficiently smooth solutions conserve energy

Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v^ℓ

$$v_{\ell}\partial_{t}v^{\ell} + v_{\ell}\nabla_{j}(v^{j}v^{\ell}) + v_{\ell}\nabla^{\ell}p = 0$$
$$\nabla_{j}v^{j} = 0$$

Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v^ℓ

$$v_{\ell}\partial_{t}v^{\ell} + v_{\ell}\nabla_{j}(v^{j}v^{\ell}) + v_{\ell}\nabla^{\ell}p = 0$$
$$\nabla_{j}v^{j} = 0$$

Then, use the divergence free condition $\mbox{ div } v = \nabla_\ell v^\ell = 0,$ and integrate

$$\frac{d}{dt}\int_{\mathbb{R}^n}\frac{|v|^2}{2}(t,x)dx=-\int_{\mathbb{R}^n}\ \mathrm{div}\ \left[(\frac{|v|^2}{2}+p)v\right]dx=0$$

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$

$$|v(t, x + \Delta x) - v(t, x)| \le C |\Delta x|^{\alpha}$$
(6)

for some $\alpha > 1/3$ must conserve energy.

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$

$$\nabla_j v^j = 0$$

$$\nabla_j v^j = 0$$
(6)

$$|v(t, x + \Delta x) - v(t, x)| \le C|\Delta x|^{\alpha}$$
 (6)

for some $\alpha > 1/3$ must conserve energy.

2. If the α in (6) is **less than** 1/3, then v may fail to conserve energy

Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As $\nu \to 0$ for solutions to 3D Navier-Stokes:

$$\begin{cases}
\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = \nu \Delta v^{\ell} \\
\nabla_j v^j = 0
\end{cases}$$
(7)

the energy dissipation rate remains strictly positive as $\nu \to 0$

$$\varepsilon = \lim_{\nu \to 0} \left\langle -\frac{d}{dt} \int \frac{|v_{\nu}|^2}{2} (t, x) dx \right\rangle > 0.$$

Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As $\nu \to 0$ for solutions to 3D Navier-Stokes:

$$\begin{cases}
\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = \nu \Delta v^{\ell} \\
\nabla_j v^j = 0
\end{cases}$$
(7)

the energy dissipation rate remains strictly positive as $\nu \to 0$

$$\varepsilon = \lim_{\nu \to 0} \left\langle -\frac{d}{dt} \int \frac{|v_{\nu}|^2}{2} (t, x) dx \right\rangle > 0.$$

The velocity fluctuations on average obey a law

$$\langle |v(x+\Delta x) - v(x)|^p \rangle^{1/p} \sim \varepsilon^{1/3} |\Delta x|^{1/3}$$

for $|\Delta x| \ge (\nu^3/\varepsilon)^{1/4}$

Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As $\nu \to 0$ for solutions to 3D Navier-Stokes:

$$\begin{cases}
\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = \nu \Delta v^{\ell} \\
\nabla_j v^j = 0
\end{cases}$$
(7)

the energy dissipation rate remains strictly positive as $\nu \to 0$

$$\varepsilon = \lim_{\nu \to 0} \left\langle -\frac{d}{dt} \int \frac{|v_{\nu}|^2}{2} (t, x) dx \right\rangle > 0.$$

The velocity fluctuations on average obey a law

$$\langle |v(x + \Delta x) - v(x)|^p \rangle^{1/p} \sim \varepsilon^{1/3} |\Delta x|^{1/3}$$
 for
$$|\Delta x| \ge \left(\frac{\nu^3}{\varepsilon}\right)^{1/4}$$

Onsager considered the case $\nu=0$; argued that "frequency cascades" may lead to energy dissipation in the absence of viscosity.

Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which converges for $v \in L^2$)

$$v(x,t) = \sum_{k} a_k(t)e^{ik \cdot x}$$

$$\frac{da_k}{dt} = i \sum_{m} a_{k-m} \cdot k \left[-a_m + \frac{(a_m \cdot k)k}{|k|^2} \right]$$

He argued that energy can "cascade" from low wavenumbers to high wavenumbers, and the cascade can happen so rapidly that part of the energy $\sum_k |a_k|^2$ escapes to infinite frequency (i.e. vanishes to small spatial scales) in finite time.

However, only low regularity solutions could behave this way, and he stated that solutions in C^{α} with $\alpha>1/3$ must conserve energy.

Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which converges for $v \in L^2$)

$$v(x,t) = \sum_{k} a_k(t)e^{ik \cdot x}$$

$$\frac{da_k}{dt} = i \sum_{m} a_{k-m} \cdot k \left[-a_m + \frac{(a_m \cdot k)k}{|k|^2} \right]$$

He argued that energy can "cascade" from low wavenumbers to high wavenumbers, and the cascade can happen so rapidly that part of the energy $\sum_k |a_k|^2$ escapes to infinite frequency (i.e. vanishes to small spatial scales) in finite time.

By a statistical physics argument, a "typical" turbulent flow should have: $\sum_{\frac{\lambda}{2} \leq |k| \leq 2\lambda} |a_k|^2 \sim \lambda^{-2/3}$ (hence regularity exactly 1/3).

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$

$$|v(t, x + \Delta x) - v(t, x)| \le C |\Delta x|^{\alpha}$$
(9)

for some $\alpha > 1/3$ must conserve energy.

2. If the α in (9) is **less than** 1/3, then v may fail to conserve energy

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$

$$|v(t, x + \Delta x) - v(t, x)| \le C |\Delta x|^{\alpha}$$
(9)

for some $\alpha > 1/3$ must conserve energy.

2. If the α in (9) is **less than** 1/3, then v may fail to conserve energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$

$$|v(t, x + \Delta x) - v(t, x)| \le C |\Delta x|^{\alpha}$$
(9)

for some $\alpha > 1/3$ must conserve energy.

2. If the α in (9) is **less than** 1/3, then v may fail to conserve energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94) Refinements: (Duchon-Robert '00), (Cheskidov-Constantin-Shvydkoy-Friedlander '08): $v \in L^3_t B^{1/3}_{3,c(\mathbb{N})}$, but not $L^\infty_t C^{1/3}$.

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$
(10)

$$|v(t, x + \Delta x) - v(t, x)| \le C|\Delta x|^{\alpha} \tag{11}$$

for some $\alpha > 1/3$ must conserve energy.

- 2. If the α in (11) is **less than** 1/3, then v may fail to conserve energy
- 3. Energy-dissipating solutions to Euler with Onsager critical regularity arise in the 0 viscosity limit of Navier-Stokes

Shell models and continuous model equations: (Cheskidov-Friedlander-Pavlović '06, Ches.-Fried. '08, Ches.-Fried.-Shvydkoy '11, Friedlander-Glatt Holtz-Vicol '14)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$
(10)

$$|v(t, x + \Delta x) - v(t, x)| \le C|\Delta x|^{\alpha} \tag{11}$$

for some $\alpha > 1/3$ must conserve energy.

- 2. If the α in (11) is **less than** 1/3, then v may fail to conserve energy
- 3. Energy-dissipating solutions to Euler with Onsager critical regularity arise in the 0 viscosity limit of Navier-Stokes

Shell models and continuous model equations: (Cheskidov-Friedlander-Pavlović '06, Ches.-Fried. '08, Ches.-Fried.-Shvydkoy '11, Friedlander-Glatt Holtz-Vicol '14)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = 0$$

$$\nabla_j v^j = 0$$
(10)

$$|v(t, x + \Delta x) - v(t, x)| \le C|\Delta x|^{\alpha} \tag{11}$$

for some $\alpha > 1/3$ must conserve energy.

- 2. If the α in (11) is **less than** 1/3, then v may fail to conserve energy
- 3. Energy-dissipating solutions to Euler with Onsager critical regularity arise in the 0 viscosity limit of Navier-Stokes

Shell models and continuous model equations: (Cheskidov-Friedlander-Pavlović '06, Ches.-Fried. '08, Ches.-Fried.-Shvydkoy '11, Friedlander-Glatt Holtz-Vicol '14)

- ▶ Weak solutions in $L^2_{t,x}(\mathbb{R} \times \mathbb{R}^2)$ with compact support in space and time (Scheffer, '93)
- ▶ Weak solutions in $L^2_{t,x}(\mathbb{R} \times \mathbb{T}^2)$ (Shnirelman, '97)
- ▶ Dissipative solutions in $L^\infty_t L^2_x(\mathbb{R} \times \mathbb{T}^3)$ (Shnirelman, '00)

- ▶ Weak solutions in $L^2_{t,x}(\mathbb{R} \times \mathbb{R}^2)$ with compact support in space and time (Scheffer, '93)
- ▶ Weak solutions in $L^2_{t,x}(\mathbb{R} \times \mathbb{T}^2)$ (Shnirelman, '97)
- ▶ Dissipative solutions in $L^\infty_t L^2_x(\mathbb{R} \times \mathbb{T}^3)$ (Shnirelman, '00)
- ▶ Solutions in $L^{\infty}_{t,x} \cap C_t L^2_x(\mathbb{R} \times \mathbb{R}^n)$ with any energy density

$$\frac{|v|^2}{2} = e(t, x)$$

(De Lellis, Székelyhidi, '07)

- ▶ Weak solutions in $L^2_{t,x}(\mathbb{R} \times \mathbb{R}^2)$ with compact support in space and time (Scheffer, '93)
- ▶ Weak solutions in $L^2_{t,x}(\mathbb{R} \times \mathbb{T}^2)$ (Shnirelman, '97)
- ▶ Dissipative solutions in $L^\infty_t L^2_x(\mathbb{R} \times \mathbb{T}^3)$ (Shnirelman, '00)
- ▶ Solutions in $L^{\infty}_{t,x} \cap C_t L^2_x(\mathbb{R} \times \mathbb{R}^n)$ with any energy density

$$\frac{|v|^2}{2} = e(t, x)$$

(De Lellis, Székelyhidi, '07)

Convex Integration and Isometric Embeddings

- ▶ (Nash, '54) Constructs surprising, C^1 isometric embeddings in very low codimension.
 - (Borisov, '65, '04) Irregular $C^{1,\alpha}$ isometric embeddings for analytic metric
- ► (Gromov, '86) Generalizes Nash's idea to the method of "convex integration" in topology and geometry
- ► (Müller-Sverak, '04) Elliptic systems with Lipschitz but nowhere C^1 solutions (i.e. $\nabla u \in L^{\infty}$, but $\nabla u \notin C^0$).

Convex Integration and Isometric Embeddings

- ▶ (Nash, '54) Constructs surprising, C^1 isometric embeddings in very low codimension.
 - (Borisov, '65, '04) Irregular $C^{1,\alpha}$ isometric embeddings for analytic metric
- ► (Gromov, '86) Generalizes Nash's idea to the method of "convex integration" in topology and geometry
- ► (Müller-Sverak, '04) Elliptic systems with Lipschitz but nowhere C^1 solutions (i.e. $\nabla u \in L^{\infty}$, but $\nabla u \notin C^0$).
- ▶ (De Lellis-Székelyhidi, '09) Simpler proofs and extensions of Borisov's results on $C^{1,\alpha}$ isometric embeddings

Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, '12)

For every $\alpha<1/10$, \exists solutions $(v,p)\in C^{\alpha}_{t,x}\times C^{2\alpha}_{t,x}(\mathbb{R}\times\mathbb{T}^3)$ that can realize any smooth energy profile

$$\int \frac{|v|^2}{2}(t,x)dx = e(t) \ge c > 0$$

Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, '12)

For every $\alpha<1/10$, \exists solutions $(v,p)\in C^{\alpha}_{t,x}\times C^{2\alpha}_{t,x}(\mathbb{R}\times\mathbb{T}^3)$ that can realize any smooth energy profile

$$\int \frac{|v|^2}{2}(t,x)dx = e(t) \ge c > 0$$

▶ Extension to $\mathbb{R} \times \mathbb{T}^2$ (De Lellis, Székelyhidi '12, Choffrut '12)

Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, '12)

For every $\alpha < 1/10$, \exists solutions $(v,p) \in C^{\alpha}_{t,x} \times C^{2\alpha}_{t,x}(\mathbb{R} \times \mathbb{T}^3)$ that can realize any smooth energy profile

$$\int \frac{|v|^2}{2}(t,x)dx = e(t) \ge c > 0$$

▶ Extension to $\mathbb{R} \times \mathbb{T}^2$ (De Lellis, Székelyhidi '12, Choffrut '12)

Improved regularity of energy non-conserving solutions

Theorem (I., '12)

For every $\alpha < 1/5$ there exist nontrivial weak solutions to the incompressible Euler equations on $\mathbb{R} \times \mathbb{T}^3$ in the class

$$v \in C^{\alpha}_{t,x} \qquad p \in C^{2\alpha}_{t,x}$$

that are identically 0 outside of a bounded time interval.

Improved regularity of energy non-conserving solutions

Theorem (I., '12)

For every $\alpha<1/5$ there exist nontrivial weak solutions to the incompressible Euler equations on $\mathbb{R}\times\mathbb{T}^3$ in the class

$$v \in C^{\alpha}_{t,x} \qquad p \in C^{2\alpha}_{t,x}$$

that are identically 0 outside of a bounded time interval.

- ► Shorter proof, solutions with arbitrary smooth $e(t) = \int |v|^2(t,x) dx \ge c > 0$ (Buckmaster-De Lellis-Székelyhidi, '13)
- ▶ Solutions with compact support in $\Omega \subseteq \mathbb{R} \times \mathbb{R}^3$ (I.-Oh, '14)

Main Ideas

New ideas for 1/10 (DeL, Sze)

- ► Euler Reynolds system
- ► Nonstationary phase
- ► Transport term vs. oscillatory term
- ▶ Beltrami flows (= special stationary solutions to 3D Euler)

Main Ideas

New ideas for 1/10 (DeL, Sze)

- ► Euler Reynolds system
- Nonstationary phase
- ► Transport term vs. oscillatory term
- ▶ Beltrami flows (= special stationary solutions to 3D Euler)

New ideas for
$$1/5$$
 (I.)

- "Frequency Energy Levels" used to measure Hölder regularity (= sharp estimates)
- Nonlinear phase functions and transport of high frequency fluctuations along the coarse scale flow
- ▶ Improved bounds for $D_t := \partial_t + v \cdot \nabla$

Main Ideas

New ideas for 1/10 (DeL, Sze)

- ► Euler Reynolds system
- ► Nonstationary phase
- ► Transport term vs. oscillatory term
- ▶ Beltrami flows (= special stationary solutions to 3D Euler)

New ideas for
$$1/5$$
 (I.)

- "Frequency Energy Levels" used to measure Hölder regularity (= sharp estimates)
- Nonlinear phase functions and transport of high frequency fluctuations along the coarse scale flow
- ▶ Improved bounds for $D_t := \partial_t + v \cdot \nabla$

Onsager's Conjecture in Weaker Topologies

Can the exponent 1/5 be improved if we weaken the topology?

- ▶ (Buckmaster, '13) Solutions in $v \in C^{1/5-\epsilon}_{t,x}$ with $v(t,\cdot) \in C^{1/3-\epsilon}$ for a.e. t
- ▶ (Buckmaster-De Lellis-Székelyhidi, '14) C^0 solutions in $v \in L^1_t C^{1/3 \epsilon}_x$
- (Buckmaster-Masmoudi-Vicol, '16) Solutions with $v \in C_t H_x^{1/3-\epsilon}$

Note: The improvement in regularity is in an averaged sense (in L^1 or L^2), but achieves the Onsager critical exponent 1/3-.

To compare: energy conservation requires $L_t^3 B_{3,c_0(\mathbb{N})}^{1/3}$.

Onsager's Conjecture in Weaker Topologies

Can the exponent 1/5 be improved if we weaken the topology?

- ▶ (Buckmaster, '13) Solutions in $v \in C^{1/5-\epsilon}_{t,x}$ with $v(t,\cdot) \in C^{1/3-\epsilon}$ for a.e. t
- ▶ (Buckmaster-De Lellis-Székelyhidi, '14) C^0 solutions in $v \in L^1_t C^{1/3 \epsilon}_x$
- (Buckmaster-Masmoudi-Vicol, '16) Solutions with $v \in C_t H_x^{1/3-\epsilon}$

Note: The improvement in regularity is in an averaged sense (in L^1 or L^2), but achieves the Onsager critical exponent 1/3-.

To compare: energy conservation requires $L^3_t B^{1/3}_{3,c_0(\mathbb{N})}$.

(Buck.-Masmoudi-Novak-Vicol, '21) Solutions in $v \in C_t H_x^{1/2-\epsilon}$.

Theorem (I. '16)

For every $\alpha < 1/3$ there exists a weak solution in the class

$$v \in C_{t,x}^{\alpha}, \quad p \in C_{t,x}^{2\alpha}, \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3$$

such that v has nonempty, compact support in time.

Theorem (I. '16)

For every $\alpha < 1/3$ there exists a weak solution in the class

$$v \in C_{t,x}^{\alpha}, \quad p \in C_{t,x}^{2\alpha}, \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3$$

such that v has nonempty, compact support in time.

New Ideas:

- Using "Mikado Flows" instead of Beltrami Flows to perform the convex integration method (Daneri-Székelyhidi)
 - ► Difficulty controlling interactions between distinct Mikado flows

Theorem (I. '16)

For every $\alpha < 1/3$ there exists a weak solution in the class

$$v \in C_{t,x}^{\alpha}, \quad p \in C_{t,x}^{2\alpha}, \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3$$

such that v has nonempty, compact support in time.

New Ideas:

- Using "Mikado Flows" instead of Beltrami Flows to perform the convex integration method (Daneri-Székelyhidi)
 - ► Difficulty controlling interactions between distinct Mikado flows
- ► Gluing technique
 - Hidden special structure in the linearization of the Euler equations to estimate main terms

Theorem (I. '16)

For every $\alpha < 1/3$ there exists a weak solution in the class

$$v \in C_{t,x}^{\alpha}, \quad p \in C_{t,x}^{2\alpha}, \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3$$

such that v has nonempty, compact support in time.

Theorem (I. '16)

For every $\alpha < 1/3$ there exists a weak solution in the class

$$v \in C_{t,x}^{\alpha}, \quad p \in C_{t,x}^{2\alpha}, \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3$$

such that v has nonempty, compact support in time.

▶ (Buck., De L., Szé., Vicol, '17) Solutions in $v \in C^{1/3-\epsilon}_{t,x}$ with any smooth energy profile $\int_{\mathbb{T}^3} |v|^2(t,x)dx = e(t) > 0$.

Theorem (I. '16)

For every $\alpha < 1/3$ there exists a weak solution in the class

$$v \in C_{t,x}^{\alpha}, \quad p \in C_{t,x}^{2\alpha}, \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3$$

such that v has nonempty, compact support in time.

- ▶ (Buck., De L., Szé., Vicol, '17) Solutions in $v \in C^{1/3-\epsilon}_{t,x}$ with any smooth energy profile $\int_{\mathbb{T}^3} |v|^2(t,x)dx = e(t) > 0$.
- ► (I., '17) Solutions with borderline endpoint regularity

$$|v(t, x + \Delta x) - v(t, x)| \lesssim |\Delta x|^{\frac{1}{3} - B\sqrt{\frac{\log \log |\Delta x|^{-1}}{\log |\Delta x|^{-1}}}}, B = 4/3^+.$$

Significance: Confirmation of energy cascades

Onsager considered the Euler equations in Fourier series form

$$v(x,t) = \sum_{k} a_{k}(t)e^{ik \cdot x}$$

$$\frac{da_{k}}{dt} = i \sum_{m} a_{k-m} \cdot k \left[-a_{m} + \frac{(a_{m} \cdot k)k}{|k|^{2}} \right]$$

He argued that energy can "cascade" from low wavenumbers to high wavenumbers, and the cascade can happen so rapidly that part of the energy $\sum_k |a_k|^2$ escapes to infinite frequency (i.e. vanishes to small spatial scales) in finite time.

By a statistical physics argument, a "typical" turbulent flow should have: $\sum_{\frac{\lambda}{\alpha} < |k| < 2\lambda} |a_k|^2 \sim \lambda^{-2/3}$ (hence regularity exactly 1/3).

K41-Onsager Conjecture for Navier Stokes

Open problem:

Are there sequences of smooth Navier-Stokes solutions with $\nu \to 0$ that dissipate energy at a uniform rate while having a uniformly bounded $C^{1/3}$ norm?

If so, then ${\cal C}^{1/3}$ Euler flows that dissipate energy arise as limits of convergent subsequences.

Problem is wide open even with $C^{1/3}$ replaced by any other function space.

Theorem (I. '16)

For every $\alpha < 1/3$ there exists a weak solution in the class

$$v \in C_{t,x}^{\alpha}, \quad p \in C_{t,x}^{2\alpha}, \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3$$

such that v has nonempty, compact support in time.

Outline

Convex Integration for Euler (General Strategy):

- ► The Euler Reynolds Equations (= Approximate solutions)
- ► Nonstationary Phase Lemma
 - ightharpoonup pprox Acceptable errors (high frequency \cdot slowly varying)

Outline

Convex Integration for Euler (General Strategy):

- ► The Euler Reynolds Equations (= Approximate solutions)
- Nonstationary Phase Lemma
 - ightharpoonup pprox Acceptable errors (high frequency \cdot slowly varying)
- Mikado flows = Pipe flows (Daneri-Székelyhidi)
 - ► Convex integration using Mikado flows
 - ► The difficulty with Mikado flows for Onsager's conjecture
- ► The Gluing technique
 - Deriving the Gluing equations
 - ▶ Dangerous terms
 - Special structure in the equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = \nabla_j R^{j\ell}$$

$$\nabla_j v^j = 0$$
(ER)

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = \nabla_j R^{j\ell}$$
 (ER)
$$\nabla_j v^j = 0$$

The symmetric tensor $R^{j\ell}$ measures the error from solving Euler.

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = \nabla_j R^{j\ell}$$

$$\nabla_j v^j = 0$$
(ER)

The symmetric tensor $R^{j\ell}$ measures the error from solving Euler. Examples: If (v,p) solves the Euler equations then

- $\blacktriangleright \ (v_\epsilon,p_\epsilon,R^{j\ell}_\epsilon) \text{, } R^{j\ell}_\epsilon = v^j_\epsilon v^\ell_\epsilon (v^j v^\ell)_\epsilon \text{, } v^\ell_\epsilon = \eta_\epsilon * v^\ell$
- ▶ Corollary: Every continuous incompressible Euler flow (v,p) is the uniform limit of a sequence of smooth Euler-Reynolds flows (v_q,p_q,R_q) with $\|R_q\|_{C^0} \to 0$ as $q \to \infty$

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) + \nabla^{\ell} p = \nabla_j R^{j\ell}$$
 (ER)
$$\nabla_j v^j = 0$$

The symmetric tensor $R^{j\ell}$ measures the error from solving Euler. Examples:

 \blacktriangleright Any v^{ℓ} that is incompressible and conveserves momentum

$$\partial_t v^{\ell} + \nabla_j (v^j v^{\ell}) = U^{\ell}$$
$$\int_{\mathbb{T}^3} U^{\ell}(t, x) dx = 0$$
$$\nabla_j R^{j\ell} = U^{\ell}$$

We construct a sequence (v_q,p_q,R_q) indexed by q solving

$$\begin{split} \partial_t v_q^\ell + \nabla_j (v_q^j v_q^\ell) + \nabla^\ell p_q &= \nabla_j R_q^{j\ell} \\ \nabla_j v_q^j &= 0 \end{split} \tag{ERq}$$

where $v_{q+1}=v_q+V_q$, $p_{q+1}=p_q+P_q$ solve (ERq+1) with

much smaller
$$|R_{q+1}| \ll |R_q|^{1+\delta}$$

We construct a sequence (v_q,p_q,R_q) indexed by q solving

$$\begin{split} \partial_t v_q^\ell + \nabla_j (v_q^j v_q^\ell) + \nabla^\ell p_q &= \nabla_j R_q^{j\ell} \\ \nabla_j v_q^j &= 0 \end{split} \tag{ERq}$$

where $v_{q+1}=v_q+V_q$, $p_{q+1}=p_q+P_q$ solve (ERq+1) with

much smaller
$$|R_{q+1}| \ll |R_q|^{1+\delta}$$

In the limit as $q \to \infty$, we get continuous solutions

$$||R_q||_{C^0} \to 0$$
, $|V_q| \sim |R_q|^{1/2}$, $|P_q| \sim |R_q|$

Start with **any** smooth solution to Euler-Reynolds on $\mathbb{R} \times \mathbb{T}^3$

$$\begin{split} \partial_t v^\ell + \nabla_j (v^j v^\ell) + \nabla^\ell p &= \nabla_j R^{j\ell} \\ \nabla_j v^j &= 0 \end{split}$$

and add high-frequency corrections

$$\mathring{v} = v + V, \qquad \mathring{p} = p + P,$$

which are designed to "get rid of" $R^{j\ell}$.

Get new solutions $\mathring{v}=v+V$, $\mathring{p}=p+P$ to Euler-Reynolds

$$\partial_t \mathring{v}^\ell + \nabla_j (\mathring{v}^j \mathring{v}^\ell) + \nabla^\ell \mathring{p} = \nabla_j \mathring{R}^{j\ell}$$
$$\nabla_j \mathring{v}^j = 0$$

with $||\overset{*}{R}||_{C^0_{t,x}}$ much smaller than $||R||_{C^0_{t,x}}.$

The corrected
$$\mathring{v}=v+V$$
, $\mathring{p}=p+P$ satisfy
$$\begin{split} \partial_t \mathring{v}^\ell + \nabla_j (\mathring{v}^j \mathring{v}^\ell) + \nabla^\ell \mathring{p} &= \partial_t V^\ell + \ldots + \nabla_j (V^j V^\ell + P \delta^{j\ell} + R^{j\ell}) \\ &= \text{ not in the form } \nabla_j \mathring{R}^{j\ell} \\ \nabla_j \mathring{v}^j &= 0 \end{split}$$

The corrected
$$\mathring{v}=v+V$$
, $\mathring{p}=p+P$ satisfy
$$\begin{split} \partial_t \mathring{v}^\ell + \nabla_j (\mathring{v}^j \mathring{v}^\ell) + \nabla^\ell \mathring{p} &= \partial_t V^\ell + \ldots + \nabla_j (V^j V^\ell + P \delta^{j\ell} + R^{j\ell}) \\ &= \text{ not in the form } \nabla_j \mathring{R}^{j\ell} \\ \nabla_j \mathring{v}^j &= 0 \end{split}$$

so we will have to solve a divergence equation:

$$\begin{split} &\nabla_j \overset{*}{R}^{j\ell} = \partial_t V^\ell + \nabla_j (v^j V^\ell) + \nabla_j (V^j v^\ell) + \nabla_j (V^j V^\ell + P \delta^{j\ell} + R^{j\ell}) \end{split}$$
 to define $\overset{*}{R}.$

The corrected
$$\mathring{v}=v+V$$
, $\mathring{p}=p+P$ satisfy
$$\begin{split} \partial_t\mathring{v}^\ell + \nabla_j(\mathring{v}^j\mathring{v}^\ell) + \nabla^\ell\mathring{p} &= \partial_t V^\ell + \ldots + \nabla_j(V^jV^\ell + P\delta^{j\ell} + R^{j\ell}) \\ &= \text{ not in the form } \nabla_j\mathring{R}^{j\ell} \\ \nabla_j\mathring{v}^j &= 0 \end{split}$$

so we will have to solve a divergence equation:

$$\nabla_j \mathring{R}^{j\ell} = \partial_t V^{\ell} + \nabla_j (v^j V^{\ell}) + \nabla_j (V^j v^{\ell}) + \nabla_j (V^j V^{\ell} + P \delta^{j\ell} + R^{j\ell})$$

to define $\overset{*}{R}$.

The new error $\|\mathring{R}\|_{C^0}$ will only be small when V and P are very oscillatory and are designed carefully depending on the given v^ℓ and $R^{j\ell}$.

The Error terms

Let (v, p, R) be a smooth solution to Euler-Reynolds.

$$\partial_t v^\ell + \nabla_j (v^j v^\ell) + \nabla^\ell p = \nabla_j R^{j\ell}$$

Then
$$\mathring{v}=v+V$$
 and $\mathring{p}=p+P$ satisfy
$$\begin{split} \partial_t\mathring{v}^\ell + \nabla_j(\mathring{v}^j\mathring{v}^\ell) + \nabla^\ell\mathring{p} &= \partial_t V^\ell + \nabla_j(v^jV^\ell) + \nabla_j(V^jv^\ell) \\ &+ \nabla_j(V^jV^\ell + P\delta^{j\ell} + R^{j\ell}) \end{split}$$
 want $= \nabla_j\mathring{R}^{j\ell}$ with $\|\mathring{R}\|_{C^0} \leq \lambda^{-1}$

where V^{ℓ} oscillates at large frequency λ .

The Error terms

We name the terms as follows

Transport term:

$$\nabla_j R_T^{j\ell} = \partial_t V^{\ell} + \nabla_j (v^j V^{\ell}) + \nabla_j (V^j v^{\ell})$$

Stress term:

$$\nabla_j R_S^{j\ell} = \mathsf{LFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell} + R^{j\ell})]$$

High-Frequency Interference terms:

$$\nabla_{j}R_{H}^{j\ell} = \mathsf{HFreq}[\nabla_{j}(V^{j}V^{\ell} + P\delta^{j\ell})]$$

Each one of R_T, R_S and R_H must be $\|\mathring{R}\|_{C^0} \lesssim \lambda^{-1}$.

The Error terms

We name the terms as follows

Transport term:

$$\nabla_j R_T^{j\ell} = \partial_t V^\ell + \nabla_j (v_\epsilon^j V^\ell) + \nabla_j (V^j v_\epsilon^\ell)$$

Stress term:

$$\nabla_j R_S^{j\ell} = \mathsf{LFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell} + R_\epsilon^{j\ell})]$$

High-Frequency Interference terms:

$$\nabla_{j}R_{H}^{j\ell} = \mathsf{HFreq}[\nabla_{j}(V^{j}V^{\ell} + P\delta^{j\ell})]$$

Each one of R_T, R_S and R_H must be $\|\mathring{R}\|_{C^0} \lesssim \lambda^{-1}$.

(There is also another term involving errors from mollifying $v\mapsto v_\epsilon$ and $R\mapsto R_\epsilon$ that we are neglecting here.)

The correction V^ℓ is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$\begin{split} V^\ell &= \sum_I e^{i\lambda\xi_I} v_I^\ell + \delta V^\ell \\ \nabla_\ell V^\ell &= 0 \quad \text{(by choice of small } \delta V^\ell \text{)} \\ (\partial_t + v_\epsilon^j \nabla_j) \xi_I &= 0 \quad (\Rightarrow \text{ nonlinear phase functions)} \\ \nabla \times (e^{i\lambda\xi_I} v_I) &\approx \lambda e^{i\lambda\xi_I} v_I \quad \text{(by taking } (i\nabla\xi_I) \times v_I \approx v_I \text{)} \end{split}$$

The correction V^ℓ is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$\begin{split} V^\ell &= \sum_I e^{i\lambda\xi_I} v_I^\ell + \delta V^\ell \\ \nabla_\ell V^\ell &= 0 \quad \text{(by choice of small } \delta V^\ell \text{)} \\ (\partial_t + v_\epsilon^j \nabla_j) \xi_I &= 0 \quad (\Rightarrow \text{ nonlinear phase functions)} \\ \nabla \times (e^{i\lambda\xi_I} v_I) &\approx \lambda e^{i\lambda\xi_I} v_I \quad \text{(by taking } (i\nabla\xi_I) \times v_I \approx v_I \text{)} \end{split}$$

The correction V^ℓ is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$\begin{split} V^\ell &= \sum_I e^{i\lambda\xi_I} v_I^\ell + \delta V^\ell \\ \nabla_\ell V^\ell &= 0 \quad \text{(by choice of small } \delta V^\ell \text{)} \\ (\partial_t + v_\epsilon^j \nabla_j) \xi_I &= 0 \quad (\Rightarrow \text{ nonlinear phase functions)} \\ \nabla \times (e^{i\lambda\xi_I} v_I) &\approx \lambda e^{i\lambda\xi_I} v_I \quad \text{(by taking } (i\nabla\xi_I) \times v_I \approx v_I \text{)} \end{split}$$

The last condition makes V^{ℓ} approximate a **Beltrami flow** $(\nabla \times V \approx \lambda V)$, which are special steady state solutions to 3D Euler. It is used to control

$$\nabla_j R_H^{j\ell} = \mathsf{HFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell})]$$

The correction V^{ℓ} is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$\begin{split} V^\ell &= \sum_I e^{i\lambda\xi_I} v_I^\ell + \delta V^\ell \\ \nabla_\ell V^\ell &= 0 \quad \text{(by choice of small } \delta V^\ell \text{)} \\ (\partial_t + v_\epsilon^j \nabla_j) \xi_I &= 0 \quad (\Rightarrow \text{ nonlinear phase functions)} \\ \nabla \times (e^{i\lambda\xi_I} v_I) &\approx \lambda e^{i\lambda\xi_I} v_I \quad \text{(by taking } (i\nabla\xi_I) \times v_I \approx v_I \text{)} \end{split}$$

The last condition makes V^{ℓ} approximate a **Beltrami flow** $(\nabla \times V \approx \lambda V)$, which are special steady state solutions to 3D Euler. It is used to control

$$\nabla_j R_H^{j\ell} = \mathsf{HFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell})]$$

The Error terms again

Each one of R_T, R_S and R_H must have size $\|\mathring{R}\|_{C^0} \lesssim \lambda^{-1}$, and requires solving a divergence equation:

Transport term:

$$\nabla_j R_T^{j\ell} = \partial_t V^\ell + \nabla_j (v_\epsilon^j V^\ell) + \nabla_j (V^j v_\epsilon^\ell)$$

Stress term:

$$\nabla_j R_S^{j\ell} = \mathsf{LFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell} + R_\epsilon^{j\ell})]$$

High-Frequency Interference terms:

$$\nabla_j R_H^{j\ell} = \mathsf{HFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell})]$$

Nonstationary phase

Lemma (Nonstationary Phase Lemma)

Suppose $u^\ell(x)$ and $\xi(x)$ are smooth functions on \mathbb{T}^3 and

$$U^{\ell}(x;\lambda) = e^{i\lambda\xi(x)}u^{\ell}(x)$$

$$\| |\nabla \xi|^{-1}\|_{C^{0}} \le A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x)dx = 0$$

Then U^{ℓ} is very small in C^{-1} . That is, we can solve

$$\nabla_j R^{j\ell} = e^{i\lambda\xi(x)} u^{\ell}(x)$$
$$\|R^{j\ell}\|_{C^0} \lesssim \lambda^{-1}$$

The implicit constant depends on A and C^k norms of $\nabla \xi, u^\ell$

Nonstationary phase

Lemma (Nonstationary Phase Lemma)

Suppose $u^\ell(x)$ and $\xi(x)$ are smooth functions on \mathbb{T}^3 and

$$U^{\ell}(x;\lambda) = e^{i\lambda\xi(x)}u^{\ell}(x)$$

$$\| |\nabla \xi|^{-1}\|_{C^{0}} \le A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x)dx = 0$$

Then U^{ℓ} is very small in C^{-1} . That is, we can solve

$$\nabla_j R^{j\ell} = e^{i\lambda\xi(x)} u^{\ell}(x)$$
$$\|R^{j\ell}\|_{C^0} \lesssim \lambda^{-1}$$

The implicit constant depends on A and C^k norms of $\nabla \xi, u^\ell$

Nonstationary phase

Lemma (Nonstationary Phase Lemma)

Suppose $u^\ell(x)$ and $\xi(x)$ are smooth functions on \mathbb{T}^3 and

$$U^{\ell}(x;\lambda) = e^{i\lambda\xi(x)}u^{\ell}(x)$$

$$\| |\nabla \xi|^{-1}\|_{C^{0}} \le A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x)dx = 0$$

Then U^{ℓ} is very small in C^{-1} . That is, we can solve

$$\nabla_j R^{j\ell} = e^{i\lambda\xi(x)} u^{\ell}(x)$$
$$\|R^{j\ell}\|_{C^0} \lesssim \lambda^{-1}$$

The implicit constant depends on A and C^k norms of $\nabla \xi, u^\ell$

Nonstationary phase Lemma: Cartoon Proof

In 1D, we want to solve

$$\begin{split} \operatorname{div} R(x) &= \frac{dR}{dx} = e^{i\lambda\xi(x)}u(x) \\ &\Rightarrow R(x) = \int_0^x e^{i\lambda\xi(X)}u(X)dX \\ &= \int_0^x \frac{1}{i\lambda\xi'(X)}\frac{d}{dX}(e^{i\lambda\xi(X)})u(X)dX \\ &= \frac{u(X)e^{i\lambda\xi(X)}}{i\lambda\nabla\xi(X)}\Big|_{X=0}^{X=x} - \frac{1}{i\lambda}\int_0^x e^{i\lambda\xi(X)}\frac{d}{dX}\left(\frac{1}{\nabla\xi(X)}u(X)\right)dX \end{split}$$

Using $\||\nabla \xi|^{-1}\|_{C^0} \leq A$, the solution has size $\|R\|_{C^0} \lesssim \lambda^{-1}$.

Nonstationary phase Lemma: Cartoon Proof

In 1D, we want to solve

$$\begin{split} \operatorname{div} R(x) &= \frac{dR}{dx} = e^{i\lambda\xi(x)}u(x) \\ &\Rightarrow R(x) = \int_0^x e^{i\lambda\xi(X)}u(X)dX \\ &= \int_0^x \frac{1}{i\lambda\xi'(X)}\frac{d}{dX}(e^{i\lambda\xi(X)})u(X)dX \\ &= \frac{u(X)e^{i\lambda\xi(X)}}{i\lambda\nabla\xi(X)}\Big|_{X=0}^{X=x} - \frac{1}{i\lambda}\int_0^x e^{i\lambda\xi(X)}\frac{d}{dX}\left(\frac{1}{\nabla\xi(X)}u(X)\right)dX \end{split}$$

Using $\||\nabla \xi|^{-1}\|_{C^0} \leq A$, the solution has size $\|R\|_{C^0} \lesssim \lambda^{-1}$.

Nonstationary phase: Proof

Proof: To solve $\nabla_j R^{j\ell} = e^{i\lambda\xi(x)} u^\ell(x)$, write

$$e^{i\lambda\xi(x)}u^{\ell}(x) = \nabla_{j}\left(\frac{1}{\lambda}e^{i\lambda\xi(x)}q^{j\ell}(x)\right) + \nabla_{j}\check{R}^{j\ell}$$
$$i\nabla_{j}\xi q^{j\ell}(x) = u^{\ell}(x), \quad q^{j\ell} \in C^{\infty}(\mathbb{T}^{3}; \mathbb{R}^{3} \otimes \mathbb{R}^{3})$$
(12)

$$\nabla_j \check{R}^{j\ell} = -\frac{1}{\lambda} e^{i\lambda\xi(x)} \nabla_j q^{j\ell}(x) \tag{13}$$

Equation (12) is solved pointwise and leads to a bound

$$||q^{j\ell}||_{C^0} \lesssim |||\nabla \xi|^{-1}||_{C^0} ||u^{\ell}||_{C^0}$$

Nonstationary phase: Proof

Proof: To solve $\nabla_j R^{j\ell} = e^{i\lambda\xi(x)} u^{\ell}(x)$, write

$$e^{i\lambda\xi(x)}u^{\ell}(x) = \nabla_{j}\left(\frac{1}{\lambda}e^{i\lambda\xi(x)}q^{j\ell}(x)\right) + \nabla_{j}\check{R}^{j\ell}$$
$$i\nabla_{j}\xi q^{j\ell}(x) = u^{\ell}(x), \quad q^{j\ell} \in C^{\infty}(\mathbb{T}^{3}; \mathbb{R}^{3} \otimes \mathbb{R}^{3})$$
(12)

$$\nabla_j \check{R}^{j\ell} = -\frac{1}{\lambda} e^{i\lambda\xi(x)} \nabla_j q^{j\ell}(x) \tag{13}$$

Equation (12) is solved pointwise and leads to a bound

$$||q^{j\ell}||_{C^0} \lesssim |||\nabla \xi|^{-1}||_{C^0} ||u^{\ell}||_{C^0}$$

We can solve (13) because $\int_{\mathbb{T}^3} e^{i\lambda\xi(x)} u^\ell(x) dx = 0$. The solution satisfies $\|\check{R}^{j\ell}\|_{C^0} \lesssim \lambda^{-1}$.

Nonstationary phase 2

In order to use pipe flows aka Mikado flows:

Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)

Suppose $u^\ell(x)$ and $\omega(x) \in C^\infty(\mathbb{T}^3)$ and $\Gamma \in C^\infty(\mathbb{T}^3;\mathbb{T}^3)$

$$U^{\ell}(x;\lambda) = \omega(\lambda \Gamma(x)) u^{\ell}(x)$$
$$\|(\nabla \Gamma)^{-1}\|_{C^{0}} \le A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) dx = 0$$
$$\int_{\mathbb{T}^{3}} \omega(X) dX = 0$$

Then U^{ℓ} is very small in C^{-1} . That is, we can solve

$$\nabla_{j}R^{j\ell} = \underbrace{\omega(\lambda\Gamma(x))}_{\textit{fast}}\underbrace{u^{\ell}(x)}_{\textit{slow}}$$

$$\|R^{j\ell}\|_{C^{0}} \lesssim \lambda^{-1}$$

Nonstationary phase 2

In order to use pipe flows aka Mikado flows:

Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)

Suppose $u^\ell(x)$ and $\omega(x) \in C^\infty(\mathbb{T}^3)$ and $\Gamma \in C^\infty(\mathbb{T}^3;\mathbb{T}^3)$

$$U^{\ell}(x;\lambda) = \omega(\lambda \Gamma(x)) u^{\ell}(x)$$

$$\|(\nabla \Gamma)^{-1}\|_{C^{0}} \le A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) dx = 0$$

$$\int_{\mathbb{T}^{3}} \omega(X) dX = 0$$

Then U^{ℓ} is very small in C^{-1} . That is, we can solve

$$\nabla_{j}R^{j\ell} = \underbrace{\omega(\lambda\Gamma(x))}_{\textit{fast}}\underbrace{u^{\ell}(x)}_{\textit{slow}}$$

$$\|R^{j\ell}\|_{C^{0}} \lesssim \lambda^{-1}$$

Nonstationary phase 2

In order to use pipe flows aka Mikado flows:

Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)

Suppose $u^\ell(x)$ and $\omega(x) \in C^\infty(\mathbb{T}^3)$ and $\Gamma \in C^\infty(\mathbb{T}^3;\mathbb{T}^3)$

$$U^{\ell}(x;\lambda) = \omega(\lambda \Gamma(x)) u^{\ell}(x)$$
$$\|(\nabla \Gamma)^{-1}\|_{C^{0}} \le A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) dx = 0$$
$$\int_{\mathbb{T}^{3}} \omega(X) dX = 0$$

Then U^{ℓ} is very small in C^{-1} . That is, we can solve

$$\nabla_{j}R^{j\ell} = \underbrace{\omega(\lambda\Gamma(x))}_{\textit{fast}}\underbrace{u^{\ell}(x)}_{\textit{slow}}$$

$$\|R^{j\ell}\|_{C^{0}} \lesssim \lambda^{-1}$$

Nonstationary phase 2: Proof outline

To solve
$$\nabla_j R^{j\ell} = \omega(\lambda \Gamma(x)) u^\ell(x)$$
, write (using $\int_{\mathbb{T}^3} \omega(X) dX = 0$)

$$\omega(\lambda\Gamma(x))u^{\ell}(x) = \sum_{m \neq 0} \hat{\omega}(m)e^{i\lambda m \cdot \Gamma(x)}u^{\ell}(x)$$
(14)

Nonstationary phase 2: Proof outline

To solve $\nabla_j R^{j\ell} = \omega(\lambda \Gamma(x)) u^\ell(x)$, write (using $\int_{\mathbb{T}^3} \omega(X) dX = 0$)

$$\omega(\lambda\Gamma(x))u^{\ell}(x) = \sum_{m \neq 0} \hat{\omega}(m)e^{i\lambda m \cdot \Gamma(x)}u^{\ell}(x)$$
(14)

Can apply the previous Lemma if we have *nonstationary phase* functions, which requires

$$\|(\nabla \Gamma)^{-1}\|_{C^0} \le A \Rightarrow |\nabla (m \cdot \Gamma)|^{-1} \le A|m|^{-1}$$

Applying the Nonstationary Phase Lemma gives a solution with

$$||R^{j\ell}||_{C^0} \lesssim \lambda^{-1}$$

Motivation for Mikado flows

Theorem (Daneri-Székelyhidi, '16)

For every smooth Euler-Reynolds flow (\bar{v}, p, R) with

$$-R^{j\ell} \ge c\delta^{j\ell}, \quad c > 0, \tag{15}$$

there exist weak solutions to Euler in $v_{(k)} \in C^{1/5-\epsilon}_{t,x}$ such that

$$v_{(k)}^{\ell} \rightharpoonup \bar{v}^{\ell} \quad \text{in } L_{t,x}^{\infty}$$
 (16)

$$v_{(k)}^j v_{(k)}^\ell - \bar{v}^j \bar{v}^\ell \rightharpoonup R^{j\ell} \quad \text{in } L_{t,x}^\infty \quad \text{as } k \to \infty$$
 (17)

Motivation for Mikado flows

Theorem (Daneri-Székelyhidi, '16)

For every smooth Euler-Reynolds flow (\bar{v}, p, R) with

$$-R^{j\ell} \ge c\delta^{j\ell}, \quad c > 0, \tag{15}$$

there exist weak solutions to Euler in $v_{(k)} \in C^{1/5-\epsilon}_{t,x}$ such that

$$v_{(k)}^{\ell} \rightharpoonup \bar{v}^{\ell} \quad \text{in } L_{t,x}^{\infty}$$
 (16)

$$v_{(k)}^{j}v_{(k)}^{\ell} - \bar{v}^{j}\bar{v}^{\ell} \rightharpoonup R^{j\ell} \quad \text{in } L_{t,x}^{\infty} \quad \text{as } k \to \infty$$
 (17)

With Beltrami flows, would require $R^{j\ell}=-a(t,x)(\delta^{j\ell}+{\rm small}).$ To overcome this restriction, they introduce a different family of stationary solutions to Euler ("**Mikado flows**") that provide more algebraic flexibility to achieve an arbitrary stress $R^{j\ell}$.

Elementary Mikado flows on \mathbb{T}^3

Fix a finite set $\mathbb{F}\subseteq\mathbb{Z}^3$ and coefficients γ_f and set

$$W^\ell(X)=\sum_{f\in\mathbb{F}}\gamma_f\psi_f(X)f^\ell$$

$$\mathrm{supp}\ \psi_f\cap\mathrm{supp}\ \psi_{f'}=\emptyset,\quad \text{if}\ f\neq f'\in\mathbb{F}$$

So that $abla_\ell W^\ell = 0$, $abla_j (W^j W^\ell) = 0$, $\int_{\mathbb{T}^3} W^\ell(X) dX = 0$, and

$$\int_{\mathbb{T}^3} W^j W^{\ell}(X) dX = \sum_{f \in \mathbb{F}} \gamma_f^2 f^j f^{\ell}$$

can be an arbitrary, positive definite tensor.

Using these flows, we design our high-frequency wave V^ℓ as follows. At time t=0 it looks like

$$V^{\ell}(0,x) = \sum_{f \in \mathbb{F}} \underbrace{\gamma_f(0,x)}_{\text{slow}} f^{\ell} \underbrace{\psi_f(\lambda x)}_{\text{fast}} + \underbrace{\delta V^{\ell}}_{\text{small}}$$

Using these flows, we design our high-frequency wave V^ℓ as follows. At time t=0 it looks like

$$V^{\ell}(0,x) = \sum_{f \in \mathbb{F}} \underbrace{\gamma_f(0,x)}_{\text{slow}} f^{\ell} \underbrace{\psi_f(\lambda x)}_{\text{fast}} + \underbrace{\delta V^{\ell}}_{\text{small}}$$

At nonzero times, it has the form:

$$\begin{split} V^{\ell}(t,x) &= \sum_{f \in \mathbb{F}} \gamma_f(t,x) \underbrace{\tilde{f}^{\ell}(t,x)}_{\text{slow}} \psi_f(\lambda \underbrace{\Gamma(t,x)}_{\text{slow}}) + \delta V^{\ell} \\ (\partial_t + v_{\epsilon} \cdot \nabla) \Gamma(t,x) &= 0, \qquad \Gamma(0,x) = x \end{split}$$

The vector field $ilde{f}^\ell$ satisfies

$$\begin{split} V^\ell(t,x) &= \sum_{f \in \mathbb{F}} \gamma_f(t,x) \tilde{f}^\ell(t,x) \psi_f(\lambda \Gamma(t,x)) + \delta V^\ell \\ \tilde{f}^\ell &= (\nabla \Gamma^{-1})_a^\ell f^a \\ &\Rightarrow \tilde{f}^\ell \nabla_\ell [\psi_f(\lambda \Gamma(t,x))] = 0, \quad \text{since } f^a \nabla_a \psi_f = 0 \end{split}$$

The vector field $ilde{f}^\ell$ satisfies

$$\begin{split} V^\ell(t,x) &= \sum_{f \in \mathbb{F}} \gamma_f(t,x) \tilde{f}^\ell(t,x) \psi_f(\lambda \Gamma(t,x)) + \delta V^\ell \\ \tilde{f}^\ell &= (\nabla \Gamma^{-1})_a^\ell f^a \\ &\Rightarrow \tilde{f}^\ell \nabla_\ell [\psi_f(\lambda \Gamma(t,x))] = 0, \quad \text{since } f^a \nabla_a \psi_f = 0 \end{split}$$

We can then make V^ℓ divergence free by solving

$$\begin{split} & \frac{\nabla_{\ell} V^{\ell} = 0 = \sum_{f \in \mathbb{F}} \underbrace{\frac{\nabla_{\ell} [\gamma_f(t,x) \tilde{f}^{\ell}(t,x)]}{\text{slow}} \underbrace{\psi_f(\textcolor{red}{\lambda} \Gamma(t,x))}_{\text{fast}} + \nabla_{\ell} \delta V^{\ell} \\ \Rightarrow \|\delta V^{\ell}\|_{C^0} \lesssim \lambda^{-1} \qquad \text{(starting now we will neglect this term...)} \end{split}$$

The vector field \tilde{f}^ℓ satisfies

$$\begin{split} V^{\ell}(t,x) &= \sum_{f \in \mathbb{F}} \underbrace{\gamma_f(t,x) \tilde{f}^{\ell}(t,x)}_{\text{slow}} \underbrace{\psi_f(\lambda \Gamma(t,x))}_{\text{fast}} + \delta V^{\ell} \\ &\qquad \qquad \tilde{f}^{\ell} = (\nabla \Gamma^{-1})_a^{\ell} f^a \\ &\Rightarrow \tilde{f}^{\ell} \nabla_{\ell} [\psi_f(\lambda \Gamma(t,x))] = 0, \quad \text{since } f^a \nabla_a \psi_f = 0 \end{split}$$

We can then make V^ℓ divergence free by solving

$$\begin{split} \nabla_{\ell}V^{\ell} &= 0 = \sum_{f \in \mathbb{F}} \underbrace{\nabla_{\ell}[\gamma_f(t,x)\tilde{f}^{\ell}(t,x)]}_{\text{slow}} \underbrace{\psi_f(\lambda\Gamma(t,x))}_{\text{fast}} + \nabla_{\ell}\delta V^{\ell} \\ &\Rightarrow \|\delta V^{\ell}\|_{C^0} \lesssim \lambda^{-1} \qquad \text{(starting now we will neglect this term...)} \end{split}$$

Recalling the Error terms again

Each one of R_T, R_S and R_H must have size $\|\mathring{R}\|_{C^0} \lesssim \lambda^{-1}$, and requires solving a divergence equation:

Transport term:

$$\nabla_j R_T^{j\ell} = \partial_t V^\ell + \nabla_j (v_\epsilon^j V^\ell) + \nabla_j (V^j v_\epsilon^\ell)$$

Stress term:

$$\nabla_j R_S^{j\ell} = \mathsf{LFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell} + R_\epsilon^{j\ell})]$$

High-Frequency Interference terms:

$$\nabla_{j} R_{H}^{j\ell} = \mathsf{HFreq}[\nabla_{j} (V^{j} V^{\ell} + P \delta^{j\ell})]$$

Recalling the Error terms again

Each one of R_T, R_S and R_H must have size $\|\mathring{R}\|_{C^0} \lesssim \lambda^{-1}$, and requires solving a divergence equation:

Transport term:

$$\nabla_j R_T^{j\ell} = \partial_t V^{\ell} + \nabla_j (v_{\epsilon}^j V^{\ell}) + \nabla_j (V^j v_{\epsilon}^{\ell})$$

Stress term:

$$\nabla_j R_S^{j\ell} = \mathsf{LFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell} + R_\epsilon^{j\ell})]$$

High-Frequency Interference terms:

$$\nabla_j R_H^{j\ell} = \mathsf{HFreq}[\nabla_j (V^j V^\ell + P \delta^{j\ell})]$$

With this Ansatz the Transport term is under control: Letting $D_t := (\partial_t + v^j_\epsilon \nabla_j)$ be the "advective derivative" we have

$$\begin{split} \partial_t V^\ell + \nabla_j (v^j_\epsilon V^\ell) + \nabla_j (V^j v^\ell_\epsilon) &= (\partial_t + v^j_\epsilon \nabla_j) V^\ell + V^j \nabla_j v^\ell_\epsilon \\ &= \sum_{f \in \mathbb{F}} D_t [\gamma_f \tilde{f}^\ell \psi_f (\lambda \Gamma(t,x))] + \gamma_f \tilde{f}^j \psi_f (\lambda \Gamma(t,x)) \nabla_j v^\ell_\epsilon \\ \nabla_j R_T^{j\ell} &= \sum_{f \in \mathbb{F}} \underbrace{(D_t [\gamma_f \tilde{f}^\ell] + \gamma_f \tilde{f}^j \nabla_j v^\ell_\epsilon)}_{\text{slow}} \underbrace{\psi_f (\lambda \Gamma(t,x))}_{\text{fast}} \end{split}$$

Nonstationary phase $\Rightarrow ||R_T||_{C^0} \lesssim \lambda^{-1}$.

With this Ansatz the Transport term is under control: Letting $D_t:=(\partial_t+v^j_\epsilon\nabla_j)$ be the "advective derivative" we have

$$\begin{split} \partial_t V^\ell + \nabla_j (v^j_\epsilon V^\ell) + \nabla_j (V^j v^\ell_\epsilon) &= (\partial_t + v^j_\epsilon \nabla_j) V^\ell + V^j \nabla_j v^\ell_\epsilon \\ &= \sum_{f \in \mathbb{F}} D_t [\gamma_f \tilde{f}^\ell \psi_f (\lambda \Gamma(t,x))] + \gamma_f \tilde{f}^j \psi_f (\lambda \Gamma(t,x)) \nabla_j v^\ell_\epsilon \\ \nabla_j R_T^{j\ell} &= \sum_{f \in \mathbb{F}} \underbrace{(D_t [\gamma_f \tilde{f}^\ell] + \gamma_f \tilde{f}^j \nabla_j v^\ell_\epsilon)}_{\text{slow}} \underbrace{\psi_f (\lambda \Gamma(t,x))}_{\text{fast}} \end{split}$$

(Used
$$\nabla_j V^j = 0$$
.)

The Stress term is controlled as follows:

$$\begin{split} \mathsf{LFreq}[\nabla_{j}(V^{j}V^{\ell} + P\delta^{j\ell} + R^{j\ell}_{\epsilon})] \\ &= \mathsf{LFreq}\Big[\nabla_{j}\Big(\sum_{f_{1},f_{2}\in\mathbb{F}} \gamma_{f_{1}}\gamma_{f_{2}} \underbrace{\psi_{f_{1}}\psi_{f_{2}}(\lambda\Gamma)} \tilde{f}_{1}^{j}\tilde{f}_{2}^{\ell} + P\delta^{j\ell} + R^{j\ell}_{\epsilon}\Big)\Big] \\ &= \mathsf{LFreq}\Big[\nabla_{j}\Big(\sum_{f\in\mathbb{F}} \gamma_{f}^{2}\psi_{f}^{2}(\lambda\Gamma)\tilde{f}^{j}\tilde{f}^{\ell} + P\delta^{j\ell} + R^{j\ell}_{\epsilon}\Big)\Big] \\ &:= \nabla_{j}\Big[\sum_{f\in\mathbb{F}} \gamma_{f}^{2}(t,x)\tilde{f}^{j}\tilde{f}^{\ell} + P(t,x)\delta^{j\ell} + R^{j\ell}_{\epsilon}\Big] \\ &= \nabla_{j}[0] = 0 \end{split}$$

Here we solve for the $\gamma_f^2(t,x)$ at each point using that the $(\tilde{f}^j\tilde{f}^\ell)_{f\in\mathbb{F}}$ span the space of symmetric tensors.

The remaining High-Frequency Interference term is controlled as follows using the orthogonality $\tilde{f}^j \nabla_j [\psi_f^2(\lambda \Gamma)] = 0$

$$\begin{split} \mathsf{HFreq}[\nabla_j(V^jV^\ell)] &= \nabla_{\pmb{j}} \left[\sum_{f \in \mathbb{F}} \gamma_f^2 \tilde{f}^j \tilde{f}^\ell (\psi_f^2(\pmb{\lambda}\Gamma(t,x)) - 1) \right] \\ \nabla_j R_H^{j\ell} &= \sum_{f \in \mathbb{F}} \nabla_j [\gamma_f^2 \tilde{f}^j \tilde{f}^\ell] (\psi_f^2(\pmb{\lambda}\Gamma(t,x)) - 1) \end{split}$$

The remaining High-Frequency Interference term is controlled as follows using the orthogonality $\tilde{f}^j \nabla_j [\psi_f^2(\lambda \Gamma)] = 0$

$$\begin{split} \mathsf{HFreq}[\nabla_j(V^jV^\ell)] &= \nabla_j \left[\sum_{f \in \mathbb{F}} \gamma_f^2 \tilde{f}^j \tilde{f}^\ell \big(\psi_f^2(\lambda \Gamma(t,x)) - 1 \big) \right] \\ \nabla_j R_H^{j\ell} &= \sum_{f \in \mathbb{F}} \underbrace{\nabla_j [\gamma_f^2 \tilde{f}^j \tilde{f}^\ell]}_{\text{slow}} \underbrace{(\psi_f^2(\lambda \Gamma(t,x)) - 1)}_{\text{fast} \ := \ \omega(\lambda \Gamma(t,x))} \end{split}$$

The last term is "fast-oscillating" since $\int_{\mathbb{T}^3} (\psi_f^2(X) - 1) dX = 0$. (Using Beltrami flows, the corresponding term is under control only for a very short period of time.)

Can we use Mikado flows for Onsager's conjecture?

All the error terms discussed above appear sufficiently small for the method of convex integration to yield regularity $1/3 - \epsilon$.

However, there is a substantial difficulty standing in the way of using Mikado flows to prove Onsager's conjecture, namely:

Can we use Mikado flows for Onsager's conjecture?

All the error terms discussed above appear sufficiently small for the method of convex integration to yield regularity $1/3 - \epsilon$.

However, there is a substantial difficulty standing in the way of using Mikado flows to prove Onsager's conjecture, namely:

Problem: Interference of distinct Mikado flows occurs if we try to iterate the construction.

Why we Need Multiple Waves

A crucial assumption we are using is the bound $\|(\nabla \Gamma^{-1})\|_{C^0} \leq A$ for the solution to

$$(\partial_t + v_{\epsilon}^j \nabla_j)\Gamma(t, x) = 0, \qquad \Gamma(0, x) = x$$

We can see that this assumption holds only for times of the order $|t| \lesssim \|\nabla v\|_{C^0}^{-1}$ from the PDE:

$$(\partial_t + v_{\epsilon}^j \nabla_j)(\nabla \Gamma^{-1})_b^a = \nabla_j v_{\epsilon}^a (\nabla \Gamma^{-1})_b^j$$
$$(\nabla \Gamma^{-1})_b^a = \operatorname{Id}_b^a \quad \text{at } t = 0$$

Since $\|\nabla v\|_{C^0} \to \infty$ as v converges to a $C^{1/3-\epsilon}$ vector field, we need to use more and more waves starting at different times!

Difficulty with Mikado Flows

It seems very difficult to control the interactions between two Mikado flow based waves. Suppose we have two such waves

$$V_1^{\ell} = \sum_{f \in \mathbb{F}_1} \gamma_{f,1} f^j f^{\ell} \psi_f(\lambda \Gamma_1), \quad V_0^{\ell} = \sum_{f \in \mathbb{F}_0} \gamma_{f,0} f^j f^{\ell} \psi_f(\lambda \Gamma_0)$$

where Γ_1 and Γ_0 both solve $(\partial_t + v_\epsilon \cdot \nabla)\Gamma_I = 0$, but start as the identity at different times

$$|t_1 - t_0| \sim \|\nabla v\|_{C^0}^{-1}.$$

Difficulty with Mikado Flows

It seems very difficult to control the interactions between two Mikado flow based waves. Suppose we have two such waves

$$V_1^{\ell} = \sum_{f \in \mathbb{F}_1} \gamma_{f,1} f^j f^{\ell} \psi_f(\lambda \Gamma_1), \quad V_0^{\ell} = \sum_{f \in \mathbb{F}_0} \gamma_{f,0} f^j f^{\ell} \psi_f(\lambda \Gamma_0)$$

where Γ_1 and Γ_0 both solve $(\partial_t + v_\epsilon \cdot \nabla)\Gamma_I = 0$, but start as the identity at different times

$$|t_1 - t_0| \sim \|\nabla v\|_{C^0}^{-1}.$$

Then the supports of the $\psi_f(\lambda\Gamma_I)$ (which are unions of long, λ^{-1} -thin, λ^{-1} -separated cylinders deformed by the flow) will in general overlap and we will lose control over the interference term

$$\nabla_j [V_1^j V_0^\ell + V_0^j V_1^\ell]$$

Strategy to Fix the Problem

Idea: Find a new stress error \widetilde{R} that is supported in disjoint time intervals of width $\theta \sim |\nabla v|^{-1}$

$$\operatorname{supp}_t \widetilde{R} \subseteq \bigcup_I [t(I) - \theta, t(I) + \theta]$$

so that the new velocity field is a perturbation of the old one $v\mapsto \tilde{v}=v+y$ and \widetilde{R} obeys the same estimates as the original R.

Strategy to Fix the Problem

Idea: More precisely, starting with (v,p,R), find a new Euler-Reynolds flow $(\tilde{v},\tilde{p},\widetilde{R})$ with \tilde{v} close to v such that

$$\begin{split} \partial_t \tilde{v}^\ell + \nabla_j (\tilde{v}^j \tilde{v}^\ell) + \nabla^\ell \tilde{p} &= \nabla_j \tilde{R}^{j\ell}, \quad \tilde{R} = \sum_{I \in \mathbb{Z}} R_I \\ \sup R_I &\subseteq [t(I) - \theta, t(I) + \theta], \quad \theta \sim |\nabla v|^{-1} \\ |t(I) - t(I')| &\geq 4\theta, \quad I \neq I' \end{split}$$

Strategy to Fix the Problem

Idea: More precisely, starting with (v,p,R), find a new Euler-Reynolds flow $(\tilde{v},\tilde{p},\widetilde{R})$ with \tilde{v} close to v such that

$$\begin{split} \partial_t \tilde{v}^\ell + \nabla_j (\tilde{v}^j \tilde{v}^\ell) + \nabla^\ell \tilde{p} &= \nabla_j \tilde{R}^{j\ell}, \quad \tilde{R} = \sum_{I \in \mathbb{Z}} R_I \\ \sup R_I &\subseteq [t(I) - \theta, t(I) + \theta], \quad \theta \sim |\nabla v|^{-1} \\ |t(I) - t(I')| &\geq 4\theta, \quad I \neq I' \end{split}$$

Rules: $(\tilde{v}, \tilde{p}, \tilde{R})$ must obey the same C^k estimates as (v, p, R). In particular, the new error \tilde{R} cannot be much larger than the previous error R! ($\|\tilde{R}\|_{C^0} \lesssim \|R\|_{C^0}$ is OK.) Also, we require \tilde{v} to be close to v: $\|v - \tilde{v}\|_{C^0} \lesssim \|R\|_{C^0}^{1/2}$

Constructing the new $(\tilde{v}, \tilde{p}, \tilde{R})$

We introduce the velocity increment y^ℓ and pressure increment \bar{p} , which satisfy $\tilde{v}^\ell=v^\ell+y^\ell, \qquad \tilde{p}=p+\bar{p}$ and

$$\begin{split} \partial_t y^\ell + v^j \nabla_j y^\ell + y^j \nabla_j v^\ell + \nabla_j (y^j y^\ell) + \nabla^\ell \bar{p} &= \nabla_j \widetilde{R}^{j\ell} - \nabla_j R^{j\ell} \\ \nabla_j y^j &= 0 \end{split}$$

Constructing the new $(\tilde{v}, \tilde{p}, \bar{R})$

We introduce the velocity increment y^ℓ and pressure increment \bar{p} , which satisfy $\tilde{v}^\ell = v^\ell + y^\ell, \qquad \tilde{p} = p + \bar{p}$ and

$$\partial_t y^{\ell} + v^j \nabla_j y^{\ell} + y^j \nabla_j v^{\ell} + \nabla_j (y^j y^{\ell}) + \nabla^{\ell} \bar{p} = \nabla_j \widetilde{R}^{j\ell} - \nabla_j R^{j\ell}$$
$$\nabla_j y^j = 0$$

Need $\widetilde{R} = \sum_{I} R_{I}$ where $\operatorname{supp}_{t} R_{I} \subseteq [t(I) - \theta, t(I) + \theta]$, $\theta \sim \|\nabla v\|_{C^{0}}^{-1}$. Also need

$$\|y\|_{C^0} \lesssim e_R^{1/2} \sim \|R\|_{C^0}^{1/2}$$
 and
$$\|\widetilde{R}\|_{C^0} \lesssim e_R \sim \|R\|_{C^0}$$

Want the new error $\widetilde{R} = \sum_I R_I$ supported in disjoint intervals:

$$\begin{aligned} \operatorname{supp}_t R_I &\subseteq [t(I) - \theta, t(I) + \theta] \\ \Rightarrow \widetilde{R} &\equiv 0 \text{ outside of } \bigcup_I [t(I) - \theta, t(I) + \theta] \end{aligned}$$

Want the new error $\widetilde{R} = \sum_I R_I$ supported in disjoint intervals:

$$\begin{aligned} \operatorname{supp}_t R_I &\subseteq [t(I) - \theta, t(I) + \theta] \\ \Rightarrow \widetilde{R} &\equiv 0 \text{ outside of } \bigcup_I [t(I) - \theta, t(I) + \theta] \end{aligned}$$

So the new \tilde{v}^ℓ should solve the Euler equations exactly in the gaps between the intervals

$$[t(I)-\theta,t(I)+\theta]$$
 and $[t(I+1)-\theta,t(I+1)+\theta]$

Also, \tilde{v}^ℓ needs to be a close approximation to $v^\ell.$

Let $u_I^\ell=v^\ell+y_I^\ell$ be the unique, smooth solution to Euler starting at the middle of the Ith gap $t_0(I)$ with initial data

$$u_I^{\ell}(t_0(I), x) = v^{\ell}(t_0(I), x), \qquad y_I^{\ell}(t_0(I), x) = 0$$

Let $u_I^\ell=v^\ell+y_I^\ell$ be the unique, smooth solution to Euler starting at the middle of the Ith gap $t_0(I)$ with initial data

$$u_I^{\ell}(t_0(I), x) = v^{\ell}(t_0(I), x), \qquad y_I^{\ell}(t_0(I), x) = 0$$

Then set $y^\ell = \sum_I \eta_I y_I^\ell$, $\tilde{v}^\ell = \sum_I \eta_I u_I^\ell$ with a partition of unity

The Gluing Technique

Let $u_I^\ell=v^\ell+y_I^\ell$ be the unique, smooth solution to Euler starting at the middle of the Ith gap $t_0(I)$ with initial data

$$u_I^{\ell}(t_0(I), x) = v^{\ell}(t_0(I), x), \qquad y_I^{\ell}(t_0(I), x) = 0$$

Then set $y^\ell = \sum_I \eta_I y_I^\ell$, $\tilde{v}^\ell = \sum_I \eta_I u_I^\ell$ with a partition of unity Theorem (Classical Existence Result)

There exists a unique open interval \widetilde{J}_I containing $t_0(I)$ such that u_I is smooth on $\widetilde{J}_I \times \mathbb{T}^3$ and for all $T^* \in \partial \widetilde{J}_I$ endpoints of \widetilde{J}_I ,

$$\limsup_{t \to T^*} \|\nabla u_I(t)\|_{C^0} = \infty$$

(We will have to prove that $\operatorname{supp}_t \eta_I \subseteq \widetilde{J}_I$ to know the formula is well-defined).

The New Stress

With y_I^ℓ and $y^\ell = \sum_I \eta_I y_I^\ell$ as above, the new $\widetilde{R}^{j\ell}$ is a solution to

$$\begin{split} \nabla_j \widetilde{R}^{j\ell} &= \sum_I \eta_I'(t) y_I^\ell + \sum_I \eta_I \eta_{I+1} \nabla_j (y_I^j y_{I+1}^\ell + y_{I+1}^j y_I^\ell) \\ &+ \sum_I (\eta_I^2 - \eta_I) \nabla_j (y_I^j y_I^\ell), \end{split}$$

where each $y_I^\ell = u_I^\ell - v^\ell$ solves

$$\begin{aligned} \partial_{\boldsymbol{t}} y_{I}^{\ell} + v^{j} \nabla_{j} y_{I}^{\ell} + y_{I}^{j} \nabla_{j} v^{\ell} + \nabla_{j} (\boldsymbol{y}_{I}^{j} \boldsymbol{y}_{I}^{\ell}) + \nabla^{\ell} \bar{p}_{I} &= -\nabla_{j} R^{j\ell} \\ \nabla_{j} y_{I}^{j} &= 0 \\ y_{I}^{\ell} (t_{0}(I), x) &= 0 \end{aligned}$$

The New Stress

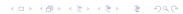
With y_I^ℓ and $y^\ell = \sum_I \eta_I y_I^\ell$ as above, the new $\widetilde{R}^{j\ell}$ is a solution to

$$\begin{split} \nabla_{j} \widetilde{R}^{j\ell} &= \sum_{I} \eta_{I}'(t) \mathbf{y}_{I}^{\ell} + \sum_{I} \eta_{I} \eta_{I+1} \nabla_{j} (y_{I}^{j} y_{I+1}^{\ell} + y_{I+1}^{j} y_{I}^{\ell}) \\ &+ \sum_{I} (\eta_{I}^{2} - \eta_{I}) \nabla_{j} (y_{I}^{j} y_{I}^{\ell}), \end{split}$$

Choosing $r_I^{j\ell}$ such that $\nabla_j r_I^{j\ell} = y_I^\ell$, the new stress will be

$$\begin{split} \widetilde{R}^{j\ell} &= \sum_{I} \eta_{I}'(t) r_{I}^{j\ell} + \sum_{I} \eta_{I} \eta_{I+1} (y_{I}^{j} y_{I+1}^{\ell} + y_{I+1}^{j} y_{I}^{\ell}) \\ &+ \sum_{I} (\eta_{I}^{2} - \eta_{I}) y_{I}^{j} y_{I}^{\ell} \end{split}$$

Note that $\operatorname{supp}_t \widetilde{R} \subseteq \bigcup_I \operatorname{supp}_t \eta_I' \subseteq \bigcup_I [t(I) - \theta, t(I) + \theta].$



The New Stress

With y_I^ℓ and $y^\ell = \sum_I \eta_I y_I^\ell$ as above, the new $\widetilde{R}^{j\ell}$ is a solution to

$$\begin{split} \nabla_{j} \widetilde{R}^{j\ell} &= \sum_{I} \eta_{I}'(t) \mathbf{y}_{I}^{\ell} + \sum_{I} \eta_{I} \eta_{I+1} \nabla_{j} (y_{I}^{j} y_{I+1}^{\ell} + y_{I+1}^{j} y_{I}^{\ell}) \\ &+ \sum_{I} (\eta_{I}^{2} - \eta_{I}) \nabla_{j} (y_{I}^{j} y_{I}^{\ell}), \end{split}$$

Choosing $r_I^{j\ell}$ such that $\nabla_j r_I^{j\ell} = y_I^\ell$, the new stress will be

$$\begin{split} \widetilde{R}^{j\ell} &= \sum_{I} \eta_{I}'(t) r_{I}^{j\ell} + \sum_{I} \eta_{I} \eta_{I+1} (y_{I}^{j} y_{I+1}^{\ell} + y_{I+1}^{j} y_{I}^{\ell}) \\ &+ \sum_{I} (\eta_{I}^{2} - \eta_{I}) y_{I}^{j} y_{I}^{\ell} \end{split}$$

Note that $\operatorname{supp}_t \widetilde{R} \subseteq \bigcup_I \operatorname{supp}_t \eta_I' \subseteq \bigcup_I [t(I) - \theta, t(I) + \theta].$

Problem: we get bad estimates from solving

$$\nabla_j r_I^{j\ell} = y_I^{\ell}. \tag{18}$$

Suppose that e_R is the size of the error ($\|R\|_{C^0} \le e_R$) and suppose (optimistically) that $\|y_I^\ell\|_{C^0} \sim e_R^{1/2}$ obeys the bound we desire for $y^\ell = \tilde{v}^\ell - v^\ell$. Then our new error has size

$$\|\widetilde{R}\|_{C^0} = \|\eta_I'(t)r_I + \dots \|_{C^0}$$

$$\lesssim \theta^{-1} \|r_I\|_{C^0} \lesssim \theta^{-1} \|y_I\|_{C^0}$$

$$\|\widetilde{R}\|_{C^0} \lesssim \theta^{-1} e_R^{1/2} + \dots$$

Our goal was e_R . Having $e_R^{1/2}$ is already too big, and having θ^{-1} makes this bound diverge to ∞ !

We can find a better solution to $abla_j r_I^{j\ell} = y_I^\ell$ using the equation

$$\partial_t y_I^\ell = -v^j \nabla_j y_I^\ell - y_I^j \nabla_j v^\ell - \nabla_j (y_I^j y_I^\ell) - \nabla^\ell \bar{p}_I - \nabla_j R^{j\ell}$$

We can find a better solution to $abla_j r_I^{j\ell} = y_I^\ell$ using the equation

$$\partial_t y_I^\ell = -\nabla_j (v^j y_I^\ell + y_I^j v^\ell + y_I^j y_I^\ell + \bar{p}_I \delta^{j\ell} + R^{j\ell})$$

We can find a better solution to $abla_j r_I^{j\ell} = y_I^\ell$ using the equation

$$\begin{split} \partial_t y_I^\ell &= -\nabla_j (v^j y_I^\ell + y_I^j v^\ell + y_I^j y_I^\ell + \bar{p}_I \delta^{j\ell} + R^{j\ell}) \\ &= -r_I^{j\ell}(t,\cdot) \\ y_I^\ell(t,\cdot) &= -\nabla_j \overbrace{\int_0^t (v^j y_I^\ell(\tau,\cdot) + y_I^j v^\ell(\tau,\cdot) + \ldots + R^{j\ell}(\tau,\cdot)) d\tau}^{} \end{split}$$

We can find a better solution to $\nabla_j r_I^{j\ell} = y_I^\ell$ using the equation

$$\partial_t y_I^{\ell} = -\nabla_j (v^j y_I^{\ell} + y_I^j v^{\ell} + y_I^j y_I^{\ell} + \bar{p}_I \delta^{j\ell} + R^{j\ell})$$

$$= -r_I^{j\ell}(t, \cdot)$$

$$y_I^{\ell}(t, \cdot) = -\nabla_j \int_0^t (v^j y_I^{\ell}(\tau, \cdot) + y_I^j v^{\ell}(\tau, \cdot) + \dots + R^{j\ell}(\tau, \cdot)) d\tau$$

$$\|\widetilde{R}\|_{C^0} \lesssim \theta^{-1} \|r_I\|_{C^0} + \dots \lesssim \|v\|_{C^0} \|y_I\|_{C^0} + \dots$$

$$\|\widetilde{R}\|_{C^0} \lesssim e_R^{1/2} + \dots$$

Still not the desired $\|\widetilde{R}\|_{C^0} \lesssim e_R$.

Idea: Set $r_I^{j\ell}(t_0(I),x)=0$ and solve a transport equation

$$\begin{split} &(\partial_t + v^i \nabla_i)[\nabla_j r_I^{j\ell}] = (\partial_t + v^i \nabla_i) y_I^\ell, \\ &(\partial_t + v^i \nabla_i)[\nabla_j r_I^{j\ell}] = -y_I^j \nabla_j v^\ell - \nabla_j (y_I^j y_I^\ell) - \nabla^\ell \bar{p}_I - \nabla_j R^{j\ell} \end{split}$$

(Motivation: "integration" over trajectories is more natural than integrating in time at fixed x.)

Idea: Set $r_I^{j\ell}(t_0(I),x)=0$ and solve a transport equation

$$\begin{split} &(\partial_t + v^i \nabla_i)[\nabla_j r_I^{j\ell}] = (\partial_t + v^i \nabla_i) y_I^\ell, \\ &(\partial_t + v^i \nabla_i)[\nabla_j r_I^{j\ell}] = -y_I^j \nabla_j v^\ell - \nabla_j (y_I^j y_I^\ell) - \nabla^\ell \bar{p}_I - \nabla_j R^{j\ell} \end{split}$$

Setting $r_I^{j\ell}=
ho_I^{j\ell}+z_I^{j\ell}$, we can solve away the last few terms:

$$(\partial_t + v^j \nabla_j) z_I^{j\ell} = -y_I^j y_I^\ell - \bar{p}_I \delta^{j\ell} - R^{j\ell}$$
(19)

Then $||z_I||_{C^0}$ looks good if we have

$$||y_I||_{C^0} \lesssim e_R^{1/2}, \qquad ||\bar{p}_I||_{C^0} \lesssim e_R$$

Idea: Set $r_I^{j\ell}(t_0(I),x)=0$ and solve a transport equation

$$\begin{split} &(\partial_t + v^i \nabla_i)[\nabla_j r_I^{j\ell}] = (\partial_t + v^i \nabla_i) y_I^\ell, \\ &(\partial_t + v^i \nabla_i)[\nabla_j r_I^{j\ell}] = - \underline{y_I^j} \nabla_j \underline{v^\ell} - \nabla_j (y_I^j y_I^\ell) - \nabla^\ell \bar{p}_I - \nabla_j R^{j\ell} \end{split}$$

To handle the linear term, let $r_I^{j\ell}=\rho_I^{j\ell}+z_I^{j\ell}$ where

$$\nabla_j [(\partial_t + v^i \nabla_i) \rho_I^{j\ell}] = \nabla_j v^i \nabla_i r_I^{j\ell} - y_I^j \nabla_j v^\ell$$

(Obtained by commuting ∇_j and $(\partial_t + v^i \nabla_i)$.)

To handle the linear term, let $r_I^{j\ell}=\rho_I^{j\ell}+z_I^{j\ell}$ where

$$\nabla_j [(\partial_t + v^i \nabla_i) \rho_I^{j\ell}] = \nabla_j v^i \nabla_i r_I^{j\ell} - y_I^i \nabla_i v^\ell$$
 (20)

Equation (20) can only be solved if we can invert the divergence on both sides. We need to know the right hand side has integral 0:

$$\nabla_j v^i \nabla_i r_I^{j\ell} - y_I^j \nabla_j v^\ell = \nabla_i [\nabla_j v^i r_I^{j\ell} - y_I^i v^\ell]$$

Here we use that $\nabla_i v^i = \nabla_i y_I^i = 0$.

We now invert the divergence to obtain an equation for ρ_I .

We let $ho_I^{j\ell}$ solve a "transport-elliptic" equation:

$$(\partial_t + v^i \nabla_i) \rho_I^{j\ell} = \mathcal{R}^{j\ell} [\nabla_a v^i \nabla_i (\rho_I^{ab} + z_I^{ab}) - y_I^i \nabla_i v^b]$$

where $\mathcal{R}^{j\ell}=\operatorname{div}^{-1}$ is an order -1 operator that inverts divergence. This type of equation can be solved as in (I. '12) as long as y_I and z_I are smooth.

Question: Are the estimates good enough? (e.g. Do we have $\|\widetilde{R}\|_{C^0} \lesssim e_R$?)

We let $ho_I^{j\ell}$ solve a "transport-elliptic" equation:

$$(\partial_t + v^i \nabla_i) \rho_I^{j\ell} = \mathcal{R}^{j\ell} [\nabla_a v^i \nabla_i (\rho_I^{ab} + z_I^{ab}) - \textbf{\textit{y}}_I^{\pmb{i}} \nabla_{\pmb{i}} \textbf{\textit{v}}^{\pmb{b}}]$$

The corresponding estimate for $\widetilde{R}^{j\ell}=\eta_I'(t)r_I+\ldots$ is:

$$\begin{split} \|\widetilde{R}\|_{C^0} &\lesssim \theta^{-1} \|\rho_I\|_{C^0} + \ldots \lesssim \|(\partial_t + v \cdot \nabla)\rho_I\|_{C^0} + \ldots \\ &\lesssim \|\mathcal{R}^{j\ell} [y_I^i \nabla_i v^b]\|_{C^0} + \text{other terms} \\ &\lesssim e_R^{1/2} \cdot \theta^{-1} + \ldots \end{split}$$

We let $ho_I^{j\ell}$ solve a "transport-elliptic" equation:

$$(\partial_t + v^i \nabla_i) \rho_I^{j\ell} = \mathcal{R}^{j\ell} [\nabla_a v^i \nabla_i (\rho_I^{ab} + z_I^{ab}) - y_I^i \nabla_i v^b]$$

The corresponding estimate for $\widetilde{R}^{j\ell}=\eta_I'(t)r_I+\ldots$ is:

$$\begin{split} \|\widetilde{R}\|_{C^0} &\lesssim \theta^{-1} \|\rho_I\|_{C^0} + \ldots \lesssim \|(\partial_t + v \cdot \nabla)\rho_I\|_{C^0} + \ldots \\ &\lesssim \|\mathcal{R}^{j\ell} [\mathbf{y}_I^i \nabla_i v^b]\|_{C^0} + \text{other terms} \\ &\lesssim e_R^{1/2} \cdot \theta^{-1} + \ldots \end{split}$$

We let $ho_I^{j\ell}$ solve a "transport-elliptic" equation:

$$(\partial_t + v^i \nabla_i) \rho_I^{j\ell} = \mathcal{R}^{j\ell} [\nabla_a v^i \nabla_i (\rho_I^{ab} + z_I^{ab}) - y_I^i \nabla_i v^b]$$

The corresponding estimate for $\widetilde{R}^{j\ell}=\eta_I'(t)r_I+\ldots$ is:

$$\begin{split} \|\widetilde{R}\|_{C^0} &\lesssim \theta^{-1} \|\rho_I\|_{C^0} + \ldots \lesssim \|(\partial_t + v \cdot \nabla)\rho_I\|_{C^0} + \ldots \\ &\lesssim \|\mathcal{R}^{j\ell} \nabla_i [y_I^i v^b]\|_{C^0} + \text{other terms} \\ &\lesssim e_R^{1/2} \cdot 1 + \ldots \\ &\text{ (if we pretend } \mathcal{R} \nabla = \operatorname{div}^{-1} \nabla \text{ is bounded on } C^0 \text{)} \end{split}$$

But that is still not good enough for $\|\widetilde{R}\|_{C^0} \lesssim e_R...$

We let $ho_I^{j\ell}$ solve a "transport-elliptic" equation:

$$(\partial_t + v^i \nabla_i) \rho_I^{j\ell} = \mathcal{R}^{j\ell} [\nabla_a v^i \nabla_i (\rho_I^{ab} + z_I^{ab}) - y_I^i \nabla_i v^b]$$

The corresponding estimate for $\widetilde{R}^{j\ell}=\eta_I'(t)r_I+\ldots$ is:

$$\begin{split} \|\widetilde{R}\|_{C^0} &\lesssim \theta^{-1} \|\rho_I\|_{C^0} + \ldots \lesssim \|(\partial_t + v \cdot \nabla)\rho_I\|_{C^0} + \ldots \\ &\lesssim \|\mathcal{R}^{j\ell} \nabla_i [y_I^i v^b]\|_{C^0} + \text{other terms} \\ &\lesssim e_R^{1/2} \cdot 1 + \ldots \\ &\text{ (if we pretend } \mathcal{R} \nabla = \operatorname{div}^{-1} \nabla \text{ is bounded on } C^0 \text{)} \end{split}$$

But that is still not good enough for $\|\widetilde{R}\|_{C^0}\lesssim e_R...$ Key point: We can actually prove $\|\mathcal{R}^{j\ell}[y_I^j\nabla_iv^b]\|_{C^0}\lesssim e_R!$ (almost)

We let $ho_I^{j\ell}$ solve a "transport-elliptic" equation:

$$(\partial_t + v^i \nabla_i) \rho_I^{j\ell} = \mathcal{R}^{j\ell} [\nabla_a v^i \nabla_i (\rho_I^{ab} + z_I^{ab}) - y_I^i \nabla_i v^b]$$

The corresponding estimate for $\widetilde{R}^{j\ell}=\eta_I'(t)r_I+\ldots$ is:

$$\begin{split} \|\widetilde{R}\|_{C^0} &\lesssim \theta^{-1} \|\rho_I\|_{C^0} + \ldots \lesssim \|(\partial_t + v \cdot \nabla)\rho_I\|_{C^0} + \ldots \\ &\lesssim \|\mathcal{R}^{j\ell} \nabla_i [y_I^i v^b]\|_{C^0} + \text{other terms} \\ &\lesssim e_R^{1/2} \cdot 1 + \ldots \\ &\text{ (if we pretend } \mathcal{R} \nabla = \operatorname{div}^{-1} \nabla \text{ is bounded on } C^0 \text{)} \end{split}$$

But that is still not good enough for $\|\widetilde{R}\|_{C^0} \lesssim e_R...$ Key point: We can actually prove $\|\mathcal{R}^{j\ell}[y_I^j\nabla_i v^b]\|_{C^0} \lesssim e_R!$ (almost)

The pressure increment has a similar bad term

$$\bar{p}_I = -2 \underline{\Delta}^{-1} \underline{\nabla}_{\ell} [y_I^j \underline{\nabla}_j v^{\ell}] - \underline{\Delta}^{-1} \underline{\nabla}_{\ell} \underline{\nabla}_j [y_I^j y_I^{\ell} + R^{j\ell}]$$

Note that the highlighted operator is of order -1, similar to $\mathcal{R}^{j\ell}$. Let us show how to (almost) estimate this term by

$$\|\Delta^{-1}\nabla_{\ell}[y_I^j\nabla_jv^\ell]\|_{C^0}\lesssim e_R$$

Notation: We define the Littlewood-Paley projections

$$\begin{split} P_q u^\ell(x) &= \int_{\mathbb{R}^3} u^\ell(x-h) \eta_q(h) dh \\ \text{supp } \hat{\eta}_q(\xi) &\subseteq \{2^{q-2} \leq |\xi| \leq 2^{q+2}\} \\ \eta_q(h) &= 2^{3q} \eta_0(2^q h) \\ u^\ell(x) &= \Pi_0 u^\ell + \sum_{q=0}^\infty P_q u^\ell(x), \qquad x \in \mathbb{T}^2 \end{split}$$

Choose $\widehat{\Xi}$ such that $\theta^{-1} \sim \|\nabla v\|_{C^0} \lesssim \widehat{\Xi} e_R^{1/2}$ and choose $\widehat{q} \in \mathbb{Z}$ such that $2^{\widehat{q}-1} \leq \widehat{\Xi} < 2^{\widehat{q}}$. Then

$$\begin{split} \Delta^{-1} \nabla_{\ell} [y_I^j \nabla_j v^{\ell}] &= \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j v^{\ell}] + \sum_{q > \hat{q}} \Delta^{-1} \nabla_{\ell} P_q [y_I^j \nabla_j v^{\ell}] \\ &= \bar{p}_{I,L} + \bar{p}_{I,H} \end{split}$$

Choose $\widehat{\Xi}$ such that $\theta^{-1} \sim \|\nabla v\|_{C^0} \lesssim \widehat{\Xi} e_R^{1/2}$ and choose $\widehat{q} \in \mathbb{Z}$ such that $2^{\widehat{q}-1} \leq \widehat{\Xi} < 2^{\widehat{q}}$. Then

$$\begin{split} \Delta^{-1} \nabla_{\ell} [y_I^j \nabla_j v^\ell] &= \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j v^\ell] + \sum_{q > \hat{q}} \Delta^{-1} \nabla_{\ell} P_q [y_I^j \nabla_j v^\ell] \\ &= \bar{p}_{I,L} + \bar{p}_{I,H} \end{split}$$

The high frequency term is bounded by

$$\begin{split} \|\bar{p}_{I,H}\|_{C^0} &\leq \sum_{q>\hat{q}} \|\Delta^{-1}\nabla_{\ell}P_q[y_I^j\nabla_jv^\ell]\|_{C^0} \\ &\leq \sum_{q>\hat{q}} \underbrace{\|\Delta^{-1}\nabla_{\ell}P_q\|}_{(C^0\mapsto C^0)\operatorname{norm}} \|y_I^j\nabla_jv^\ell\|_{C^0} \end{split}$$

(Note the operator convolves with an L^1 Schwartz kernel.)

Choose $\widehat{\Xi}$ such that $\theta^{-1} \sim \|\nabla v\|_{C^0} \lesssim \widehat{\Xi} e_R^{1/2}$ and choose $\widehat{q} \in \mathbb{Z}$ such that $2^{\widehat{q}-1} \leq \widehat{\Xi} < 2^{\widehat{q}}$. Then

$$\begin{split} \Delta^{-1} \nabla_{\ell} [y_I^j \nabla_j v^{\ell}] &= \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j v^{\ell}] + \sum_{q > \hat{q}} \Delta^{-1} \nabla_{\ell} P_q [y_I^j \nabla_j v^{\ell}] \\ &= \bar{p}_{I,L} + \bar{p}_{I,H} \end{split}$$

The high frequency term is bounded by

$$\begin{split} \|\bar{p}_{I,H}\|_{C^{0}} &\leq \sum_{q > \hat{q}} \|\Delta^{-1} \nabla_{\ell} P_{q}\| \ \|y_{I}^{j} \nabla_{j} v^{\ell}\|_{C^{0}} \\ &\lesssim \sum_{q > \hat{q}} \mathbf{2}^{-q} \|y_{I}^{j} \nabla_{j} v^{\ell}\|_{C^{0}} \\ &\lesssim \widehat{\Xi}^{-1} e_{R}^{1/2} (\theta^{-1}) = e_{R} \end{split}$$

It now remains to bound the low frequency term.

The Low Frequency Term

The low frequency term has the form

$$\bar{p}_{I,L} = \underline{\Delta}^{-1} \nabla_{\ell} P_{\leq \hat{q}}[y_I^j \nabla_j v^{\ell}] = \sum_{q=0}^{\hat{q}} \Delta^{-1} \nabla_{\ell} P_q[y_I^j \nabla_j v^{\ell}]$$

In this case, we do not gain smallness from bounding

$$\|\Delta^{-1}\nabla_{\ell}P_q\| \lesssim 2^{-q} \lesssim 1$$

The Low Frequency Term

Step 2: Decompose v into high and low frequencies

$$\begin{split} &\bar{p}_{I,L} = \bar{p}_{I,LL} + \bar{p}_{I,LH} \\ &\bar{p}_{I,LL} = \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j P_{\leq \hat{q}} v^{\ell}] \\ &\bar{p}_{I,LH} = \sum_{q > \hat{q}} \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j P_q v^{\ell}] \end{split}$$

The Low Frequency Term

Step 2: Decompose v into high and low frequencies

$$\begin{split} \bar{p}_{I,L} &= \bar{p}_{I,LL} + \bar{p}_{I,LH} \\ \bar{p}_{I,LL} &= \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j P_{\leq \hat{q}} v^{\ell}] \\ \bar{p}_{I,LH} &= \sum_{q > \hat{q}} \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j P_q v^{\ell}] \end{split}$$

And bound the LH term using $\nabla_j y_I^j = 0$:

$$\begin{split} \|\bar{p}_{I,H}\|_{C^{0}} &\leq \sum_{q > \hat{q}} \|\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq \hat{q}} \|\|y_{I}\|_{C^{0}} \|P_{q} v\|_{C^{0}} \\ &\lesssim \sum_{q > \hat{q}} \log \widehat{\Xi} \qquad e_{R}^{1/2} (2^{-q} \|\nabla v\|_{C^{0}}) \\ &\lesssim \log \widehat{\Xi} \, e_{R}^{1/2} \widehat{\Xi}^{-1} (\widehat{\Xi} e_{R}^{1/2}) \lesssim \log \widehat{\Xi} \, e_{R} \end{split}$$

Remaining Problematic Term

The remaining problematic term is

$$\bar{p}_{I,LL} = \Delta^{-1} \nabla_\ell P_{\leq \hat{q}} [y_I^j \nabla_j P_{\leq \hat{q}} v^\ell]$$
 or

$$\bar{p}_{I,LL} = \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [P_{\leq \hat{q}+3} y_I^j \nabla_j P_{\leq \hat{q}} v^{\ell}]$$

using that high frequencies of y_I do not contribute.

Remaining Problematic Term

The remaining problematic term is

$$\bar{p}_{I,LL} = \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}} [y_I^j \nabla_j P_{\leq \hat{q}} v^{\ell}]$$

We treat this term by decomposing into frequency increments

$$ar{p}_{I,LL} = \sum_{q=-1}^{\hat{q}} \delta_q ar{p}_{I,LL}$$
 $\delta_q P_{A = A} [aj^j \nabla_A P_{A = A} aj^\ell] = \Delta^{-1} \nabla_A P_{A} [aj^j \nabla_A P_{A}]$

$$\delta_{\mathbf{q}}\bar{p}_{I,LL} = \Delta^{-1}\nabla_{\ell}P_{\leq \mathbf{q}+1}[y_I^j\nabla_jP_{\leq \mathbf{q}+1}v^{\ell}] - \Delta^{-1}\nabla_{\ell}P_{\leq \mathbf{q}}[y_I^j\nabla_jP_{\leq \mathbf{q}}v^{\ell}]$$

Note: Starting now, 2^q is in the low to medium range of frequencies.

The frequency increment can either fall on the operator or on v:

$$\delta_q \bar{p}_{I,LL} = \Delta^{-1} \nabla_\ell P_{\mathbf{q+1}}[y_I^j \nabla_j P_{\leq \mathbf{q+1}} v^\ell] + \Delta^{-1} \nabla_\ell P_{\leq \mathbf{q}}[y_I^j \nabla_j P_{\mathbf{q+1}} v^\ell]$$

The frequency increment can either fall on the operator or on v:

$$\delta_q \bar{p}_{I,LL} = \Delta^{-1} \nabla_\ell P_{q+1} [y_I^j \nabla_j P_{\leq q+1} v^\ell] + \Delta^{-1} \nabla_\ell P_{\leq q} [y_I^j \nabla_j P_{q+1} v^\ell]$$

Consider the second term. Using $\nabla_j y_I^j = 0$, we have

$$\begin{split} \Delta^{-1} \nabla_{\ell} P_{\leq q} [y_I^j \nabla_j P_{q+1} v^{\ell}] &= \Delta^{-1} \nabla_{\ell} \nabla_j P_{\leq q} [y_I^j P_{q+1} v^{\ell}] \\ &= \Delta^{-1} \nabla_{\ell} \nabla_j P_{\leq q} [P_{\leq q+6} y_I^j P_{q+1} v^{\ell}] \end{split}$$

The frequency increment can either fall on the operator or on v:

$$\delta_q \bar{p}_{I,LL} = \Delta^{-1} \nabla_\ell P_{q+1} [y_I^j \nabla_j P_{\leq q+1} v^\ell] + \Delta^{-1} \nabla_\ell P_{\leq q} [y_I^j \nabla_j P_{q+1} v^\ell]$$

Consider the second term. Using $\nabla_j y_I^j = 0$, we have

$$\Delta^{-1} \nabla_{\ell} P_{\leq q} [y_I^j \nabla_j P_{q+1} v^{\ell}] = \Delta^{-1} \nabla_{\ell} \nabla_j P_{\leq q} [y_I^j P_{q+1} v^{\ell}]$$
$$= \Delta^{-1} \nabla_{\ell} \nabla_j P_{\leq q} [P_{\leq q+6} y_I^j P_{q+1} v^{\ell}]$$

In the last line, we observe that frequencies of y_I^ℓ above 2^{q+4} do not contribute to the product by the frequency localization.

Now use that we can solve $y_I^j = \nabla_i r_I^{ij}$ to write

$$\begin{split} \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} [& \underbrace{P_{\leq q+6} y_{I}^{j}}_{I} P_{q+1} v^{\ell}] \\ &= \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} [& \underbrace{P_{\leq q+6} \nabla_{i} r_{I}^{ij}}_{I} P_{q+1} v^{\ell}] \\ \| \cdot \|_{C^{0}} &\lesssim \| \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} \| \| & \underbrace{P_{\leq q+6} \nabla_{i}}_{I} \| \| r_{I} \|_{C^{0}} [2^{-q} \| \nabla v \|_{C^{0}}] \\ &\lesssim (2+q) 2^{q} \| r_{I} \|_{C^{0}} 2^{-q} \widehat{\Xi} e_{R}^{1/2} \end{split}$$

Note how the 2^q and 2^{-q} cancel out.

Now use that we can solve $y_I^j = \nabla_i r_I^{ij}$ to write

$$\begin{split} \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} [P_{\leq q+6} y_{I}^{j} P_{q+1} v^{\ell}] \\ &= \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} [P_{\leq q+6} \nabla_{i} r_{I}^{ij} P_{q+1} v^{\ell}] \\ \| \cdot \|_{C^{0}} \lesssim \| \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} \| \| P_{\leq q+6} \nabla_{i} \| \| r_{I} \|_{C^{0}} [2^{-q} \| \nabla v \|_{C^{0}}] \\ \lesssim (2+q) \| r_{I} \|_{C^{0}} (\widehat{\Xi} e_{R}^{1/2}) \end{split}$$

Almost closes if there exists r_I such that $\|r_I\|_{C^0}\widehat{\Xi}\lesssim e_R^{1/2}$

Now use that we can solve $y_I^j = \nabla_i r_I^{ij}$ to write

$$\begin{split} \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} [P_{\leq q+6} y_{I}^{j} P_{q+1} v^{\ell}] \\ &= \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} [P_{\leq q+6} \nabla_{i} r_{I}^{ij} P_{q+1} v^{\ell}] \\ \| \cdot \|_{C^{0}} \lesssim \| \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q} \| \| P_{\leq q+6} \nabla_{i} \| \| r_{I} \|_{C^{0}} [2^{-q} \| \nabla v \|_{C^{0}}] \\ &\lesssim (2+q) \| r_{I} \|_{C^{0}} (\widehat{\Xi} e_{R}^{1/2}) \end{split}$$

Idea: impose a bootstrap assumption on ho_I and z_I that implies

$$\widehat{\Xi} \|r_I\|_{C^0} \lesssim e_R^{1/2}$$

Then summing over $q \leq \hat{q} \sim \log \widehat{\Xi}$ leads to $\|\widetilde{R}_I\|_{C^0} \lesssim (\log \widehat{\Xi})^2 e_R$, which is the correct estimate (except for the $(\log \widehat{\Xi})^2$)!

Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale θ by a logarithmic factor) it is possible to close the argument implying the above estimates by using certain weighted $C^{3,\alpha}$ norms.

But there is a catch...

Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale θ by a logarithmic factor) it is possible to close the argument implying the above estimates by using certain weighted $C^{3,\alpha}$ norms.

But there is a catch, namely this gluing construction loses derivatives. E.g., ∇v and ∇R both enter in the equation for y_I

$$\partial_t y_I^\ell + v^j \nabla_j y_I^\ell + y_I^j \nabla_j v^\ell + \nabla_j (y_I^j y_I^\ell) + \nabla^\ell \bar{p}_I = -\nabla_j R^{j\ell}$$

Similarly, bounds on $\nabla^2 v$ and $\nabla^2 R$ are required to estimate ∇y_I and so on...

Loss of Derivatives

To fully close the argument, we first regularize the Euler-Reynolds flow $(v,p,R)\mapsto (v_\epsilon,p_\epsilon,R_\epsilon)$ using a mollifier $\eta_\epsilon*$

$$\begin{split} &\partial_t v^\ell + \nabla_j (v^j v^\ell) + \nabla^\ell p = \nabla_j R^{j\ell} \\ &\Rightarrow \partial_t v^\ell_\epsilon + \nabla_j (v^j_\epsilon v^\ell_\epsilon) + \nabla^\ell p_\epsilon = \nabla_j [v^j_\epsilon v^\ell_\epsilon - (v^j v^\ell)_\epsilon + \eta_\epsilon * R^{j\ell}] \end{split}$$

We apply the Constantin-E-Titi commutator estimate to bound the resulting Stress for $\epsilon\sim\widehat{\Xi}^{-1}$ not too small.

This regularization gains derivatives (with acceptable bounds on higher, "borrowed" derivatives), and allows the whole scheme (i.e. Regularize \mapsto Gluing \mapsto Convex integration with Mikado flows \mapsto repeat) to close.

Thank you!