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e Question: What happens at low Atwood number?

where A = is the Atwood number and a4 > 0 a
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e particular experiment by Ramaprabhu, Andrews (2003):
cold and hot water with 4 ~7.5-107% = a. ~ 0.07
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e on Q2 x [0, T), Q CR"” bounded domain, T > 0 consider the
inhomogenous incompressible Euler equations

Ot(pv) + div(pv @ v) + Vp = —pge,
Op + div(pv) =0
divv =0

e p:Qx[0,T)— [0,00) density, v: Q x [0, T) — R” velocity
and p: Q x [0, T) — R pressure, g > 0 gravity constant,
en=(0,...,0,1) €R"

e no-penetration boundary condition: v -7 =0 on 9 x [0, T)

e initial data: p(x,0) = po(x) and v(x,0) = vp(x) with
divig =0, vp-1=0
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The mathematical model

P==

small:
P++p—

e Boussinesq approximation for A =

Orv +div(v @ v) + Vp = —pg Ae,
Orp +div(pv) =0
divv =0

e density fluctuations are neglected in the acceleration term
e allows to normalize p_ — —1 and py — +1

e can be seen as a system in-between inhomogeneous Euler and
incompressible porous media equation (IPM) (replace
acceleration 0;v + divv ® v by velocity v)
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Convex integration for IPM:

e Cdérdoba, Faraco, Gancedo 2011; Székelyhidi 2012; Forster,
Székelyhidi 2018; Castro, Faraco, Mengual 2019 & 2021;
Noisette, Székelyhidi 2020; Mengual 2020; Hitruhin, Lindberg
2021; Castro, Cérdoba, Faraco 2021

Convex integration for non-two-phase (pg € C? N L>) Boussinesq
(with Coriolis force and dissipation for p):

e Chiodaroli-Michdlek 2017
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The mathematical model

e consider Boussinesq system on Q = (0,1)"1 x (—1,1) with
initial data
+1, x, >0,
po(x) = T w)=0
-1, x, <0
e notion of solution: (p,v) € L*, in addition |[p| =1 a.e.
e weak admissibility: E(t) < Eg for a.e. t € (0, T), where
1
E6) = [ 5 V06 O + plx, tlgden b,
Q

Eo:/on(X)g.AXn dx

e Example: (po,0) is a weak stationary solution
e Rayleigh (1883) and Taylor (1950) showed that it is linearly
unstable
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Mixing solutions

Theorem (G., Kolumban 2020)

The Boussinesq system on Q = (0,1)"~! x (—1,1) with the
interface initial data (po,0) has infinitely many weak solutions
(p, v) with the following properties:

e p(x,t) =1, v(x,t) =0 for x, > 3gAt?> =: a(t)

e p(x,t) =—1, v(x,t) =0 for x, < —%g.At2 = —a(t)

e for any t € (0, T) and any open ball
BC{xeQ:x,e (—a(t),a(t))} there holds

/Bl—p(x,t)dx-/Bp(x,t)—(—1)dx>O.

“turbulent mixing at every time slice”
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Mixing solutions

e the infinitely many solutions are induced by a common
underlying subsolution
e i.e. there ex. sequence of solutions (pk, vk) s.t. px — P,
vk — v in L2(Q x (0, T)), where
1, xp > a(t),
plx,t) =4 Ja, xp € (—a(t),a(r)), ¥(x,t)=0
-1, xp < —a(t)

e the solutions are weakly admissible with

81
e after a few ansatzes the profile p is selected by means of

E(t) — E(0) = — + error(t)

energy dissipation
e no condition on A (but Boussinesq approximation only
reasonable for small A)
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Boussinesq system as differential inclusion

e Recall
O¢v + div(v ® v)+V <p +2 \v[2> = —pgAe,
O¢p + div(pv) =0
divv =0, pe{-1,1} ae.
e equivalent to
Orv +div(o) + Vg = —pgAe,
(%) O¢p + div(m) =0
divv =0,
and pointwise a.e. 0 = v v, m= pv,pe{-1,1}

e in contrast to inhomogeneous Euler: transformation to
accelerated domain not possible, and not needed
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pointwise constraints:
(o]
c=v®v, m=pv, |p=1

we also add the pointwise constraint:

% v(x, )] = g(eo(xa t) + p(x, thei(x; t))

for given continuous functions ey, e; : 2 x (0, T) = R
comparison: in inhomogeneous Euler we prescribed the kinetic
energy in transformed coordinates, i.e.

1
S lv+gtedl” = ge(x, t), eecC%Qx(0,T))

motivated by homogeneous Euler case
the pointwise constraints form a family of sets K,
Differential inclusion:

z = (p,v, m,0) solves (*) & takes pointwise a.e. valuesin K
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Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of K(‘;‘it) = K(/>\<,t) iff
e pe(—1,1)
2 o2
° ,L'(T;i‘i‘y < ep(x,t) + e1(x, t), % < ep(x,t) — e1(x, t)

® Amax (V®V_p(m®1vjpvz®m)+m®m - 0) < eg(x, t) + pei(x, t)

These inequalities together with the linear system (x) form the
subsolution system.

Convex integration Thm.: 3 subsolution = 3 co-many solutions
which are close in weak L2-topology.

Note that there is freedom in the choice of ey, e; (affecting the
kinetic energy of the induced solutions).
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m(x, t) = mp(xn, t)en

1, xp > a(t),
e self-similar: pf ,(x,t) = ¢ f (a’((’;)> , xn € (—a(t),a(t))
-1, xp < —a(t)

with f: [-1,1] — [-1,1], f(£1) = £1,
a:[0,T)—[0,00), a(0) =0, a(t) >0,t>0
e induces subsolution Z¢ , ¢ ¢, With initial data pg

e here ¢y, e; viewed as parameters, have to satisfy hull
inequalities
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Q

e = a(t) =o(t) as t = 0 and AEf e ¢ (t) = o(t3) as t — 0
e the variational problem
AE t
minimize lim Abraea(t)
t—0 i
w.r.t. f,a, ey, e; satisfying the hull inequalities, has a unique

)

solution
e profile: f =id, speed: a(t) = 3gAt? + o(t?)

e cf. low Atwood number experiment: a(t) = 0.07g.At>
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