The Rayleigh-Taylor instability in the Boussinesq approximation

Björn Gebhard

joint work with József Kolumbán
Universität Leipzig
time $t=0$:

$\rho_{+}>\rho_{-}$, both fluids at rest

Introduction
time $t>0$:

(not necessarily $a_{t}(t)=a_{-}(t)$)

Introduction

- experiments and numerical simulations:

$$
a_{ \pm}(t)=\alpha_{ \pm} \mathcal{A g} t^{2}
$$

where $\mathcal{A}=\frac{\rho_{+}-\rho_{-}}{\rho_{+}+\rho_{-}}$is the Atwood number and $\alpha_{ \pm}>0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

Introduction

- experiments and numerical simulations:

$$
a_{ \pm}(t)=\alpha_{ \pm} \mathcal{A g} t^{2}
$$

where $\mathcal{A}=\frac{\rho_{+}-\rho_{-}}{\rho_{+}+\rho_{-}}$is the Atwood number and $\alpha_{ \pm}>0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

- (G., Kolumbán, Székelyhidi 2021): Construction of admissible mixing solutions for Euler equations with

$$
\alpha_{+}=\frac{\rho_{+}+\rho_{-}}{2 \sqrt{\rho_{-}}\left(\sqrt{\rho_{+}}+\sqrt{\rho_{-}}\right)}, \quad \alpha_{-}=\frac{\rho_{+}+\rho_{-}}{2 \sqrt{\rho_{+}}\left(\sqrt{\rho_{+}}+\sqrt{\rho_{-}}\right)}
$$

under high Atwood number condition $\mathcal{A} \in(0.845,1)$

Introduction

- experiments and numerical simulations:

$$
a_{ \pm}(t)=\alpha_{ \pm} \mathcal{A} g t^{2}
$$

where $\mathcal{A}=\frac{\rho_{+}-\rho_{-}}{\rho_{+}+\rho_{-}}$is the Atwood number and $\alpha_{ \pm}>0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

- (G., Kolumbán, Székelyhidi 2021): Construction of admissible mixing solutions for Euler equations with

$$
\alpha_{+}=\frac{\rho_{+}+\rho_{-}}{2 \sqrt{\rho_{-}}\left(\sqrt{\rho_{+}}+\sqrt{\rho_{-}}\right)}, \quad \alpha_{-}=\frac{\rho_{+}+\rho_{-}}{2 \sqrt{\rho_{+}}\left(\sqrt{\rho_{+}}+\sqrt{\rho_{-}}\right)}
$$

under high Atwood number condition $\mathcal{A} \in(0.845,1)$

- Question: What happens at low Atwood number?

Introduction

- experiments and numerical simulations:

$$
a_{ \pm}(t)=\alpha_{ \pm} \mathcal{A g} t^{2}
$$

where $\mathcal{A}=\frac{\rho_{+}-\rho_{-}}{\rho_{+}+\rho_{-}}$is the Atwood number and $\alpha_{ \pm}>0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

- (G., Kolumbán, Székelyhidi 2021): Construction of admissible mixing solutions for Euler equations with

$$
\alpha_{+}=\frac{\rho_{+}+\rho_{-}}{2 \sqrt{\rho_{-}}\left(\sqrt{\rho_{+}}+\sqrt{\rho_{-}}\right)}, \quad \alpha_{-}=\frac{\rho_{+}+\rho_{-}}{2 \sqrt{\rho_{+}}\left(\sqrt{\rho_{+}}+\sqrt{\rho_{-}}\right)}
$$

under high Atwood number condition $\mathcal{A} \in(0.845,1)$

- Question: What happens at low Atwood number?
- particular experiment by Ramaprabhu, Andrews (2003): cold and hot water with $\mathcal{A} \approx 7.5 \cdot 10^{-4} \Rightarrow \alpha_{ \pm} \approx 0.07$

The mathematical model

- on $\Omega \times[0, T), \Omega \subset \mathbb{R}^{n}$ bounded domain, $T>0$ consider the inhomogenous incompressible Euler equations

$$
\left\{\begin{array}{l}
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=-\rho g e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

The mathematical model

- on $\Omega \times[0, T), \Omega \subset \mathbb{R}^{n}$ bounded domain, $T>0$ consider the inhomogenous incompressible Euler equations

$$
\left\{\begin{array}{l}
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=-\rho g e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

- $\rho: \bar{\Omega} \times[0, T) \rightarrow[0, \infty)$ density, $v: \bar{\Omega} \times[0, T) \rightarrow \mathbb{R}^{n}$ velocity and $p: \bar{\Omega} \times[0, T) \rightarrow \mathbb{R}$ pressure, $g>0$ gravity constant, $e_{n}=(0, \ldots, 0,1) \in \mathbb{R}^{n}$

The mathematical model

- on $\Omega \times[0, T), \Omega \subset \mathbb{R}^{n}$ bounded domain, $T>0$ consider the inhomogenous incompressible Euler equations

$$
\left\{\begin{array}{l}
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=-\rho g e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

- $\rho: \bar{\Omega} \times[0, T) \rightarrow[0, \infty)$ density, $v: \bar{\Omega} \times[0, T) \rightarrow \mathbb{R}^{n}$ velocity and $p: \bar{\Omega} \times[0, T) \rightarrow \mathbb{R}$ pressure, $g>0$ gravity constant, $e_{n}=(0, \ldots, 0,1) \in \mathbb{R}^{n}$
- no-penetration boundary condition: $v \cdot \vec{n}=0$ on $\partial \Omega \times[0, T)$

The mathematical model

- on $\Omega \times[0, T), \Omega \subset \mathbb{R}^{n}$ bounded domain, $T>0$ consider the inhomogenous incompressible Euler equations

$$
\left\{\begin{array}{l}
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=-\rho g e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

- $\rho: \bar{\Omega} \times[0, T) \rightarrow[0, \infty)$ density, $v: \bar{\Omega} \times[0, T) \rightarrow \mathbb{R}^{n}$ velocity and $p: \bar{\Omega} \times[0, T) \rightarrow \mathbb{R}$ pressure, $g>0$ gravity constant, $e_{n}=(0, \ldots, 0,1) \in \mathbb{R}^{n}$
- no-penetration boundary condition: $v \cdot \vec{n}=0$ on $\partial \Omega \times[0, T)$
- initial data: $\rho(x, 0)=\rho_{0}(x)$ and $v(x, 0)=v_{0}(x)$ with $\operatorname{div} v_{0}=0, v_{0} \cdot \vec{n}=0$

The mathematical model

- Boussinesq approximation for $\mathcal{A}=\frac{\rho_{+-} \rho_{-}}{\rho_{+}+\rho_{-}}$small:

$$
\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(v \otimes v)+\nabla p=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

The mathematical model

- Boussinesq approximation for $\mathcal{A}=\frac{\rho_{+}-\rho_{-}}{\rho_{+}+\rho_{-}}$small:

$$
\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(v \otimes v)+\nabla p=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

- density fluctuations are neglected in the acceleration term

The mathematical model

- Boussinesq approximation for $\mathcal{A}=\frac{\rho_{+}-\rho_{-}}{\rho_{+}+\rho_{-}}$small:

$$
\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(v \otimes v)+\nabla p=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

- density fluctuations are neglected in the acceleration term
- allows to normalize $\rho_{-} \rightarrow-1$ and $\rho_{+} \rightarrow+1$

The mathematical model

- Boussinesq approximation for $\mathcal{A}=\frac{\rho_{+}-\rho_{-}}{\rho_{+}+\rho_{-}}$small:

$$
\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(v \otimes v)+\nabla p=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

- density fluctuations are neglected in the acceleration term
- allows to normalize $\rho_{-} \rightarrow-1$ and $\rho_{+} \rightarrow+1$
- can be seen as a system in-between inhomogeneous Euler and incompressible porous media equation (IPM) (replace acceleration $\partial_{t} v+\operatorname{div} v \otimes v$ by velocity v)

The mathematical model

Convex integration for IPM:

- Córdoba, Faraco, Gancedo 2011; Székelyhidi 2012; Förster, Székelyhidi 2018; Castro, Faraco, Mengual 2019 \& 2021; Noisette, Székelyhidi 2020; Mengual 2020; Hitruhin, Lindberg 2021; Castro, Córdoba, Faraco 2021

The mathematical model

Convex integration for IPM:

- Córdoba, Faraco, Gancedo 2011; Székelyhidi 2012; Förster, Székelyhidi 2018; Castro, Faraco, Mengual 2019 \& 2021; Noisette, Székelyhidi 2020; Mengual 2020; Hitruhin, Lindberg 2021; Castro, Córdoba, Faraco 2021

The mathematical model

Convex integration for IPM:

- Córdoba, Faraco, Gancedo 2011; Székelyhidi 2012; Förster, Székelyhidi 2018; Castro, Faraco, Mengual 2019 \& 2021; Noisette, Székelyhidi 2020; Mengual 2020; Hitruhin, Lindberg 2021; Castro, Córdoba, Faraco 2021

Convex integration for non-two-phase ($\rho_{0} \in \mathcal{C}^{2} \cap L^{\infty}$) Boussinesq (with Coriolis force and dissipation for ρ):

- Chiodaroli-Michálek 2017

The mathematical model

- consider Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with initial data

$$
\rho_{0}(x)=\left\{\begin{array}{ll}
+1, & x_{n}>0, \\
-1, & x_{n} \leq 0
\end{array}, \quad v_{0}(x)=0\right.
$$

The mathematical model

- consider Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with initial data

$$
\rho_{0}(x)=\left\{\begin{array}{ll}
+1, & x_{n}>0, \\
-1, & x_{n} \leq 0
\end{array}, \quad v_{0}(x)=0\right.
$$

- notion of solution: $(\rho, v) \in L^{\infty}$, in addition $|\rho|=1$ a.e.

The mathematical model

- consider Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with initial data

$$
\rho_{0}(x)=\left\{\begin{array}{ll}
+1, & x_{n}>0, \\
-1, & x_{n} \leq 0
\end{array}, \quad v_{0}(x)=0\right.
$$

- notion of solution: $(\rho, v) \in L^{\infty}$, in addition $|\rho|=1$ a.e.
- weak admissibility: $E(t) \leq E_{0}$ for a.e. $t \in(0, T)$, where

$$
\begin{gathered}
E(t)=\int_{\Omega} \frac{1}{2}|v(x, t)|^{2}+\rho(x, t) g \mathcal{A} x_{n} d x, \\
E_{0}=\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x
\end{gathered}
$$

The mathematical model

- consider Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with initial data

$$
\rho_{0}(x)=\left\{\begin{array}{ll}
+1, & x_{n}>0, \\
-1, & x_{n} \leq 0
\end{array}, \quad v_{0}(x)=0\right.
$$

- notion of solution: $(\rho, v) \in L^{\infty}$, in addition $|\rho|=1$ a.e.
- weak admissibility: $E(t) \leq E_{0}$ for a.e. $t \in(0, T)$, where

$$
\begin{gathered}
E(t)=\int_{\Omega} \frac{1}{2}|v(x, t)|^{2}+\rho(x, t) g \mathcal{A} x_{n} d x, \\
E_{0}=\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x
\end{gathered}
$$

- Example: $\left(\rho_{0}, 0\right)$ is a weak stationary solution

The mathematical model

- consider Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with initial data

$$
\rho_{0}(x)=\left\{\begin{array}{ll}
+1, & x_{n}>0, \\
-1, & x_{n} \leq 0
\end{array}, \quad v_{0}(x)=0\right.
$$

- notion of solution: $(\rho, v) \in L^{\infty}$, in addition $|\rho|=1$ a.e.
- weak admissibility: $E(t) \leq E_{0}$ for a.e. $t \in(0, T)$, where

$$
\begin{gathered}
E(t)=\int_{\Omega} \frac{1}{2}|v(x, t)|^{2}+\rho(x, t) g \mathcal{A} x_{n} d x, \\
E_{0}=\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x
\end{gathered}
$$

- Example: $\left(\rho_{0}, 0\right)$ is a weak stationary solution
- Rayleigh (1883) and Taylor (1950) showed that it is linearly unstable

Mixing solutions

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with the interface initial data $\left(\rho_{0}, 0\right)$ has infinitely many weak solutions (ρ, v) with the following properties:

Mixing solutions

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with the interface initial data $\left(\rho_{0}, 0\right)$ has infinitely many weak solutions (ρ, v) with the following properties:

- $\rho(x, t)=1, v(x, t)=0$ for $x_{n} \geq \frac{1}{3} g \mathcal{A} t^{2}=: a(t)$

Mixing solutions

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with the interface initial data $\left(\rho_{0}, 0\right)$ has infinitely many weak solutions (ρ, v) with the following properties:

- $\rho(x, t)=1, v(x, t)=0$ for $x_{n} \geq \frac{1}{3} g \mathcal{A} t^{2}=: a(t)$
- $\rho(x, t)=-1, v(x, t)=0$ for $x_{n} \leq-\frac{1}{3} g \mathcal{A} t^{2}=-a(t)$

Mixing solutions

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega=(0,1)^{n-1} \times(-1,1)$ with the interface initial data $\left(\rho_{0}, 0\right)$ has infinitely many weak solutions (ρ, v) with the following properties:

- $\rho(x, t)=1, v(x, t)=0$ for $x_{n} \geq \frac{1}{3} g \mathcal{A} t^{2}=: a(t)$
- $\rho(x, t)=-1, v(x, t)=0$ for $x_{n} \leq-\frac{1}{3} g \mathcal{A} t^{2}=-a(t)$
- for any $t \in(0, T)$ and any open ball
$B \subset\left\{x \in \Omega: x_{n} \in(-a(t), a(t))\right\}$ there holds

$$
\int_{B} 1-\rho(x, t) d x \cdot \int_{B} \rho(x, t)-(-1) d x>0
$$

"turbulent mixing at every time slice"

Mixing solutions

- the infinitely many solutions are induced by a common underlying subsolution

Mixing solutions

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions $\left(\rho_{k}, v_{k}\right)$ s.t. $\rho_{k} \rightharpoonup \bar{\rho}$, $v_{k} \rightharpoonup \bar{v}$ in $L^{2}(\Omega \times(0, T))$, where

$$
\bar{\rho}(x, t)= \begin{cases}1, & x_{n}>a(t), \\ \frac{x_{n}}{a(t)}, & x_{n} \in(-a(t), a(t)), \quad \bar{v}(x, t)=0 \\ -1, & x_{n}<-a(t)\end{cases}
$$

Mixing solutions

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions $\left(\rho_{k}, v_{k}\right)$ s.t. $\rho_{k} \rightharpoonup \bar{\rho}$, $v_{k} \rightharpoonup \bar{v}$ in $L^{2}(\Omega \times(0, T))$, where

$$
\bar{\rho}(x, t)= \begin{cases}1, & x_{n}>a(t) \\ \frac{x_{n}}{a(t)}, & x_{n} \in(-a(t), a(t)), \quad \bar{v}(x, t)=0 \\ -1, & x_{n}<-a(t)\end{cases}
$$

- the solutions are weakly admissible with

$$
E(t)-E(0)=-\frac{g^{3} \mathcal{A}^{3} t^{4}}{81}+\operatorname{error}(\mathrm{t})
$$

Mixing solutions

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions $\left(\rho_{k}, v_{k}\right)$ s.t. $\rho_{k} \rightharpoonup \bar{\rho}$, $v_{k} \rightharpoonup \bar{v}$ in $L^{2}(\Omega \times(0, T))$, where

$$
\bar{\rho}(x, t)= \begin{cases}1, & x_{n}>a(t) \\ \frac{x_{n}}{a(t)}, & x_{n} \in(-a(t), a(t)), \quad \bar{v}(x, t)=0 \\ -1, & x_{n}<-a(t)\end{cases}
$$

- the solutions are weakly admissible with

$$
E(t)-E(0)=-\frac{g^{3} \mathcal{A}^{3} t^{4}}{81}+\operatorname{error}(\mathrm{t})
$$

- after a few ansatzes the profile $\bar{\rho}$ is selected by means of energy dissipation

Mixing solutions

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions $\left(\rho_{k}, v_{k}\right)$ s.t. $\rho_{k} \rightharpoonup \bar{\rho}$, $v_{k} \rightharpoonup \bar{v}$ in $L^{2}(\Omega \times(0, T))$, where

$$
\bar{\rho}(x, t)= \begin{cases}1, & x_{n}>a(t), \\ \frac{x_{n}}{a(t)}, & x_{n} \in(-a(t), a(t)), \quad \bar{v}(x, t)=0 \\ -1, & x_{n}<-a(t)\end{cases}
$$

- the solutions are weakly admissible with

$$
E(t)-E(0)=-\frac{g^{3} \mathcal{A}^{3} t^{4}}{81}+\operatorname{error}(\mathrm{t})
$$

- after a few ansatzes the profile $\bar{\rho}$ is selected by means of energy dissipation
- no condition on \mathcal{A} (but Boussinesq approximation only reasonable for small \mathcal{A})

Boussinesq system as differential inclusion

- Recall

$$
\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(v \stackrel{\circ}{\otimes} v)+\nabla\left(p+\frac{2}{n}|v|^{2}\right)=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0, \quad \rho \in\{-1,1\} \text { a.e. }
\end{array}\right.
$$

Boussinesq system as differential inclusion

- Recall

$$
\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(v \stackrel{\circ}{\otimes} v)+\nabla\left(p+\frac{2}{n}|v|^{2}\right)=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0, \quad \rho \in\{-1,1\} \text { a.e. }
\end{array}\right.
$$

- equivalent to

$$
(*)\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(\sigma)+\nabla q=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(m)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

and pointwise a.e. $\sigma=v \stackrel{\circ}{\otimes} v, m=\rho v, \rho \in\{-1,1\}$

Boussinesq system as differential inclusion

- Recall

$$
\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(v \stackrel{\circ}{\otimes} v)+\nabla\left(p+\frac{2}{n}|v|^{2}\right)=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\operatorname{div} v=0, \quad \rho \in\{-1,1\} \text { a.e. }
\end{array}\right.
$$

- equivalent to

$$
(*)\left\{\begin{array}{l}
\partial_{t} v+\operatorname{div}(\sigma)+\nabla q=-\rho g \mathcal{A} e_{n} \\
\partial_{t} \rho+\operatorname{div}(m)=0 \\
\operatorname{div} v=0
\end{array}\right.
$$

and pointwise a.e. $\sigma=v \stackrel{\circ}{\otimes} v, m=\rho v, \rho \in\{-1,1\}$

- in contrast to inhomogeneous Euler: transformation to accelerated domain not possible, and not needed

Boussinesq system as differential inclusion

- pointwise constraints:

$$
\sigma=v \stackrel{\circ}{\otimes} v, \quad m=\rho v, \quad|\rho|=1
$$

Boussinesq system as differential inclusion

- pointwise constraints:

$$
\sigma=v \stackrel{\circ}{\otimes} v, \quad m=\rho v, \quad|\rho|=1
$$

- we also add the pointwise constraint:

$$
\frac{1}{2}|v(x, t)|^{2}=\frac{n}{2}\left(e_{0}(x, t)+\rho(x, t) e_{1}(x, t)\right)
$$

for given continuous functions $e_{0}, e_{1}: \Omega \times(0, T) \rightarrow \mathbb{R}$

Boussinesq system as differential inclusion

- pointwise constraints:

$$
\sigma=v \stackrel{\circ}{\otimes} v, \quad m=\rho v, \quad|\rho|=1
$$

- we also add the pointwise constraint:

$$
\frac{1}{2}|v(x, t)|^{2}=\frac{n}{2}\left(e_{0}(x, t)+\rho(x, t) e_{1}(x, t)\right)
$$

for given continuous functions $e_{0}, e_{1}: \Omega \times(0, T) \rightarrow \mathbb{R}$

- comparison: in inhomogeneous Euler we prescribed the kinetic energy in transformed coordinates, i.e.

$$
\frac{1}{2} \rho\left|v+g t e_{n}\right|^{2}=\frac{n}{2} e(x, t), \quad e \in \mathcal{C}^{0}(\Omega \times(0, T))
$$

motivated by homogeneous Euler case

Boussinesq system as differential inclusion

- pointwise constraints:

$$
\sigma=v \stackrel{\circ}{\otimes} v, \quad m=\rho v, \quad|\rho|=1
$$

- we also add the pointwise constraint:

$$
\frac{1}{2}|v(x, t)|^{2}=\frac{n}{2}\left(e_{0}(x, t)+\rho(x, t) e_{1}(x, t)\right)
$$

for given continuous functions $e_{0}, e_{1}: \Omega \times(0, T) \rightarrow \mathbb{R}$

- comparison: in inhomogeneous Euler we prescribed the kinetic energy in transformed coordinates, i.e.

$$
\frac{1}{2} \rho\left|v+g t e_{n}\right|^{2}=\frac{n}{2} e(x, t), \quad e \in \mathcal{C}^{0}(\Omega \times(0, T))
$$

motivated by homogeneous Euler case

- the pointwise constraints form a family of sets $K_{(x, t)}$

Boussinesq system as differential inclusion

- pointwise constraints:

$$
\sigma=v \stackrel{\circ}{\otimes} v, \quad m=\rho v, \quad|\rho|=1
$$

- we also add the pointwise constraint:

$$
\frac{1}{2}|v(x, t)|^{2}=\frac{n}{2}\left(e_{0}(x, t)+\rho(x, t) e_{1}(x, t)\right)
$$

for given continuous functions $e_{0}, e_{1}: \Omega \times(0, T) \rightarrow \mathbb{R}$

- comparison: in inhomogeneous Euler we prescribed the kinetic energy in transformed coordinates, i.e.

$$
\frac{1}{2} \rho\left|v+g t e_{n}\right|^{2}=\frac{n}{2} e(x, t), \quad e \in \mathcal{C}^{0}(\Omega \times(0, T))
$$

motivated by homogeneous Euler case

- the pointwise constraints form a family of sets $K_{(x, t)}$
- Differential inclusion:
$z=(\rho, v, m, \sigma)$ solves $\left(^{*}\right) \&$ takes pointwise a.e. values in K

Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of $K_{(x, t)}^{c o}=K_{(x, t)}^{\wedge}$ iff

- $\rho \in(-1,1)$

Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of $K_{(x, t)}^{c o}=K_{(x, t)}^{\wedge}$ iff

- $\rho \in(-1,1)$
- $\frac{|m+v|^{2}}{n(\rho+1)^{2}}<e_{0}(x, t)+e_{1}(x, t), \quad \frac{|m-v|^{2}}{n(\rho-1)^{2}}<e_{0}(x, t)-e_{1}(x, t)$

Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of $K_{(x, t)}^{c o}=K_{(x, t)}^{\wedge}$ iff

- $\rho \in(-1,1)$
- $\frac{|m+v|^{2}}{n(\rho+1)^{2}}<e_{0}(x, t)+e_{1}(x, t), \quad \frac{|m-v|^{2}}{n(\rho-1)^{2}}<e_{0}(x, t)-e_{1}(x, t)$
- $\lambda_{\text {max }}\left(\frac{v \otimes v-\rho(m \otimes v+v \otimes m)+m \otimes m}{1-\rho^{2}}-\sigma\right)<e_{0}(x, t)+\rho e_{1}(x, t)$

Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of $K_{(x, t)}^{c o}=K_{(x, t)}^{\wedge}$ iff

- $\rho \in(-1,1)$
- $\frac{|m+v|^{2}}{n(\rho+1)^{2}}<e_{0}(x, t)+e_{1}(x, t), \quad \frac{|m-v|^{2}}{n(\rho-1)^{2}}<e_{0}(x, t)-e_{1}(x, t)$
- $\lambda_{\text {max }}\left(\frac{v \otimes v-\rho(m \otimes v+v \otimes m)+m \otimes m}{1-\rho^{2}}-\sigma\right)<e_{0}(x, t)+\rho e_{1}(x, t)$

Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of $K_{(x, t)}^{c o}=K_{(x, t)}^{\wedge}$ iff

- $\rho \in(-1,1)$
- $\frac{|m+v|^{2}}{n(\rho+1)^{2}}<e_{0}(x, t)+e_{1}(x, t), \quad \frac{|m-v|^{2}}{n(\rho-1)^{2}}<e_{0}(x, t)-e_{1}(x, t)$
- $\lambda_{\text {max }}\left(\frac{v \otimes v-\rho(m \otimes v+v \otimes m)+m \otimes m}{1-\rho^{2}}-\sigma\right)<e_{0}(x, t)+\rho e_{1}(x, t)$

These inequalities together with the linear system $(*)$ form the subsolution system.

Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of $K_{(x, t)}^{c o}=K_{(x, t)}^{\wedge}$ iff

- $\rho \in(-1,1)$
- $\frac{|m+v|^{2}}{n(\rho+1)^{2}}<e_{0}(x, t)+e_{1}(x, t), \quad \frac{|m-v|^{2}}{n(\rho-1)^{2}}<e_{0}(x, t)-e_{1}(x, t)$
- $\lambda_{\text {max }}\left(\frac{v \otimes v-\rho(m \otimes v+v \otimes m)+m \otimes m}{1-\rho^{2}}-\sigma\right)<e_{0}(x, t)+\rho e_{1}(x, t)$

These inequalities together with the linear system $(*)$ form the subsolution system.

Convex integration Thm.: \exists subsolution $\Rightarrow \exists \infty$-many solutions which are close in weak L^{2}-topology.

Boussinesq system as differential inclusion

Explicit relaxation: z belongs to interior of $K_{(x, t)}^{c o}=K_{(x, t)}^{\wedge}$ iff

- $\rho \in(-1,1)$
- $\frac{|m+v|^{2}}{n(\rho+1)^{2}}<e_{0}(x, t)+e_{1}(x, t), \quad \frac{|m-v|^{2}}{n(\rho-1)^{2}}<e_{0}(x, t)-e_{1}(x, t)$
- $\lambda_{\text {max }}\left(\frac{v \otimes v-\rho(m \otimes v+v \otimes m)+m \otimes m}{1-\rho^{2}}-\sigma\right)<e_{0}(x, t)+\rho e_{1}(x, t)$

These inequalities together with the linear system $(*)$ form the subsolution system.

Convex integration Thm.: \exists subsolution $\Rightarrow \exists \infty$-many solutions which are close in weak L^{2}-topology.

Note that there is freedom in the choice of e_{0}, e_{1} (affecting the kinetic energy of the induced solutions).

Selection of subsolutions

Ansatz for subsolutions:

- one-dimensional: $\bar{z}(x, t)=\bar{z}\left(x_{n}, t\right), \bar{v}(x, t)=\bar{v}_{n}\left(x_{n}, t\right) e_{n}$, $\bar{m}(x, t)=\bar{m}_{n}\left(x_{n}, t\right) e_{n}$

Selection of subsolutions

Ansatz for subsolutions:

- one-dimensional: $\bar{z}(x, t)=\bar{z}\left(x_{n}, t\right), \bar{v}(x, t)=\bar{v}_{n}\left(x_{n}, t\right) e_{n}$, $\bar{m}(x, t)=\bar{m}_{n}\left(x_{n}, t\right) e_{n}$
$\left\{\begin{array}{l}1, \quad x_{n} \geq a(t), ~\end{array}\right.$
- self-similar: $\bar{\rho}_{f, a}(x, t)= \begin{cases}f\left(\frac{x_{n}}{a(t)}\right), & x_{n} \in(-a(t), a(t)) \\ -1, & x_{n} \leq-a(t)\end{cases}$
with $f:[-1,1] \rightarrow[-1,1], f(\pm 1)= \pm 1$, $a:[0, T) \rightarrow[0, \infty), a(0)=0, a(t)>0, t>0$

Selection of subsolutions

Ansatz for subsolutions:

- one-dimensional: $\bar{z}(x, t)=\bar{z}\left(x_{n}, t\right), \bar{v}(x, t)=\bar{v}_{n}\left(x_{n}, t\right) e_{n}$, $\bar{m}(x, t)=\bar{m}_{n}\left(x_{n}, t\right) e_{n}$
$\left\{\begin{array}{l}1, \quad x_{n} \geq a(t), ~\end{array}\right.$
- self-similar: $\bar{\rho}_{f, a}(x, t)= \begin{cases}f\left(\frac{x_{n}}{a(t)}\right), & x_{n} \in(-a(t), a(t)) \\ -1, & x_{n} \leq-a(t)\end{cases}$
with $f:[-1,1] \rightarrow[-1,1], f(\pm 1)= \pm 1$, $a:[0, T) \rightarrow[0, \infty), a(0)=0, a(t)>0, t>0$
- induces subsolution $\bar{z}_{f, a, e_{0}, e_{1}}$ with initial data ρ_{0}

Selection of subsolutions

Ansatz for subsolutions:

- one-dimensional: $\bar{z}(x, t)=\bar{z}\left(x_{n}, t\right), \bar{v}(x, t)=\bar{v}_{n}\left(x_{n}, t\right) e_{n}$, $\bar{m}(x, t)=\bar{m}_{n}\left(x_{n}, t\right) e_{n}$
$\left\{\begin{array}{l}1, \quad x_{n} \geq a(t), ~\end{array}\right.$
- self-similar: $\bar{\rho}_{f, a}(x, t)= \begin{cases}f\left(\frac{x_{n}}{a(t)}\right), & x_{n} \in(-a(t), a(t)) \\ -1, & x_{n} \leq-a(t)\end{cases}$
with $f:[-1,1] \rightarrow[-1,1], f(\pm 1)= \pm 1$, $a:[0, T) \rightarrow[0, \infty), a(0)=0, a(t)>0, t>0$
- induces subsolution $\bar{z}_{f, a, e_{0}, e_{1}}$ with initial data ρ_{0}
- here e_{0}, e_{1} viewed as parameters, have to satisfy hull inequalities

Selection of subsolutions

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler

Selection of subsolutions

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f, a, e_{0}, e_{1}}(t)$

Selection of subsolutions

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f, a, e_{0}, e_{1}}(t)$
- we need

$$
\Delta E_{f, a, e_{0}, e_{1}}(t):=E_{f, a, e_{0}, e_{1}}(t)-\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x<0
$$

Selection of subsolutions

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f, a, e_{0}, e_{1}}(t)$
- we need

$$
\begin{gathered}
\Delta E_{f, a, e_{0}, e_{1}}(t):=E_{f, a, e_{0}, e_{1}}(t)-\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x<0 \\
\cdot \Rightarrow a(t)=o(t) \text { as } t \rightarrow 0 \text { and } \Delta E_{f, a, e_{0}, e_{1}}(t)=o\left(t^{3}\right) \text { as } t \rightarrow 0
\end{gathered}
$$

Selection of subsolutions

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f, a, e_{0}, e_{1}}(t)$
- we need

$$
\Delta E_{f, a, e_{0}, e_{1}}(t):=E_{f, a, e_{0}, e_{1}}(t)-\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x<0
$$

- $\Rightarrow a(t)=o(t)$ as $t \rightarrow 0$ and $\Delta E_{f, a, e_{0}, e_{1}}(t)=o\left(t^{3}\right)$ as $t \rightarrow 0$
- the variational problem

$$
\operatorname{minimize} \lim _{t \rightarrow 0} \frac{\Delta E_{f, a, e_{0}, e_{1}}(t)}{t^{4}}
$$

w.r.t. f, a, e_{0}, e_{1} satisfying the hull inequalities, has a unique solution

Selection of subsolutions

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f, a, e_{0}, e_{1}}(t)$
- we need

$$
\Delta E_{f, a, e_{0}, e_{1}}(t):=E_{f, a, e_{0}, e_{1}}(t)-\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x<0
$$

- $\Rightarrow a(t)=o(t)$ as $t \rightarrow 0$ and $\Delta E_{f, a, e_{0}, e_{1}}(t)=o\left(t^{3}\right)$ as $t \rightarrow 0$
- the variational problem

$$
\operatorname{minimize} \lim _{t \rightarrow 0} \frac{\Delta E_{f, a, e_{0}, e_{1}}(t)}{t^{4}}
$$

w.r.t. f, a, e_{0}, e_{1} satisfying the hull inequalities, has a unique solution

- profile: $f=\mathrm{id}, \quad$ speed: $a(t)=\frac{1}{3} g \mathcal{A} t^{2}+o\left(t^{2}\right)$

Selection of subsolutions

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f, a, e_{0}, e_{1}}(t)$
- we need

$$
\Delta E_{f, a, e_{0}, e_{1}}(t):=E_{f, a, e_{0}, e_{1}}(t)-\int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} d x<0
$$

- $\Rightarrow a(t)=o(t)$ as $t \rightarrow 0$ and $\Delta E_{f, a, e_{0}, e_{1}}(t)=o\left(t^{3}\right)$ as $t \rightarrow 0$
- the variational problem

$$
\operatorname{minimize} \lim _{t \rightarrow 0} \frac{\Delta E_{f, a, e_{0}, e_{1}}(t)}{t^{4}}
$$

w.r.t. f, a, e_{0}, e_{1} satisfying the hull inequalities, has a unique solution

- profile: $f=\mathrm{id}$, \quad speed: $a(t)=\frac{1}{3} g \mathcal{A} t^{2}+o\left(t^{2}\right)$
- cf. Iow Atwood number experiment: $a(t)=0.07 g \mathcal{A} t^{2}$

Thank you!

