The Rayleigh-Taylor instability in the Boussinesq approximation

Björn Gebhard joint work with József Kolumbán

Universität Leipzig

time t=0:

graver × fluid den. JC CR both fluids A p+ > pat

time t70:

• experiments and numerical simulations:

$$a_{\pm}(t) = \alpha_{\pm} \mathcal{A}gt^2,$$

where $\mathcal{A} = \frac{\rho_+ - \rho_-}{\rho_+ + \rho_-}$ is the Atwood number and $\alpha_{\pm} > 0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

• experiments and numerical simulations:

$$a_{\pm}(t) = \alpha_{\pm} \mathcal{A}gt^2,$$

where $\mathcal{A} = \frac{\rho_+ - \rho_-}{\rho_+ + \rho_-}$ is the Atwood number and $\alpha_{\pm} > 0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

• (G., Kolumbán, Székelyhidi 2021): Construction of admissible mixing solutions for Euler equations with

$$\alpha_{+} = \frac{\rho_{+} + \rho_{-}}{2\sqrt{\rho_{-}}(\sqrt{\rho_{+}} + \sqrt{\rho_{-}})}, \quad \alpha_{-} = \frac{\rho_{+} + \rho_{-}}{2\sqrt{\rho_{+}}(\sqrt{\rho_{+}} + \sqrt{\rho_{-}})}$$

under high Atwood number condition $\mathcal{A} \in (0.845, 1)$

• experiments and numerical simulations:

$$a_{\pm}(t) = \alpha_{\pm} \mathcal{A}gt^2,$$

where $\mathcal{A} = \frac{\rho_+ - \rho_-}{\rho_+ + \rho_-}$ is the Atwood number and $\alpha_{\pm} > 0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

• (G., Kolumbán, Székelyhidi 2021): Construction of admissible mixing solutions for Euler equations with

$$\alpha_{+} = \frac{\rho_{+} + \rho_{-}}{2\sqrt{\rho_{-}}(\sqrt{\rho_{+}} + \sqrt{\rho_{-}})}, \quad \alpha_{-} = \frac{\rho_{+} + \rho_{-}}{2\sqrt{\rho_{+}}(\sqrt{\rho_{+}} + \sqrt{\rho_{-}})}$$

under high Atwood number condition $\mathcal{A} \in (0.845, 1)$

• Question: What happens at low Atwood number?

• experiments and numerical simulations:

$$a_{\pm}(t) = \alpha_{\pm} \mathcal{A}gt^2,$$

where $\mathcal{A} = \frac{\rho_+ - \rho_-}{\rho_+ + \rho_-}$ is the Atwood number and $\alpha_{\pm} > 0$ a constant, see surveys: Abarzhi (2010); Boffetta, Mazzino (2017); Zhou (2017)

• (G., Kolumbán, Székelyhidi 2021): Construction of admissible mixing solutions for Euler equations with

$$\alpha_{+} = \frac{\rho_{+} + \rho_{-}}{2\sqrt{\rho_{-}}(\sqrt{\rho_{+}} + \sqrt{\rho_{-}})}, \quad \alpha_{-} = \frac{\rho_{+} + \rho_{-}}{2\sqrt{\rho_{+}}(\sqrt{\rho_{+}} + \sqrt{\rho_{-}})}$$

under high Atwood number condition $\mathcal{A} \in (0.845, 1)$

- Question: What happens at low Atwood number?
- particular experiment by Ramaprabhu, Andrews (2003): cold and hot water with $\mathcal{A} \approx 7.5 \cdot 10^{-4} \Rightarrow \alpha_{\pm} \approx 0.07$

on Ω × [0, T), Ω ⊂ ℝⁿ bounded domain, T > 0 consider the inhomogenous incompressible Euler equations

$$\begin{cases} \partial_t(\rho v) + \operatorname{div}(\rho v \otimes v) + \nabla \rho = -\rho g e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

on Ω × [0, T), Ω ⊂ ℝⁿ bounded domain, T > 0 consider the inhomogenous incompressible Euler equations

$$\begin{cases} \partial_t(\rho v) + \operatorname{div}(\rho v \otimes v) + \nabla p = -\rho g e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

• $\rho: \overline{\Omega} \times [0, T) \to [0, \infty)$ density, $v: \overline{\Omega} \times [0, T) \to \mathbb{R}^n$ velocity and $p: \overline{\Omega} \times [0, T) \to \mathbb{R}$ pressure, g > 0 gravity constant, $e_n = (0, \dots, 0, 1) \in \mathbb{R}^n$

on Ω × [0, T), Ω ⊂ ℝⁿ bounded domain, T > 0 consider the inhomogenous incompressible Euler equations

$$\begin{cases} \partial_t(\rho v) + \operatorname{div}(\rho v \otimes v) + \nabla p = -\rho g e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

- $\rho: \overline{\Omega} \times [0, T) \to [0, \infty)$ density, $v: \overline{\Omega} \times [0, T) \to \mathbb{R}^n$ velocity and $p: \overline{\Omega} \times [0, T) \to \mathbb{R}$ pressure, g > 0 gravity constant, $e_n = (0, \dots, 0, 1) \in \mathbb{R}^n$
- no-penetration boundary condition: $v \cdot \vec{n} = 0$ on $\partial \Omega \times [0, T)$

on Ω × [0, T), Ω ⊂ ℝⁿ bounded domain, T > 0 consider the inhomogenous incompressible Euler equations

$$\begin{cases} \partial_t(\rho v) + \operatorname{div}(\rho v \otimes v) + \nabla p = -\rho g e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

- $\rho: \overline{\Omega} \times [0, T) \to [0, \infty)$ density, $v: \overline{\Omega} \times [0, T) \to \mathbb{R}^n$ velocity and $\rho: \overline{\Omega} \times [0, T) \to \mathbb{R}$ pressure, g > 0 gravity constant, $e_n = (0, \dots, 0, 1) \in \mathbb{R}^n$
- no-penetration boundary condition: $v \cdot \vec{n} = 0$ on $\partial \Omega \times [0, T)$
- initial data: $\rho(x,0) = \rho_0(x)$ and $v(x,0) = v_0(x)$ with div $v_0 = 0$, $v_0 \cdot \vec{n} = 0$

$$\begin{cases} \partial_t v + \operatorname{div}(v \otimes v) + \nabla p = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

$$\begin{cases} \partial_t v + \operatorname{div}(v \otimes v) + \nabla p = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

• density fluctuations are neglected in the acceleration term

$$\begin{cases} \partial_t v + \operatorname{div}(v \otimes v) + \nabla p = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

- · density fluctuations are neglected in the acceleration term
- allows to normalize $\rho_- \to -1$ and $\rho_+ \to +1$

$$\begin{cases} \partial_t v + \operatorname{div}(v \otimes v) + \nabla p = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0 \end{cases}$$

- density fluctuations are neglected in the acceleration term
- allows to normalize $\rho_- \to -1$ and $\rho_+ \to +1$
- can be seen as a system in-between inhomogeneous Euler and incompressible porous media equation (IPM) (replace acceleration ∂_tv + divv ⊗ v by velocity v)

Convex integration for IPM:

 Córdoba, Faraco, Gancedo 2011; Székelyhidi 2012; Förster, Székelyhidi 2018; Castro, Faraco, Mengual 2019 & 2021; Noisette, Székelyhidi 2020; Mengual 2020; Hitruhin, Lindberg 2021; Castro, Córdoba, Faraco 2021 Convex integration for IPM:

 Córdoba, Faraco, Gancedo 2011; Székelyhidi 2012; Förster, Székelyhidi 2018; Castro, Faraco, Mengual 2019 & 2021; Noisette, Székelyhidi 2020; Mengual 2020; Hitruhin, Lindberg 2021; Castro, Córdoba, Faraco 2021 Convex integration for IPM:

 Córdoba, Faraco, Gancedo 2011; Székelyhidi 2012; Förster, Székelyhidi 2018; Castro, Faraco, Mengual 2019 & 2021; Noisette, Székelyhidi 2020; Mengual 2020; Hitruhin, Lindberg 2021; Castro, Córdoba, Faraco 2021

Convex integration for non-two-phase ($\rho_0 \in C^2 \cap L^{\infty}$) Boussinesq (with Coriolis force and dissipation for ρ):

• Chiodaroli-Michálek 2017

• consider Boussinesq system on $\Omega = (0,1)^{n-1} \times (-1,1)$ with initial data

$$\rho_0(x) = \begin{cases} +1, & x_n > 0, \\ -1, & x_n \le 0 \end{cases}, \qquad v_0(x) = 0$$

• consider Boussinesq system on $\Omega=(0,1)^{n-1}\times(-1,1)$ with initial data

$$\rho_0(x) = \begin{cases} +1, & x_n > 0, \\ -1, & x_n \le 0 \end{cases}, \qquad v_0(x) = 0$$

• notion of solution: $(\rho, v) \in L^{\infty}$, in addition $|\rho| = 1$ a.e.

• consider Boussinesq system on $\Omega = (0,1)^{n-1} \times (-1,1)$ with initial data

$$\rho_0(x) = \begin{cases} +1, & x_n > 0, \\ -1, & x_n \le 0 \end{cases}, \qquad v_0(x) = 0$$

• notion of solution: $(
ho, v) \in L^{\infty}$, in addition |
ho| = 1 a.e.

• weak admissibility: $E(t) \leq E_0$ for a.e. $t \in (0, T)$, where

$$E(t) = \int_{\Omega} \frac{1}{2} |v(x,t)|^2 + \rho(x,t) g \mathcal{A} x_n \, dx,$$
$$E_0 = \int_{\Omega} \rho_0(x) g \mathcal{A} x_n \, dx$$

• consider Boussinesq system on $\Omega = (0,1)^{n-1} \times (-1,1)$ with initial data

$$\rho_0(x) = \begin{cases} +1, & x_n > 0, \\ -1, & x_n \le 0 \end{cases}, \qquad v_0(x) = 0$$

• notion of solution: $(
ho, v) \in L^{\infty}$, in addition |
ho| = 1 a.e.

• weak admissibility: $E(t) \leq E_0$ for a.e. $t \in (0, T)$, where

$$E(t) = \int_{\Omega} \frac{1}{2} |v(x,t)|^2 + \rho(x,t) g \mathcal{A} x_n \, dx,$$
$$E_0 = \int_{\Omega} \rho_0(x) g \mathcal{A} x_n \, dx$$

• Example: $(\rho_0, 0)$ is a weak stationary solution

• consider Boussinesq system on $\Omega = (0,1)^{n-1} \times (-1,1)$ with initial data

$$\rho_0(x) = \begin{cases} +1, & x_n > 0, \\ -1, & x_n \le 0 \end{cases}, \qquad v_0(x) = 0$$

• notion of solution: $(\rho, v) \in L^{\infty}$, in addition $|\rho| = 1$ a.e.

• weak admissibility: $E(t) \leq E_0$ for a.e. $t \in (0, T)$, where

$$E(t) = \int_{\Omega} \frac{1}{2} |v(x,t)|^2 + \rho(x,t) g \mathcal{A} x_n \, dx$$
$$E_0 = \int_{\Omega} \rho_0(x) g \mathcal{A} x_n \, dx$$

- Example: $(\rho_0, 0)$ is a weak stationary solution
- Rayleigh (1883) and Taylor (1950) showed that it is linearly unstable

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega = (0, 1)^{n-1} \times (-1, 1)$ with the interface initial data $(\rho_0, 0)$ has infinitely many weak solutions (ρ, v) with the following properties:

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega = (0, 1)^{n-1} \times (-1, 1)$ with the interface initial data $(\rho_0, 0)$ has infinitely many weak solutions (ρ, v) with the following properties:

•
$$\rho(x,t) = 1$$
, $v(x,t) = 0$ for $x_n \ge \frac{1}{3}gAt^2 =: a(t)$

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega = (0, 1)^{n-1} \times (-1, 1)$ with the interface initial data $(\rho_0, 0)$ has infinitely many weak solutions (ρ, v) with the following properties:

•
$$\rho(x,t) = 1$$
, $v(x,t) = 0$ for $x_n \ge \frac{1}{3}gAt^2 =: a(t)$

•
$$\rho(x,t) = -1$$
, $v(x,t) = 0$ for $x_n \le -\frac{1}{3}g\mathcal{A}t^2 = -a(t)$

Theorem (G., Kolumbán 2020)

The Boussinesq system on $\Omega = (0, 1)^{n-1} \times (-1, 1)$ with the interface initial data $(\rho_0, 0)$ has infinitely many weak solutions (ρ, ν) with the following properties:

•
$$\rho(x,t) = 1$$
, $v(x,t) = 0$ for $x_n \ge \frac{1}{3}g\mathcal{A}t^2 =: a(t)$

•
$$\rho(x,t) = -1$$
, $v(x,t) = 0$ for $x_n \le -\frac{1}{3}g\mathcal{A}t^2 = -a(t)$

• for any
$$t \in (0, T)$$
 and any open ball
 $B \subset \{x \in \Omega : x_n \in (-a(t), a(t))\}$ there holds

$$\int_B 1-\rho(x,t)\,dx\cdot\int_B\rho(x,t)-(-1)\,dx>0.$$

"turbulent mixing at every time slice"

• the infinitely many solutions are induced by a common underlying subsolution

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions (ρ_k, v_k) s.t. $\rho_k \rightarrow \overline{\rho}$, $v_k \rightarrow \overline{v}$ in $L^2(\Omega \times (0, T))$, where

$$\bar{\rho}(x,t) = \begin{cases} 1, & x_n > a(t), \\ \frac{x_n}{a(t)}, & x_n \in (-a(t), a(t)), & \bar{\nu}(x,t) = 0 \\ -1, & x_n < -a(t) \end{cases}$$

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions (ρ_k, v_k) s.t. $\rho_k \rightarrow \bar{\rho}$, $v_k \rightarrow \bar{v}$ in $L^2(\Omega \times (0, T))$, where

$$\bar{\rho}(x,t) = \begin{cases} 1, & x_n > a(t), \\ \frac{x_n}{a(t)}, & x_n \in (-a(t), a(t)), & \bar{\nu}(x,t) = 0 \\ -1, & x_n < -a(t) \end{cases}$$

• the solutions are weakly admissible with

$$E(t) - E(0) = -\frac{g^3 A^3 t^4}{81} + \operatorname{error}(t)$$

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions (ρ_k, v_k) s.t. $\rho_k \rightarrow \bar{\rho}$, $v_k \rightarrow \bar{v}$ in $L^2(\Omega \times (0, T))$, where

$$\bar{\rho}(x,t) = \begin{cases} 1, & x_n > a(t), \\ \frac{x_n}{a(t)}, & x_n \in (-a(t), a(t)), & \bar{v}(x,t) = 0 \\ -1, & x_n < -a(t) \end{cases}$$

• the solutions are weakly admissible with

$$E(t) - E(0) = -\frac{g^3 \mathcal{A}^3 t^4}{81} + \operatorname{error}(t)$$

- after a few ansatzes the profile $\bar{\rho}$ is selected by means of energy dissipation

- the infinitely many solutions are induced by a common underlying subsolution
- i.e. there ex. sequence of solutions (ρ_k, v_k) s.t. $\rho_k \rightarrow \bar{\rho}$, $v_k \rightarrow \bar{v}$ in $L^2(\Omega \times (0, T))$, where

$$ar{
ho}(x,t) = egin{cases} 1, & x_n > a(t), \ rac{x_n}{a(t)}, & x_n \in (-a(t),a(t)) \ , & ar{v}(x,t) = 0 \ -1, & x_n < -a(t) \end{cases}$$

• the solutions are weakly admissible with

$$E(t) - E(0) = -\frac{g^3 \mathcal{A}^3 t^4}{81} + \operatorname{error}(t)$$

- after a few ansatzes the profile $\bar{\rho}$ is selected by means of energy dissipation
- no condition on A (but Boussinesq approximation only reasonable for small A)

• Recall

ć

$$\begin{cases} \partial_t v + \operatorname{div}(v \overset{\circ}{\otimes} v) + \nabla \left(p + \frac{2}{n} |v|^2 \right) = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0, \quad \rho \in \{ -1, 1 \} \text{ a.e.} \end{cases}$$

• Recall

$$\begin{cases} \partial_t v + \operatorname{div}(v \overset{\circ}{\otimes} v) + \nabla \left(p + \frac{2}{n} |v|^2 \right) = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0, \quad \rho \in \{ -1, 1 \} \text{ a.e.} \end{cases}$$

• equivalent to

$$(*) \begin{cases} \partial_t v + \operatorname{div}(\sigma) + \nabla q = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(m) = 0 \\ \operatorname{div} v = 0, \end{cases}$$

and pointwise a.e. $\sigma = v \overset{\circ}{\otimes} v$, $m = \rho v$, $\rho \in \{-1, 1\}$

• Recall

$$\begin{cases} \partial_t v + \operatorname{div}(v \overset{\circ}{\otimes} v) + \nabla \left(p + \frac{2}{n} |v|^2 \right) = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(\rho v) = 0 \\ \operatorname{div} v = 0, \quad \rho \in \{ -1, 1 \} \text{ a.e.} \end{cases}$$

• equivalent to

$$(*) \begin{cases} \partial_t v + \operatorname{div}(\sigma) + \nabla q = -\rho g \mathcal{A} e_n \\ \partial_t \rho + \operatorname{div}(m) = 0 \\ \operatorname{div} v = 0, \end{cases}$$

and pointwise a.e. $\sigma = v \overset{\circ}{\otimes} v$, $m = \rho v$, $\rho \in \{-1, 1\}$

• in contrast to inhomogeneous Euler: transformation to accelerated domain not possible, and not needed

• pointwise constraints:

$$\sigma = \mathbf{v} \overset{\circ}{\otimes} \mathbf{v}, \quad \mathbf{m} = \rho \mathbf{v}, \quad |\rho| = 1$$

• pointwise constraints:

$$\sigma = \mathbf{v} \overset{\circ}{\otimes} \mathbf{v}, \quad \mathbf{m} = \rho \mathbf{v}, \quad |\rho| = 1$$

• we also add the pointwise constraint:

$$\frac{1}{2}|v(x,t)|^2 = \frac{n}{2}(e_0(x,t) + \rho(x,t)e_1(x,t))$$

for given continuous functions $e_0, e_1: \Omega imes (0, T) o \mathbb{R}$

• pointwise constraints:

$$\sigma = \mathbf{v} \overset{\circ}{\otimes} \mathbf{v}, \quad m = \rho \mathbf{v}, \quad |\rho| = 1$$

• we also add the pointwise constraint:

$$\frac{1}{2}|v(x,t)|^2 = \frac{n}{2}(e_0(x,t) + \rho(x,t)e_1(x,t))$$

for given continuous functions $e_0, e_1: \Omega imes (0, \mathcal{T})
ightarrow \mathbb{R}$

• comparison: in inhomogeneous Euler we prescribed the kinetic energy in transformed coordinates, i.e.

$$\frac{1}{2}\rho |\mathbf{v} + gte_n|^2 = \frac{n}{2}e(\mathbf{x}, t), \quad e \in \mathcal{C}^0(\Omega \times (0, T))$$

motivated by homogeneous Euler case

• pointwise constraints:

$$\sigma = \mathbf{v} \overset{\circ}{\otimes} \mathbf{v}, \quad m = \rho \mathbf{v}, \quad |\rho| = 1$$

• we also add the pointwise constraint:

$$\frac{1}{2} |v(x,t)|^2 = \frac{n}{2} (e_0(x,t) + \rho(x,t)e_1(x,t))$$

for given continuous functions $e_0, e_1: \Omega \times (0, \mathcal{T}) \to \mathbb{R}$

• comparison: in inhomogeneous Euler we prescribed the kinetic energy in transformed coordinates, i.e.

$$\frac{1}{2}\rho |\mathbf{v} + \mathbf{gte}_n|^2 = \frac{n}{2}\mathbf{e}(\mathbf{x}, t), \quad \mathbf{e} \in \mathcal{C}^0(\Omega \times (0, T))$$

motivated by homogeneous Euler case

• the pointwise constraints form a family of sets $K_{(x,t)}$

• pointwise constraints:

$$\sigma = \mathbf{v} \overset{\circ}{\otimes} \mathbf{v}, \quad \mathbf{m} = \rho \mathbf{v}, \quad |\rho| = 1$$

• we also add the pointwise constraint:

$$\frac{1}{2} |v(x,t)|^2 = \frac{n}{2} (e_0(x,t) + \rho(x,t)e_1(x,t))$$

for given continuous functions $e_0, e_1: \Omega imes (0, \mathcal{T})
ightarrow \mathbb{R}$

• comparison: in inhomogeneous Euler we prescribed the kinetic energy in transformed coordinates, i.e.

$$\frac{1}{2}\rho |\mathbf{v} + \mathbf{gte}_n|^2 = \frac{n}{2}\mathbf{e}(\mathbf{x}, t), \quad \mathbf{e} \in \mathcal{C}^0(\Omega \times (0, T))$$

motivated by homogeneous Euler case

- the pointwise constraints form a family of sets $K_{(x,t)}$
- Differential inclusion:

 $z = (\rho, v, m, \sigma)$ solves (*) & takes pointwise a.e. values in K

Explicit relaxation: z belongs to interior of $K_{(x,t)}^{co} = K_{(x,t)}^{\Lambda}$ iff

• $ho \in (-1, 1)$

Explicit relaxation: z belongs to interior of $K_{(x,t)}^{co} = K_{(x,t)}^{\Lambda}$ iff

•
$$\rho \in (-1,1)$$

• $\frac{|m+v|^2}{n(\rho+1)^2} < e_0(x,t) + e_1(x,t), \qquad \frac{|m-v|^2}{n(\rho-1)^2} < e_0(x,t) - e_1(x,t)$

Explicit relaxation: z belongs to interior of $K_{(x,t)}^{co} = K_{(x,t)}^{\Lambda}$ iff

•
$$\rho \in (-1, 1)$$

• $\frac{|m+v|^2}{n(\rho+1)^2} < e_0(x, t) + e_1(x, t), \qquad \frac{|m-v|^2}{n(\rho-1)^2} < e_0(x, t) - e_1(x, t)$
• $\lambda_{max} \left(\frac{v \otimes v - \rho(m \otimes v + v \otimes m) + m \otimes m}{1 - \rho^2} - \sigma \right) < e_0(x, t) + \rho e_1(x, t)$

Explicit relaxation: z belongs to interior of $K_{(x,t)}^{co} = K_{(x,t)}^{\Lambda}$ iff

•
$$\rho \in (-1, 1)$$

• $\frac{|m+v|^2}{n(\rho+1)^2} < e_0(x, t) + e_1(x, t), \qquad \frac{|m-v|^2}{n(\rho-1)^2} < e_0(x, t) - e_1(x, t)$
• $\lambda_{max} \left(\frac{v \otimes v - \rho(m \otimes v + v \otimes m) + m \otimes m}{1 - \rho^2} - \sigma \right) < e_0(x, t) + \rho e_1(x, t)$

Explicit relaxation: z belongs to interior of $K_{(x,t)}^{co} = K_{(x,t)}^{\Lambda}$ iff

•
$$\rho \in (-1, 1)$$

• $\frac{|m+v|^2}{n(\rho+1)^2} < e_0(x, t) + e_1(x, t), \qquad \frac{|m-v|^2}{n(\rho-1)^2} < e_0(x, t) - e_1(x, t)$
• $\lambda_{max} \left(\frac{v \otimes v - \rho(m \otimes v + v \otimes m) + m \otimes m}{1 - \rho^2} - \sigma \right) < e_0(x, t) + \rho e_1(x, t)$

These inequalities together with the linear system (*) form the subsolution system.

Explicit relaxation: z belongs to interior of $K_{(x,t)}^{co} = K_{(x,t)}^{\Lambda}$ iff

•
$$\rho \in (-1, 1)$$

• $\frac{|m+v|^2}{n(\rho+1)^2} < e_0(x, t) + e_1(x, t), \qquad \frac{|m-v|^2}{n(\rho-1)^2} < e_0(x, t) - e_1(x, t)$
• $\lambda_{max} \left(\frac{v \otimes v - \rho(m \otimes v + v \otimes m) + m \otimes m}{1 - \rho^2} - \sigma \right) < e_0(x, t) + \rho e_1(x, t)$

These inequalities together with the linear system (*) form the subsolution system.

Convex integration Thm.: \exists subsolution $\Rightarrow \exists \infty$ -many solutions which are close in weak L^2 -topology.

Explicit relaxation: z belongs to interior of $K_{(x,t)}^{co} = K_{(x,t)}^{\Lambda}$ iff

•
$$\rho \in (-1, 1)$$

• $\frac{|m+v|^2}{n(\rho+1)^2} < e_0(x, t) + e_1(x, t), \qquad \frac{|m-v|^2}{n(\rho-1)^2} < e_0(x, t) - e_1(x, t)$
• $\lambda_{max} \left(\frac{v \otimes v - \rho(m \otimes v + v \otimes m) + m \otimes m}{1 - \rho^2} - \sigma \right) < e_0(x, t) + \rho e_1(x, t)$

These inequalities together with the linear system (*) form the subsolution system.

Convex integration Thm.: \exists subsolution $\Rightarrow \exists \infty$ -many solutions which are close in weak L^2 -topology.

Note that there is freedom in the choice of e_0 , e_1 (affecting the kinetic energy of the induced solutions).

• one-dimensional: $\overline{z}(x,t) = \overline{z}(x_n,t)$, $\overline{v}(x,t) = \overline{v}_n(x_n,t)e_n$, $\overline{m}(x,t) = \overline{m}_n(x_n,t)e_n$

• one-dimensional: $\bar{z}(x,t) = \bar{z}(x_n,t)$, $\bar{v}(x,t) = \bar{v}_n(x_n,t)e_n$, $\bar{m}(x,t) = \bar{m}_n(x_n,t)e_n$ • self-similar: $\bar{\rho}_{f,a}(x,t) = \begin{cases} 1, & x_n \ge a(t), \\ f\left(\frac{x_n}{a(t)}\right), & x_n \in (-a(t), a(t)) \\ -1, & x_n \le -a(t) \end{cases}$ with $f: [-1,1] \to [-1,1], f(\pm 1) = \pm 1, \\ a: [0,T) \to [0,\infty), a(0) = 0, a(t) > 0, t > 0 \end{cases}$

- one-dimensional: $\bar{z}(x,t) = \bar{z}(x_n,t)$, $\bar{v}(x,t) = \bar{v}_n(x_n,t)e_n$, $\bar{m}(x,t) = \bar{m}_n(x_n,t)e_n$ • self-similar: $\bar{\rho}_{f,a}(x,t) = \begin{cases} 1, & x_n \ge a(t), \\ f\left(\frac{x_n}{a(t)}\right), & x_n \in (-a(t), a(t)) \\ -1, & x_n \le -a(t) \end{cases}$ with $f: [-1,1] \to [-1,1], f(\pm 1) = \pm 1, \\ a: [0,T) \to [0,\infty), a(0) = 0, a(t) > 0, t > 0$
- induces subsolution \bar{z}_{f,a,e_0,e_1} with initial data ρ_0

- one-dimensional: $\overline{z}(x, t) = \overline{z}(x_n, t)$, $\overline{v}(x, t) = \overline{v}_n(x_n, t)e_n$, $\overline{m}(x, t) = \overline{m}_n(x_n, t)e_n$
- self-similar: $\bar{\rho}_{f,a}(x,t) = \begin{cases} 1, & x_n \ge a(t), \\ f\left(\frac{x_n}{a(t)}\right), & x_n \in (-a(t), a(t)) \\ -1, & x_n \le -a(t) \end{cases}$ with $f: [-1,1] \to [-1,1], f(\pm 1) = \pm 1, \\ a: [0,T) \to [0,\infty), a(0) = 0, a(t) > 0, t > 0 \end{cases}$
- induces subsolution \bar{z}_{f,a,e_0,e_1} with initial data ρ_0
- here e_0, e_1 viewed as parameters, have to satisfy hull inequalities

 selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f,a,e_0,e_1}(t)$

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f,a,e_0,e_1}(t)$
- we need

$$\Delta E_{f,a,e_0,e_1}(t) := E_{f,a,e_0,e_1}(t) - \int_{\Omega} \rho_0(x) g \mathcal{A} x_n \, dx < 0$$

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f,a,e_0,e_1}(t)$
- we need

$$\Delta E_{f,a,e_{0},e_{1}}(t) := E_{f,a,e_{0},e_{1}}(t) - \int_{\Omega} \rho_{0}(x) g \mathcal{A} x_{n} \, dx < 0$$

•
$$\Rightarrow$$
 $a(t) = o(t)$ as $t \to 0$ and $\Delta E_{f,a,e_0,e_1}(t) = o(t^3)$ as $t \to 0$

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f,a,e_0,e_1}(t)$
- we need

$$\Delta E_{f,a,e_0,e_1}(t) := E_{f,a,e_0,e_1}(t) - \int_{\Omega} \rho_0(x) g \mathcal{A} x_n \, dx < 0$$

ullet \Rightarrow a(t) = o(t) as $t \to 0$ and $\Delta E_{f,a,e_0,e_1}(t) = o(t^3)$ as $t \to 0$

the variational problem

minimize
$$\lim_{t\to 0} \frac{\Delta E_{f,a,e_0,e_1}(t)}{t^4},$$

w.r.t. f, a, e_0, e_1 satisfying the hull inequalities, has a unique solution

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f,a,e_0,e_1}(t)$
- we need

$$\Delta E_{f,a,e_0,e_1}(t) := E_{f,a,e_0,e_1}(t) - \int_{\Omega} \rho_0(x) g \mathcal{A} x_n \, dx < 0$$

• \Rightarrow a(t) = o(t) as $t \to 0$ and $\Delta E_{f,a,e_0,e_1}(t) = o(t^3)$ as $t \to 0$

the variational problem

minimize
$$\lim_{t \to 0} \frac{\Delta E_{f,a,e_0,e_1}(t)}{t^4},$$

w.r.t. f, a, e_0, e_1 satisfying the hull inequalities, has a unique solution

• profile: f = id, speed: $a(t) = \frac{1}{3}g\mathcal{A}t^2 + o(t^2)$

- selection by maximal initial energy dissipation; as in (Mengual, Székelyhidi 2020) for non-flat vortex sheets in hom. Euler
- denote total energy at time t by $E_{f,a,e_0,e_1}(t)$
- we need

$$\Delta E_{f,a,e_0,e_1}(t) := E_{f,a,e_0,e_1}(t) - \int_{\Omega} \rho_0(x) g \mathcal{A} x_n \, dx < 0$$

• \Rightarrow a(t) = o(t) as $t \to 0$ and $\Delta E_{f,a,e_0,e_1}(t) = o(t^3)$ as $t \to 0$

the variational problem

minimize
$$\lim_{t \to 0} \frac{\Delta E_{f,a,e_0,e_1}(t)}{t^4},$$

w.r.t. f, a, e_0, e_1 satisfying the hull inequalities, has a unique solution

- profile: f = id, speed: $a(t) = \frac{1}{3}g\mathcal{A}t^2 + o(t^2)$
- cf. low Atwood number experiment: $a(t) = 0.07 g A t^2$

Thank you!