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Stochastic setting 2/14

@tu+div (u
u)+rp = �u+ f
div u = 0

x2T3; t2 (0; T )

� f irregular, possibly dependent on u, e.g. f =G(u)
dW

dt

� a Brownian motion W � additional randomness variable ! 2
, i.e. u=u(t; x; !)

� adaptedness: u(t) measurable wrt �(W (s); 06 s6 t) (or a bigger �-field Ft)

� f being a space-time white noise: f 2B1;1
¡5/2¡ P-a.s.

� hope that a noise can help with the well-posedness issue



Regularization by noise 3/14

� damping � no explosion with large probability (Röckner, Zhu, Zhu '14)

G(u)=�u

� transport noise � no explosion for the vorticity form with large probability (Flandoli, Luo '19)

G(�) �dW =��r� � dW

� Feller and strong Feller property: smoothing wrt the initial condition as opposed to contin-
uous dependence (Da Prato, Debussche '03, Flandoli, Romito '08, Zhu, Zhu '14)

G(u)=G

sufficiently nondegenerate



Two notions of uniqueness 4/14

Pathwise uniqueness Two solutions u1; u2 on the same probability space (
;F ;P) with the
same initial condition coincide pathwise:

P(u1(t)=u2(t) for all t2 [0; T ])= 1:

� law of a solution � pushforward measure of u: (
;P)!T on the space of trajectories T

Uniqueness in law The probability laws of any two solutions u1; u2 defined possibly on
different probability spaces and starting from the same initial law coincide:

Law[u1] =Law[u2]:

� W and ¡W have the same law

Yamada�Watanabe�Engelbert's theorem For a certain class of S(P)DEs the following are
equivalent:

� pathwise uniqueness,

� uniqueness in law and existence of a pathwise solution.
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Non-uniqueness in law



Stochastic Navier�Stokes system 6/14

du+ [div (u
u)+rp]dt = �udt+G(u)dW
div u = 0

x2T3; t2 (0; T )

� either additive G(u)dW =GdW , linear multiplicative G(u)dW =udW or

nonlinear cylindrical G(u)dW = g(hu; 'i)dW noise

Idea:

1. convex integration similar to Buckmaster�Vicol

�. existence of probabilistically strong and analytically weak solutions

�. possible up to a stopping time � (to control the noise uniformly in !)

�. they behave badly � energy not decreasing

2. probabilistic extension to [0;1)

�. connect to a Leray probabilistically weak solution obtained by compactness arguments

3. comparison with a Leray probabilistically weak solution starting from the same u(0)



Convex integration for additive trace class noise 7/14

du+ [div (u
u)+rp]dt = �udt+GdW
div u = 0

x2T3; t2 (0; T )

� follow the approach of Buckmaster�Vicol, use intermittent jets

� apart from wq+1
p , wq+1

c , wq+1
t we introduce a stochastic corrector wq+1

s : let

dz = �zdt+GdW ; zq=P6�q+1�/8z; z`= zq �t;x'`;

wq+1
s = zq+1¡ z`

� then

uq+1=u`+wq+1
p +wq+1

c +wq+1
t +wq+1

s ; u`=uq �t;x'`

� stopping time to control the noise uniformly in !

� = inf ft> 0; kz(t)kH1¡�>Lg^ inf
�
t> 0; kzk

Ct
1/2¡2�

L2
>L

	
^L

� adaptedness � needed for the extension of solutions



Convex integration 8/14

� let (
;F ; (Ft)t>0;P) and a Brownian motion W be given

H., Zhu, Zhu '19 Let T > 0, K > 1 and � 2 (0; 1) be given. There exists 
 2 (0; 1) and a
P-a.s. strictly positive stopping time � satisfying

P(� >T )>�

such that the following holds true:

� There exists an (Ft)t>0-adapted process u which belongs to C([0; � ];H
) P-a.s. and is
an analytically weak solution.

� In addition, for the additive noise case

ku(T )kLx2>Kku(0)kLx2+K(T tr(GG�))1/2

on the set f� >T g.

� Corresponding failure of the energy inequality in the case of linear multiplicative and non-
linear cylindrical noise.

Leray probabilistically weak solutions obtained by compactness:

� exist for every given u02Ldiv
2 but not on a given probability space
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Non-uniqueness of Markov solutions



Non-uniqueness of Markov solutions 10/14

� probabilistic version of the semiflow property:

� future states depend only upon the present state, not the past

� knowledge of the whole past provides no more useful information than knowing the
present state only

� follows from uniqueness

� abstract selection procedure by Krylov (minimizing a sequence of functionals)

� properties: stability, shift and concatenation (disintegration and reconstruction)

Idea:

� non-uniqueness in a class of solutions where Markov selection is possible

� relaxed energy inequality

Ep(t) := kx(t)kL2
2p+2p

Z
0

t

kx(r)kL2
2p¡2kx(r)kH


2 dr¡ (Cp;1+Cp;2CG)

Z
0

t

kx(r)kL2
2p¡2dr

is an almost sure supermartingale



Markov solutions 11/14

H., Zhu, Zhu '21 Let e�> e
�
> 4 and e~> 0 be given. Then there exist 
 2 (0; 1) and a P-a.s.

strictly positive stopping time � such that the following holds true:

For every e: [0; 1] ! [e
�
; 1) belonging to Cb

1 with kekC0 6 e� and ke0kC0 6 e~, there exist
a deterministic initial value u0 and a probabilistically strong and analytically weak solution
u2C([0; � ];H
) P-a.s. satisfying

esssup!2
 sup
t2[0;� ]

ku(t)kH
<1;

and for t2 [0; � ]

ku(t)kL22 = e(t):

� applied with e(t)= c0+ c1t

� solutions to the SPDE with deterministic energy
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Existence and non-uniqueness of

global-in-time probabilistically strong solutions



Global-in-time probabilistically strong solutions 13/14

� non-uniqueness for any prescribed random initial condition in L2

� no control of the energy

� extension of convex integration solutions by other convex integration solutions

H., Zhu, Zhu '21 There exists an P-a.s. strictly positive arbitrarily large stopping time �,
such that for any initial condition u02L�2 P-a.s. the following holds true:

There exists an (Ft)t�0-adapted process u which belongs to Lp(0; � ;L2)\C([0; � ];W
1

2
;
31
30)

P-a.s. for all p2 [1;1) and is an analytically weak solution with u(0)=u0.

There are infinitely many such solutions u.
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Thanks for your attention!


