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Previously. . .

Theorem (Modena, Székelyhidi ’18; Modena, S. ’20)

Existence of infinitely many solutions to the incompressible transport
equation from same initial data in the class

ρ ∈ C 0
t L

p
x , v ∈ C 0

t

(
Lp

′
x ∩W 1,q

x

)
such that 1/p + 1/q > 1 + 1/d

“Infinitely many” is not very precise, especially for transport:
Existence of one ‘wild solution’ =⇒ Existence of infinitely many.
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Typicality results in Intermittent Convex
Integration

Recall: A is nowhere dense iff int(Ā) = ∅
A is meager iff countable union of nowhere dense sets
A is residual iff Ac meager.

Theorem (Colombo, de Rosa, Sorella ’21)

Set of Leray solutions is nowhere dense in L∞t L2
x solutions to NSE.

Set of solutions with partial regularity is meager.

=⇒ “Wild solutions” without regularity are the generic ones,
smooth solutions are rare.

Proof by approximation of a locally smooth solution with non-conservative
ones by explicit iteration.
(Similar approach for dissipative Euler flows in: de Rosa, Tione ’19)
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Back to the roots: Baire category method

Powerful method for proving “genericity” (and along the way existence)

Ingredients:

Three objects
A space of good objects (smooth functions) satisfying some
inequality/constraint (‘subsolutions’): X0

A topology on that space and its closure w.r.t. this topology: X
A functional on X (‘energy’) which is of Baire-1 class (pointwise limit
of continuous maps): I

And two statements
1 If x ∈ X such that I(x) = 0 then x is what we want (solution, has all

the desired properties)
2 If I(x) 6= 0 then I is discontinuous at x .

Conclusion: {x ∈ X : x is what we want} is residual in X .
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The setup for incompressible transport

Energy functional: for an arbitrary smooth positive profile e

I(ρ, v) = sup
t

e(t)−
‖ρ(t)‖pLp

p
−
‖v(t)‖p

′

Lp′

p′



Subsolutions: smooth ρ, v such that there is a smooth R solving the
transport-defect equation and for some fixed constant M

M‖R(t)‖L1 < e(t)−
‖ρ(t)‖pLp

p
−
‖v(t)‖p

′

Lp′

p′

Topology: for p ∈ (1,∞) and some scaling-subcritical p̃

Lpw ×
(
Lp

′
w ∩W 1,p̃

)
in space, uniformly in time.
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The perturbation proposition for transport

Proposition (cf. Modena, S. ’20)
For smooth positive a(t), δ > 0 and any smooth solution (ρ, v ,R) of
transport-defect there is another smooth solution (ρ1, v1,R1) satisfying

a(t) <
1
p
‖(ρ1 − ρ)(t)‖pLp +

1
p′
‖(v1 − v)(t)‖p

′

Lp′
< 2a(t) + M‖R(t)‖L1

‖(v1 − v)(t)‖W 1,p̃ < δ

‖(ρ1 − ρ)(t)‖L1 + ‖(v1 − v)(t)‖L1 + ‖R1(t)‖L1 < δ

Conclusion:

Theorem (S., Székelyhidi ’21+)
The set of solutions to the transport equations with regularity
Ct

(
Lp × (Lp

′ ∩W 1,p̃)
)
and energy profile e is residual in X .
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The case of 3D Navier-Stokes equations

The same strategy also applies to Navier-Stokes, if p̃ < 6
5 :

Proposition (cf. Burczak, Modena, Székelyhidi ’21)
For smooth positive a(t), δ > 0 and any smooth solution (v ,R) of the
Navier-Stokes-Reynolds system there is another smooth solution (v1,R1)
satisfying

a(t) < ‖(v1 − v)(t)‖2L2 < 2a(t) + M‖R(t)‖L1

‖(v1 − v)(t)‖W 1,p̃ < δ

‖R1(t)‖L1 < δ

Conclusion:

Theorem (S., Székelyhidi ’21+)

Set of solutions to NSE with regularity Ct

(
L2 ∩W 1,p̃) and (kinetic) energy

profile e is residual in X .
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Comparison: Typicality results for 3D NSE

Theorem (Colombo, de Rosa, Sorella ’21)

Set of Leray solutions is nowhere dense in L∞t L2
x solutions.

Set of solutions with partial regularity is meager.

Solutions without regularity are generic within all L∞L2 solutions
Proof by approximation of a good solution by explicit iteration

Theorem (S., Székelyhidi ’21+)
Set of solutions with (kinetic) energy profile t 7→ e(t) > 0 is residual in X .

Solutions are generic within incompressible fields (with constraints. . . )
Proof by Baire argument, no construction of solutions, no iteration

Thank You for Your attention!
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