GENERICITY OF WILD SOLUTIONS TO THE TRANSPORT EQUATION

Gabriel Sattig joint work with László Székelyhidi

University of Leipzig IMPRS MiS Leipzig

Convex Integration and nonlinear PDEs ICMS Edinburgh, November 11th 2021

THEOREM (MODENA, SZÉKELYHIDI '18; MODENA, S. '20)

Existence of infinitely many solutions to the incompressible transport equation from same initial data in the class

$$ho\in C^0_t L^p_x, \; v\in C^0_t\left(L^{p'}_x\cap W^{1,q}_x
ight)$$
 such that $1/p+1/q>1+1/d$

THEOREM (MODENA, SZÉKELYHIDI '18; MODENA, S. '20)

Existence of infinitely many solutions to the incompressible transport equation from same initial data in the class

$$ho\in C^0_t L^p_x, \; v\in C^0_t\left(L^{p'}_x\cap W^{1,q}_x
ight)$$
 such that $1/p+1/q>1+1/d$

"Infinitely many" is not very precise, especially for transport: Existence of one 'wild solution' \implies Existence of infinitely many.

TYPICALITY RESULTS IN INTERMITTENT CONVEX INTEGRATION

Recall: A is nowhere dense iff $int(\overline{A}) = \emptyset$ A is meager iff countable union of nowhere dense sets A is residual iff A^c meager.

Typicality results in Intermittent Convex Integration

Recall: A is nowhere dense iff $int(\overline{A}) = \emptyset$ A is meager iff countable union of nowhere dense sets A is residual iff A^c meager.

THEOREM (COLOMBO, DE ROSA, SORELLA '21)

Set of Leray solutions is nowhere dense in $L_t^{\infty} L_x^2$ solutions to NSE. Set of solutions with partial regularity is meager.

Typicality results in Intermittent Convex Integration

Recall: A is nowhere dense iff $int(\overline{A}) = \emptyset$ A is meager iff countable union of nowhere dense sets A is residual iff A^c meager.

THEOREM (COLOMBO, DE ROSA, SORELLA '21)

Set of Leray solutions is nowhere dense in $L_t^{\infty} L_x^2$ solutions to NSE. Set of solutions with partial regularity is meager.

 \implies "Wild solutions" without regularity are the generic ones, smooth solutions are rare.

Typicality results in Intermittent Convex Integration

Recall: A is nowhere dense iff $int(\bar{A}) = \emptyset$ A is meager iff countable union of nowhere dense sets A is residual iff A^c meager.

THEOREM (COLOMBO, DE ROSA, SORELLA '21)

Set of Leray solutions is nowhere dense in $L_t^{\infty} L_x^2$ solutions to NSE. Set of solutions with partial regularity is meager.

 \implies "Wild solutions" without regularity are the generic ones, smooth solutions are rare.

Proof by approximation of a locally smooth solution with non-conservative ones **by explicit iteration**.

(Similar approach for dissipative Euler flows in: de Rosa, Tione '19)

BACK TO THE ROOTS: BAIRE CATEGORY METHOD

Powerful method for proving "genericity" (and along the way existence) **Ingredients**:

Ingredients: Three objects

- A space of good objects (smooth functions) satisfying some inequality/constraint ('subsolutions'): X₀
- A topology on that space and its closure w.r.t. this topology: X
- A functional on X ('energy') which is of Baire-1 class (pointwise limit of continuous maps): \mathcal{I}

Ingredients: Three objects

- A space of good objects (smooth functions) satisfying some inequality/constraint ('subsolutions'): X₀
- A topology on that space and its closure w.r.t. this topology: X
- A functional on X ('energy') which is of Baire-1 class (pointwise limit of continuous maps): \mathcal{I}

And two statements

• If $x \in X$ such that $\mathcal{I}(x) = 0$ then x is what we want (solution, has all the desired properties)

Ingredients: Three objects

- A space of good objects (smooth functions) satisfying some inequality/constraint ('subsolutions'): X₀
- A topology on that space and its closure w.r.t. this topology: X
- A functional on X ('energy') which is of Baire-1 class (pointwise limit of continuous maps): \mathcal{I}

And two statements

- If $x \in X$ such that $\mathcal{I}(x) = 0$ then x is what we want (solution, has all the desired properties)
- 2 If $\mathcal{I}(x) \neq 0$ then \mathcal{I} is discontinuous at x.

Ingredients: Three objects

- A space of good objects (smooth functions) satisfying some inequality/constraint ('subsolutions'): X₀
- A topology on that space and its closure w.r.t. this topology: X
- A functional on X ('energy') which is of Baire-1 class (pointwise limit of continuous maps): \mathcal{I}

And two statements

- If x ∈ X such that I(x) = 0 then x is what we want (solution, has all the desired properties)
- 2 If $\mathcal{I}(x) \neq 0$ then \mathcal{I} is discontinuous at x.

Conclusion: $\{x \in X : x \text{ is what we want}\}$ is residual in X.

Ingredients: Three objects

- A space of good objects (smooth functions) satisfying some inequality/constraint ('subsolutions'): X₀
- A topology on that space and its closure w.r.t. this topology: X
- A functional on X ('energy') which is of Baire-1 class (pointwise limit of continuous maps): \mathcal{I}

And two statements

If x ∈ X such that I(x) = 0 then x is what we want (solution, has all the desired properties) – Directly from functional setup

2 If $\mathcal{I}(x) \neq 0$ then \mathcal{I} is discontinuous at x.

Conclusion: $\{x \in X : x \text{ is what we want}\}$ is residual in X.

Ingredients: Three objects

- A space of good objects (smooth functions) satisfying some inequality/constraint ('subsolutions'): X₀
- A topology on that space and its closure w.r.t. this topology: X
- A functional on X ('energy') which is of Baire-1 class (pointwise limit of continuous maps): \mathcal{I}

And two statements

- If x ∈ X such that I(x) = 0 then x is what we want (solution, has all the desired properties)
- **2** If $\mathcal{I}(x) \neq 0$ then \mathcal{I} is discontinuous at x. Perturbation statement

Conclusion: $\{x \in X : x \text{ is what we want}\}$ is residual in X.

THE SETUP FOR INCOMPRESSIBLE TRANSPORT

• Energy functional: for an arbitrary smooth positive profile e

$$\mathcal{I}(
ho, m{v}) = \sup_t \left(e(t) - rac{\|
ho(t)\|_{L^p}^p}{p} - rac{\|m{v}(t)\|_{L^{p'}}^{p'}}{p'}
ight)$$

THE SETUP FOR INCOMPRESSIBLE TRANSPORT

• Energy functional: for an arbitrary smooth positive profile e

$$\mathcal{I}(
ho, extsf{v}) = \sup_t \left(e(t) - rac{\|
ho(t)\|_{L^p}^p}{p} - rac{\| extsf{v}(t)\|_{L^{p'}}^{p'}}{p'}
ight)$$

• Subsolutions: smooth ρ , v such that there is a smooth R solving the transport-defect equation and for some fixed constant M

$$\|M\|R(t)\|_{L^1} < e(t) - rac{\|
ho(t)\|_{L^p}^p}{p} - rac{\|v(t)\|_{L^{p'}}^{p'}}{p'}$$

THE SETUP FOR INCOMPRESSIBLE TRANSPORT

• Energy functional: for an arbitrary smooth positive profile e

$$\mathcal{I}(
ho, extsf{v}) = \sup_t \left(e(t) - rac{\|
ho(t)\|_{L^p}^p}{p} - rac{\| extsf{v}(t)\|_{L^{p'}}^{p'}}{p'}
ight)$$

• Subsolutions: smooth ρ , v such that there is a smooth R solving the transport-defect equation and for some fixed constant M

$$\|M\|R(t)\|_{L^1} < e(t) - \frac{\|\rho(t)\|_{L^p}^p}{p} - \frac{\|v(t)\|_{L^{p'}}^{p'}}{p'}$$

ullet Topology: for $p\in(1,\infty)$ and some scaling-subcritical $ilde{
ho}$

$$L^p_w imes \left(L^{p'}_w \cap W^{1, ilde{
ho}}
ight)$$
 in space, uniformly in time.

PROPOSITION (CF. MODENA, S. '20)

For smooth positive a(t), $\delta > 0$ and any smooth solution (ρ, v, R) of transport-defect there is another smooth solution (ρ_1, v_1, R_1) satisfying

$$\begin{aligned} \mathsf{a}(t) < \frac{1}{p} \| (\rho_1 - \rho)(t) \|_{L^p}^p + \frac{1}{p'} \| (v_1 - v)(t) \|_{L^{p'}}^{p'} < 2\mathsf{a}(t) + M \| R(t) \|_{L^1} \\ \| (v_1 - v)(t) \|_{W^{1,\tilde{p}}} < \delta \\ \| (\rho_1 - \rho)(t) \|_{L^1} + \| (v_1 - v)(t) \|_{L^1} + \| R_1(t) \|_{L^1} < \delta \end{aligned}$$

PROPOSITION (CF. MODENA, S. '20)

For smooth positive a(t), $\delta > 0$ and any smooth solution (ρ, v, R) of transport-defect there is another smooth solution (ρ_1, v_1, R_1) satisfying

$$\begin{split} \mathsf{a}(t) < \frac{1}{p} \| (\rho_1 - \rho)(t) \|_{L^p}^p + \frac{1}{p'} \| (v_1 - v)(t) \|_{L^{p'}}^{p'} < 2\mathsf{a}(t) + M \| \mathsf{R}(t) \|_{L^1} \\ \| (v_1 - v)(t) \|_{W^{1, \tilde{p}}} < \delta \\ \| (\rho_1 - \rho)(t) \|_{L^1} + \| (v_1 - v)(t) \|_{L^1} + \| \mathsf{R}_1(t) \|_{L^1} < \delta \end{split}$$

Conclusion:

THEOREM (S., SZÉKELYHIDI '21+)

The set of solutions to the transport equations with regularity $C_t \left(L^p \times (L^{p'} \cap W^{1,\tilde{p}}) \right)$ and energy profile e is residual in X.

The case of 3D Navier-Stokes equations

The same strategy also applies to Navier-Stokes, if $\tilde{p} < \frac{6}{5}$:

PROPOSITION (CF. BURCZAK, MODENA, SZÉKELYHIDI '21)

For smooth positive a(t), $\delta > 0$ and any smooth solution (v, R) of the Navier-Stokes-Reynolds system there is another smooth solution (v_1, R_1) satisfying

$$\begin{aligned} \mathsf{a}(t) < \|(\mathsf{v}_1 - \mathsf{v})(t)\|_{L^2}^2 < 2\mathsf{a}(t) + M\|R(t)\|_{L^1} \\ \|(\mathsf{v}_1 - \mathsf{v})(t)\|_{W^{1,\tilde{\rho}}} < \delta \\ \|R_1(t)\|_{L^1} < \delta \end{aligned}$$

The case of 3D Navier-Stokes equations

The same strategy also applies to Navier-Stokes, if $\tilde{p} < \frac{6}{5}$:

PROPOSITION (CF. BURCZAK, MODENA, SZÉKELYHIDI '21)

For smooth positive a(t), $\delta > 0$ and any smooth solution (v, R) of the Navier-Stokes-Reynolds system there is another smooth solution (v_1, R_1) satisfying

$$\begin{aligned} \mathsf{a}(t) < \|(\mathsf{v}_1 - \mathsf{v})(t)\|_{L^2}^2 < 2\mathsf{a}(t) + M\|R(t)\|_{L^1} \\ \|(\mathsf{v}_1 - \mathsf{v})(t)\|_{W^{1,\tilde{\rho}}} < \delta \\ \|R_1(t)\|_{L^1} < \delta \end{aligned}$$

Conclusion:

Theorem (S., Székelyhidi '21+)

Set of solutions to NSE with regularity $C_t(L^2 \cap W^{1,\tilde{p}})$ and (kinetic) energy profile e is residual in X.

GABRIEL SATTIG (UNI LEIPZIG)

GENERICITY OF WILD SOLUTIONS

Theorem (Colombo, de Rosa, Sorella '21)

Set of Leray solutions is nowhere dense in $L_t^{\infty} L_x^2$ solutions. Set of solutions with partial regularity is meager.

- \bullet Solutions without regularity are generic within all $L^\infty L^2$ solutions
- Proof by approximation of a good solution by explicit iteration

THEOREM (S., SZÉKELYHIDI '21+)

Set of solutions with (kinetic) energy profile $t \mapsto e(t) > 0$ is residual in X.

- Solutions are generic within incompressible fields (with constraints...)
- Proof by Baire argument, no construction of solutions, no iteration

Theorem (Colombo, de Rosa, Sorella '21)

Set of Leray solutions is nowhere dense in $L_t^{\infty} L_x^2$ solutions. Set of solutions with partial regularity is meager.

- \bullet Solutions without regularity are generic within all $L^\infty L^2$ solutions
- Proof by approximation of a good solution by explicit iteration

THEOREM (S., SZÉKELYHIDI '21+)

Set of solutions with (kinetic) energy profile $t \mapsto e(t) > 0$ is residual in X.

- Solutions are generic within incompressible fields (with constraints...)
- Proof by Baire argument, no construction of solutions, no iteration

Thank You for Your attention!