
INFINITE-DIMENSIONAL REPRESENTATIONS OF ALGEBRAS

The aim of these lecture notes is to give an example-driven introduction to a class of modules
called pure-injective modules, as well as the techniques that allow us to study them systematically.
In particular, we will focus on modules over a K-algebra A, where K is a field. Every A-module
has an in-built K-vector space structure and this approach will give us access to many interesting
examples of modules where this underlying K-vector space is infinite-dimensional. These are known
as infinite-dimensional modules or infinite-dimensional representations.

Studying infinite-dimensional modules in general contains some obvious challenges. It is not
easy to make use of the underlying linear algebra – for example, we can prove that any K-vector
space has a basis (see Example 1.11) but, since the proof is not constructive, it can be difficult to
identify a basis in a given example. It is therefore useful to study K-subspaces of modules, called
finite matrix subgroups or pp-definable subgroups, that are controlled by some finite data. The
pure-injective modules are those that behave well with respect to these K-subspaces.

The isomorphism classes of indecomposable pure-injective modules form the underlying set of a
topological space, known as the Ziegler spectrum. The final part of these notes contains an account
of the basic properties of this topological space in the case where A is a finite-dimensional algebra.
We will end by making use of these basic properties to characterise finite representation type in
terms of the Ziegler spectrum.

We do not assume any prior knowledge of representation theory or category theory. A significant
majority of references approaching these topics make use of categorical techniques, often focusing on
the connection with functor categories. The idea of these lectures is to demonstrate the usefulness of
a more computational viewpoint, with the hope of making this topic accessible to a broad audience.

1. Algebras and Modules

This section is dedicated to examples of K-algebras and modules over them. This will pave the
way to Sections 2 and 3, which contain some concrete examples of infinite-dimensional modules
that will allow us to illustrate the definitions and results covered in the later sections.

1.1. K-algebras.

Definition 1.1. A K-algebra is a K-vector space A with a K-bilinear multiplication A×A→ A,
(a, b) 7→ ab such that there exists an element 1 ∈ A (called the unit) such that 1a = a = a1.

From now on, we will use A to denote an arbitrary K-algebra.

Example 1.2. The one-dimensional vector space K with multiplication given by the field multipli-
cation and the unit given by the multiplicative identity in the field.

Example 1.3. Consider the set

K[X] := {k0 + k1X + k2X
2 + · · ·+ knX

n | n ≥ 0, ki ∈ K for 0 ≤ i ≤ n}

of polynomials with one free variable X and with coefficients in K. This is a K-vector space with
a countably infinite basis {1, X,X2, X3, . . . } and we define multiplication in K[X] to be the usual
multiplication of polynomials. The element 1 is the unit.

Example 1.4. Consider the following finite directed graph Q (in this context Q is known as a
quiver).
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Let KQ be the vector space with basis given by the paths in Q (including a path of length zero for
each vertex denoted by ei for each vertex i). That is, the elements of KQ are formal K-linear
combinations of elements of the set

Pa := {e1, e2, β, α
n, δm, βαn, δmβ, δmβαn | n,m ∈ N}.

If p, q are paths in Pa, then we define their product p · q to be the concatenation of the paths if this
is possible and 0 otherwise. Extending this product K-linearly allows us to define a multiplication
in KQ. There is a unit element given by e1 + e2. This algebra is called the path algebra of Q.

Example 1.5. Consider the algebra KQ described in Example 1.4 and the ideal I generated by the
set ρ := {δβα, α2, δ2}. This is an example of an admissible ideal of KQ (see [1, Def. II.2.1]) and a
pair (Q, I) consisting of a quiver and an admissible ideal of KQ is called a bound quiver.

The quotient algebra KQ/I is called the path algebra of the bound quiver (Q, I). Note that
the underlying K-vector space of the quotient algebra KQ/I has the following basis:

{e1, e2, β, α, β, βα, δβ}.

To learn more about general path algebras of bound quivers see [1].

1.2. Modules over a K-algebra.

Definition 1.6. Let A be a K-algebra. Then a (left) A-module is a K-vector space M with an
A-action, that is, a K-bilinear map A×M →M , (a,m) 7→ am such that, for any a, b ∈ A and any
m ∈M , we have that (ab)m = a(bm) and 1m = m.

Unless otherwise specified, the terminology “A-module”, will mean “left A-module”.

Example 1.7. The definition of an K-module coincides with the definition of a K-vector space.

Example 1.8. Consider the algebra K[X] defined in Example 1.3. By definition, a K[X]-module
M is a K-vector space together with a K[X]-action. Let p = k0 + k1X + k2X

2 + · · ·+ knX
n be an

arbitrary element of K[X]. Then, for any element m ∈M , we have that

pm = (k0 + k1X + k2X
2 + · · ·+ knX

n)m = k0m+ k1(Xm) + k2(X2m) + · · ·+ kn(Xnm).

It follows that the action of K[X] is determined by the K-vector space structure of M as well as
the K-linear endomorphism Φ: M → M given by m 7→ Xm. Conversely, a K-vector space M
together with a K-linear endomorphism Φ uniquely determines a K[X]-module. In other words, we
can view K[X]-modules as representations of the one-loop quiver.

M Φgg

Example 1.9. Consider the bound quiver (Q, I) given in Example 1.5. Modules over the path
algebra KQ/I are determined by representations of the bound quiver (Q, I) (see, for example,
[1, Thm. III.1.6]). That is, a pair of vector spaces U1 and U2, together with K-linear maps Uα, Uβ
and Uδ arranged in the following configuration
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such that U2
α = 0, U2

δ = 0 and UδUβUα = 0.
Given such a representation, we define a KQ/I-module with underlying vector space U1 ⊕ U2.

Since every element of KQ/I is a K-linear combination of elements of the set {e1, e2, β, α, β, βα, δβ},
it is enough to specify the action of these basis elements.

• The action of e1 is given by the matrix

(
idU1 0

0 0

)
• The action of e2 is given by the matrix

(
0 0
0 idU2

)
• The action of α is given by the matrix

(
Uα 0
0 0

)
• The action of β is given by the matrix the matrix

(
0 0
Uβ 0

)
• The action of δ is given by the matrix

(
0 0
0 Uδ

)
The action of the remaining two paths in the basis (βα and δβ) is given by the composition of the
relevant matrices

1.3. Infinite-dimensional A-modules.

Definition 1.10. Let A be a K-algebra. An A-module M is called finite-dimensional if the
underlying vector space of M is finite-dimensional. An A-module that is not finite-dimensional is
called infinite-dimensional.

There is a very broad and well-developed body of research devoted to the study of finite-
dimensional modules over finite-dimensional algebras. In these lecture notes, however, we will
look at certain classes of infinite-dimensional modules. These modules arise naturally in the repre-
sentation theory of algebras and in future lectures we will begin to explore some of the rich theory
surrounding infinite-dimensional pure-injective modules. Before we enter into this framework, we
will consider how infinite-dimensional modules over the algebras given in Section 1.1 look.

Example 1.11. By definition, any finite-dimensional K-module V of dimension n ∈ N has a basis
with n elements in it. It follows from this that V is isomorphic to Kn.

Now let us consider an infinite-dimensional K-module W . It is well-known that, despite not
being finite-dimensional, the vector space W has a basis. Let us sketch an argument to prove this
claim. Let L be the set of linearly independent sets contained in W ordered by inclusion. It is clear
that, for any chain L1 ⊂ L2 ⊂ L3 ⊂ . . . in L, the union

⋃
i≥1 Li is an upper bound in L. Thus we

may apply Zorn’s lemma to obtain a maximal linearly independent set M. If M does not span W ,
then choose an element w ∈W \Span(M). The set M∪{w} is linearly independent, contradicting
the maximality of M. We have shown that M spans W and so is a basis. It follows that W is
isomorphic to the direct sum K(M) of copies of K indexed by the set M.

From this perspective, the infinite-dimensional K-modules are not much more interesting than
the finite-dimensional ones. This kind of behaviour is typical of semi-simple rings (in fact, K is
even a simple ring); see [6, Sec. 1.2] for more information about this family of rings.

Example 1.12. In Example 1.8, we saw that a representation (M,Φ) uniquely determines a K[X]-
module. This is an infinite-dimensional K[X]-module if and only if M is an infinite-dimensional
K-vector space.

Example 1.13. In Example 1.9, we saw that KQ/I-modules are determined by representations
of the quiver with relations. Such a representation corresponds to an infinite-dimensional KQ/I-
module if and only if the K-vector space U1 ⊕ U2 is infinite-dimensional.



1.4. Homomorphisms between A-modules.

Definition 1.14. Let M and N be A-modules. Then an A-homomorphism is a K-linear map
f : M → N such that, for any a ∈ A and m ∈M , we have that f(am) = af(m).

Example 1.15. The definition of a K-homomorphism coincides with the definition of a K-linear
map.

Example 1.16. Let M and N be K[X]-modules and suppose Φ: M →M and Ψ: N → N are the
K-linear endomorphisms determined by the actions of X on M and N respectively (see Example
1.8). Then a K-linear map f : M → N is a K[X]-homomorphism if and only if, for any m ∈ M
and p = k0 + k1X + k2X

2 + · · ·+ knX
n ∈ K[X], we have that

k0f(m) + k1Xf(m) + · · ·+ knX
nf(m) = pf(m) = f(pm) = k0f(m) + k1f(Xm) + · · ·+ knf(Xnm)

if and only if we have Xf(m) = f(Xm) for all m ∈M , i.e. Φ ◦ f = f ◦Ψ.

Example 1.17. Consider representations
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of (Q, I). We saw in Example 1.9 that these representations determine KQ/I-modules with under-
lying vector spaces U1 ⊕ U2 and V1 ⊕ V2 respectively. It follows from the definition that a K-linear

map

(
a b
c d

)
: U1 ⊕U2 → V1 ⊕ V2 is a KQ/I-homomorphism if and only if we have that b = 0 = c

and the following diagrams commute:

U1
a //

Uα
��

V1

Vα
��

U1 a
// V1

U1
a //

Uβ
��

V1

Vβ
��

U2
d
// V2

U2
d //

Uδ
��

V2

Vδ
��

U2
d
// V2

2. Direct Limits

In this section we will introduce direct limits as a means to build examples of infinite-dimensional
A-modules. The notion of a direct limit allows you to build a new module out of a given family
of modules. The word “direct” refers to the fact that the family of modules must form a direct
system, i.e. there are A-homomorphisms between the modules that satisfy the next definition.

Definition 2.1. A directed set is a nonempty set I with a reflexive and transitive binary relation
≤ such that, for every i, j ∈ I, there exists k ∈ I such that i ≤ k and j ≤ k.

Definition 2.2. Let I be a directed set. A collection of A-modules {Mi | i ∈ I} together with
a collection of A-homomorphisms {fij : Mi → Mj | i, j ∈ I, i ≤ j} is called a direct system of
A-modules if fii = idMi for all i ∈ I and fjkfij = fik for all i ≤ j ≤ k.

Mi

fij

��

fik

''

Mk fkk=idMkll

Mj

fjk
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Remark 2.3. The direct limit (as we define it in Definition 2.4 below) satisfies a universal property
that means it is isomorphic to the colimit of the diagram F = {fij : Mi → Mj | i, j ∈ I, i ≤ j} in
the category of A-modules. See, for example, [11, Sec. IV.8] for more details.

We will usually refer only to the set {fij : Mi → Mj | i, j ∈ I, i ≤ j} of morphisms as a direct
system of A-modules since the existence of the modules {Mi | i ∈ I} is implied by this. Define an
equivalence relation on the disjoint union

⊔
i∈IMi by declaring that mi ∼ mj whenever mi ∈ Mi,

mj ∈Mj and there exists k ≥ i, j such that fik(mi) = fjk(mj).

Definition 2.4. The direct limit lim−→I
Mi of a direct system F = {fij : Mi →Mj | i, j ∈ I, i ≤ j}

is the A-module given by the set
⊔
i∈IMi/ ∼ with the unique A-module operations such that, for

every k ∈ I, the canonical map Mk → lim−→I
Mi is an A-homomorphism.

Remark 2.5. An explicit description of the operations defining the A-module structure of lim−→I
Mi

can be found in [11, Sec. I.5].

2.1. Examples of direct limits. Next we will introduce some examples of infinite-dimensional
modules that arise as direct limits of finite-dimensional modules.

Remark 2.6. It is important to observe that a direct limit is not necessarily an infinite-dimensional
module. For example, if we take any finite-dimensional module M , then we can define a direct
system {idMnm : Mn → Mm | Mn

∼= M,Mm
∼= M for all n ≤ m} where the associated directed set

is I = N. Then the direct limit lim−→I
Mi is isomorphic to M and hence is finite-dimensional.

Example 2.7. Consider the K-algebra K[X] given in Example 1.3 and let k ∈ K. For each n ∈ N,
consider the vector space Kn and the K-linear endomorphism given by the Jordan block

Jk,n =


k 1 0 · · · 0 0
0 k 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · k 1
0 0 0 · · · 0 k

 .

In Example 1.8, we saw that this defines a K[X]-module which we will denote by Mk,n. The
(n+ 1× n)-matrix (

In
0 · · · 0

)
(where In is the (n× n)-identity matrix) defines a K[X]-homomorphism fn : Mk,n →Mk,n+1. We
consider the directed set N and the direct system

{gnm := fm−1 ◦ · · · ◦ fn : Mk,n →Mk,m | n < m in N} ∪ {gnn := In | n ∈ N}.
The direct limit Mk,∞ := lim−→NMk,n is called the k-Prüfer module over K[X].

Proposition 2.8. The k-Prüfer module Mk,∞ is isomorphic to the module with underlying vector

space K(N) and with the action of X given by the K-linear endomorphism Jk,∞ : K(N) → K(N)

defined by (kn)n∈N 7→ (kkn + kn+1)n∈N.

Proof. Let Φ: lim−→NMk,n → lim−→NMk,n denote the K-linear endomorphism induced by the action of
X on lim−→NMk,n. Consider the map

h : lim−→
N
Mk,n → K(N)

that takes an equivalence class [(ki)
m
i=1] with (ki)

m
i=1 ∈ Mk,m to the element (k′i)i∈N in K(N) with

k′i := ki for i ≤ m and k′i = 0 for i > m. It is straightforward to check that h is a well-defined
K[X]-isomorphism. �



Example 2.9. Consider the periodic sequence z = (. . . β−1δ−1βαβ−1δ−1βαβ−1δ−1βα) of arrows
in (Q, I) and their formal inverses. We may represent this sequence in the following diagram:

v1

α
  

v3

β
}}

α
  

v5

β
}}

α

��v2

β
!!

w2

δ
}}

v4

β
!!

w4

δ
}}

w1 w3

. . . . . .

The labels on the starting and ending points of the arrows correspond to basis elements of a repre-
sentation
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of (Q, I), which is defined as follows. Define U1 to be the K-vector space with basis {vi | i ∈ N} and
define U2 to be the K-vector space with basis {wi | i ∈ N}. Intuitively, we think of the labels on the
arrows in the above diagram as corresponding to the K-linear maps that make up this representation.
More precisely, define Uα : U1 → U1 to be the K-linear map that takes vi to vi+1 when i is odd and
takes vi to zero when i is even. Define Uβ : U1 → U2 to be the K-linear map that take v1 to zero
and vi to wi−1 when i ≥ 2. Define Uδ : U2 → U2 to take wi to zero when i is odd and takes wi
to wi−1 when i is even. The module M(z) determined by this representation is called an infinite
string module over KQ/I.

The module described in Example 2.9 arises as the direct limit of a direct system of finite-
dimensional modules. For each n ∈ N, consider the submodule M(zn) of M(z) spanned by the basis
elements {vi | 1 ≤ i ≤ 2n} ∪ {wi | 1 ≤ i ≤ 2n− 1}. The module M(zn) therefore has an underlying
vector space that is isomorphic to K2n ⊕K2n−1. We will represent a typical element of M(zn) by
((ki)

2n
i=1, (li)

2n−1
i=1 ). Consider the direct system of canonical inclusions denoted by {ιnm : M(zn) →

M(zm) | n ≤ m}. For example, the inclusion ι12 is represented by the following diagram

v1

α
  
v2

β
!!
w1

ι12 //

v1

α
!!!!!!!!!!!!!!

v3

β
}}

α
  

v2

β
!! !!!!!!!!!!

w2

δ
||

v4

β
!!

w1 w3

where the bold text indicates the image of ι12.

Proposition 2.10. The string module M(z) described in Example 2.9 is isomorphic to lim−→NM(zn).

Proof. Consider the map

h : lim−→
N
M(zn)→M(z)

that takes an equivalence class [((ki)
2n
i=1, (li)

2n−1
i=1 )] to the element ((k′i)i∈N, (l

′
i)i∈N) where k′i = ki

for 1 ≤ i ≤ 2n; k′i = 0 for i > 2n; l′i = li for 1 ≤ i ≤ 2n − 1 and l′i = 0 for i > 2n − 1. It is
straightforward to check that h is a well-defined KQ/I-isomorphism. �



3. Duality

In this section we will describe a duality, induced by the usual K-vector space duality, that will
allow us to construct new (left) A-modules from right A-modules.

3.1. Right A-modules and the opposite algebra. The definition of a right A-module is anal-
ogous to Definition 1.6 with A acting on the right instead of the left. Another way of viewing right
A-modules is as left Aop-modules, where Aop is the opposite algebra. This perspective will be useful
for us when computing examples in this section.

Definition 3.1. Let A be a K-algebra with multiplication A×A→ A sending (a, b) to ab. Define
the opposite algebra Aop to be K-algebra with the same underlying vector space as A and
K-bilinear multiplication ∗ : Aop ×Aop → Aop sending (a, b) to a ∗ b := ba.

Suppose M is a left Aop-module. Then, by definition, M is a K-vector space with an Aop-action
· : Aop×M →M such that, for any a, b ∈ Aop and any m ∈M , we have that (a ∗ b) ·m = a · (b ·m)
ans 1 ·m = m. We can then define a right A-action M × A → M on M to be ma := a ·m for all
m ∈ M and a ∈ A. Then we have m(ab) = m(b ∗ a) = (b ∗ a) ·m = b · (a ·m) = (a ·m)b = (ma)b
and m1 = 1 ·m = m. We have shown that any left Aop-module determines a right A-module. A
similar argument yields the converse statement.

Example 3.2. Both K and K[X] are commutative algebras and so they coincide with their opposite
algebra. In particular, every right module over K or K[X] is also a left module and vice versa.

Example 3.3. Consider the algebra KQ/I from Example 1.5. The opposite algebra (KQ/I)op is
given by the path algebra of the opposite quiver Q∗

•1∗α∗
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with relation ρ∗ := {α∗β∗δ∗, (α∗)2, (δ∗)2}. That is, take the K-vector space KQ∗ with basis

Pa∗ := {e∗1, e∗2, α∗, β∗, δ∗, α∗β∗, β∗δ∗, α∗β∗δ∗}
together with the multiplication induced by concatenation of paths. Then (KQ/I)op = KQ∗/I∗

where I∗ is the ideal of KQ∗ generated by ρ∗. By an analogous argument to the one given in
Example 1.9, the left KQ∗/I∗-modules (i.e. right KQ/I-modules) are given by representations of
(Q∗, I∗).

3.2. Dual modules. We know that any right A-module has an underlying K-vector space struc-
ture and so we may consider the dual K-vector space. The following definition yields a canonical
way of equipping the dual K-vector space with a left A-module structure.

Definition 3.4. Let A be a K-algebra and let M be a right A-module (equivalently a left Aop-
module). Then the K-dual M∗ of M is defined to be the left A-module consisting of the usual K-
dual vector space M∗ and the A-action A×M∗ →M∗ given by (a, f) 7→ af where (af)(m) = f(ma)
for each m ∈M .

Example 3.5. Consider a K-vector space V with basis B. We have already observed that V ∼= K(B).
Then the dual K-module coincides with the dual K-vector space, which is given by the direct product
KB of copies of K indexed by B.

Example 3.6. Let k ∈ K and consider the k-Prüfer module Mk,∞ as a right K[X]-module. Then
the dual module M∗k,∞ is called the k-adic module over K[X] and will be denoted Mk,−∞. More-

over, Mk,−∞ is isomorphic to the module with underlying vector space given by KN and with the

action of X given by the endomorphism Jk,∞ : KN → KN defined by (kn)n∈N 7→ (kkn + kn−1)n∈N
where k0 is defined to be zero.



Example 3.7. Consider the infinite string module over KQ∗/I∗ given by periodic sequence y∗ =
(. . . (β∗)−1(α∗)−1β∗δ∗(β∗)−1(α∗)−1β∗δ∗(β∗)−1(α∗)−1β∗δ∗), represented by the following diagram:

v1

δ∗
  

v3

β∗
}}

δ∗
  

v5

β∗
}}

δ∗

��v2

β∗
!!

w2

α∗
}}

v4

β∗
!!

w4

α∗
}}

w1 w3

. . . . . .

Then the left KQ∗/I∗-module M(y∗) can be considered as a right KQ/I-module. The dual
infinite string module M(y∗)∗ can be described explicitly as follows. Take the periodic sequence
of dual arrows y = (. . . βαβ−1δ−1βαβ−1δ−1βαβ−1δ−1) represented by the following diagram:

w1

α

!!

β

}}

w3

α

!!

β

}}
v2

δ

~~

w2
β

!!

v4

δ

~~

w4
β

!!

δ

��
v1 v3 v5

. . . . . .

Define a representation
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of (Q, I) as follows. Define V1 to be the K-vector space KN where we label wi := (0, . . . , 0, 1, 0, . . . )
with 1 in the ith position. Define V2 to be the K-vector space KN and, similarly, we label vi :=
(0, . . . , 0, 1, 0, . . . ) with 1 in the ith position.. The labels on the arrows correspond to the K-linear
maps that make up this representation. Define Vα : V1 → V1 to be the K-linear map that takes wi
to wi+1 when i is odd and takes wi to zero when i is even. Define Vβ : V1 → V2 to be the K-linear
map that takes wi to vi+1 for all i ∈ N. Define Vδ : V2 → V2 to take vi to zero when i is odd and
takes vi to vi−1 when i is even.

4. Finite Matrix Subgroups and Pp-definable Subgroups

4.1. Finite matrix subgroups. In our setting, a matrix subgroup of an A-module M is a K-
subspace of the underlying K-vector space of M that can be realised as the trace of an element
x ∈ L in M for some A-module L. In this section we introduce the notion of a finite matrix
subgroup, which is a matrix subgroup where the module L is finitely presented.

Definition 4.1. An A-module L is called finitely presented if there exist n,m ∈ N such that
L ∼= An/im(Φ) where Φ: Am → An and im(Φ) denotes the image of Φ. Note that Φ can be
represented by a (m × n)-matrix P = (aji) with aji ∈ A for 1 ≤ i ≤ n and 1 ≤ j ≤ m such that
Φ:

(
a1 . . . am

)
7→
(
a1 . . . am

)
P .

Example 4.2. If A is a finite-dimensional algebra, then the finitely presented modules coincide
with the finite-dimensional modules. Since a finitely presented module is a quotient of the finite-
dimensional module An, it must be a finite-dimensional module itself. Conversely, if M is an n-
dimensional module, then the K-basis is also an A-generating set, so we may define an epimorphism
Ψ: An →M . Then the kernel ker(Ψ) of Ψ is finite-dimensional and so, by the same argument, there



exists an epimorphism Ω: Am → ker(Ψ). Then the composition Φ := ι ◦ Ω, where ι : ker(Ψ)→ An

is the canonical embedding, is the desired presentation of M .

Definition 4.3. Let M be an A-module and let L be a finitely presented A-module. For a fixed
l ∈ L, consider the K-subspace H(L,l)(M) := {f(l) | f : L → M an A-homomorphism}. A K-
subspace of this form is called a finite matrix subgroup of M .

Remark 4.4. Finite matrix subgroups are usually defined in the context of modules over a ring
(that is not necessarily a K-algebra). In that more general setting the set H(L,l)(M) is a subgroup
of the underlying abelian group structure of M . This is why H(L,l)(M) is called a finite matrix
subgroup rather than a finite matrix subspace.

Example 4.5. Consider the KQ/I-module M(z) from Example 2.9 and the finite-dimensional
submodule M(z2) with the underlying vector space spanned by {v1, v2, v3, v4, w1, w2, w3}. Then the
finite matrix subgroup HM(z2),w2

(M(z)) is the K-subspace spanned by

{w2} ∪ {w2n−1 | n ∈ N}.
This is witnessed by the fact that there are the following KQ/I-homomorphisms from M(z2) to
M(z):

• The embedding f0 : M(z2) → M(z) given by vi 7→ vi and wj 7→ wj for i ∈ {1, 2, 3, 4} and
j ∈ {1, 2, 3}. Then f0(w2) = w2.
• For each n ∈ N, we have a KQ/I-homomorphism fn : M(z2) → M(z) given by v3 7→ v2n,
w2 7→ w2n−1, vi 7→ 0 and wj 7→ 0 for i ∈ {1, 2, 4} and j ∈ {1, 3}. Then fn(w2) = w2n−1.

It is an interesting exercise to prove that these KQ/I-homomorphisms {fn | n ≥ 0} form a basis
for the K-vector space of KQ/I-homomorphisms from M(z2) to M(z). Alternatively, we may apply
the more general theorem proved in [2, Sec. 1.4].

Remark 4.6. In general, a finite matrix subgroup HL,l(M) is not an A-submodule of M . Indeed,
if we take the KQ/I-module Ae1 = {a ∈ A | ∃b ∈ A such that a = be1}. Then HAe1,e1(M(z))
coincides with the K-subspace spanned by the set {vn | n odd}. This is not an KQ/I-submodule of
M(z) since, for example, w2 = βv3 is not contained in HAe1,e1(M(z)).

4.2. Pp-definable subgroups. The notion of a pp-definable subgroup comes from the area of
logic called model theory. They are the sets of elements of a module that realise a given positive
primitive formula in the language of A-modules. We will not put too much emphasis on the model
theoretic perspective in these lectures, however, if you are interested in this subject you can read
more in [7].

Definition 4.7. Let M be an A-module and let
∑n

i=1 ajixi = 0 where 1 ≤ j ≤ m be a finite
A-linear system. That is, the symbols xi denote free variables and aji ∈ A for each 1 ≤ i ≤ n
and 1 ≤ j ≤ m. Note that the system depends on a (m × n)-matrix P = (aji) with aji ∈ A for
1 ≤ i ≤ n and 1 ≤ j ≤ m. Consider the K-subspace

φP (M) := {u1 ∈M | there exist u2, . . . , un ∈M such that
n∑
i=1

ajiui = 0 for all 1 ≤ j ≤ m}.

A K-subspace of this form is called a pp-definable subgroup of M .

Remark 4.8. The symbol φP refers the first order formula

∃x2 . . . ∃xn

(
n∑
i=1

a1ixi = 0 ∧ · · · ∧
n∑
i=1

amixi = 0

)
that should be read as “there exist x2 up to xn such that

∑n
i=1 a1ixi = 0 and

∑n
i=1 a2ixi = 0 . . . ”

and so on up to m. The notation φP (M) is then used for the solution set of this formula in M .



That is, the set of elements u1 in M such that, when we replace x1 with u1, the statement above in
quotation marks is true. Note that this coincides with what is written in Definition 4.7.

In parallel to Remark 4.4, we observe that, if we made this definition for a module M over a
general ring, then φP (M) would form a subgroup of the underlying abelian group structure of M .
In our setting, this is even a K-subspace.

Example 4.9. Consider the following system of KQ/I-linear equations:

e1x1 = 0

δx1 − x2 = 0

βx3 − x2 = 0

αx4 − x3 = 0

βx4 = 0.

We have the corresponding matrix

P =


e1 0 0 0
δ −1 0 0
0 −1 β 0
0 0 −1 α
0 0 0 β

 .

Then the pp-definable subgroup ΦP (M(z)) of M(z) is the K-subspace spanned by the set

{w2} ∪ {w2n−1 | n ∈ N}.

The pp-definable subgroup ΦP (M(y∗)∗) of M(y∗)∗ is given by the set of (possibly infinite) K-linear
combinations of the set {v2n−1 | n ∈ N}.

If we look at Example 4.5 and Example 4.9, then we find that HM(z2),w2
(M(z)) = ΦP (M(z)).

In the next proposition we will show that the set of finite matrix subgroups of an A-module M
coincides with the set of pp-definable subgroups of M .

Proposition 4.10. Let U be a K-subspace of an A-module M . The following statements are
equivalent.

(1) There exists a finitely presented A-module L and l ∈ L such that U = HL,l(M).
(2) There exists a finite A-linear system determined by a matrix P such that U = φP (M).

Proof. Consider an (m × n)-matrix P = (aji) with aji ∈ A for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We
have already observed that P determines both an A-linear system

∑n
i=1 ajixi = 0 where 1 ≤ j ≤ m

and a finitely presented module L := An/im(Φ) where Φ: Am → An is the A-homomorphism(
a1 . . . am

)
7→
(
a1 . . . am

)
P . We fix the following notation. For each 1 ≤ j ≤ m, let

dj := (0 . . . 010 . . . 0) be the element of Am with 1 in the jth position and zeroes elsewhere. For
each 1 ≤ i ≤ n, define ei := (0 . . . 010 . . . 0)T to be the element of An with 1 in the ith position and
zeroes elsewhere and let li := π(ei) where π : An → L is the canonical quotient morphism. Observe
that Φ(dj) = (aj1 . . . ajn)T =

∑n
i=1 ajiei.

We will show that HL,l1(M) = φP (M) for all A-modules M . First we show that HL,l1(M) ⊆
φP (M) so let u1 = f(l1) for some A-homomorphism f : L → M . Set ui := f(li) for 1 < i ≤ n.
Then, for each 1 ≤ j ≤ m, we have that

n∑
i=1

ajif(li) = f(

n∑
i=1

ajili) = fπ(

n∑
i=1

ajiei) = fπΦ(dj) = 0



since πΦ = 0. We therefore have that u1 ∈ φP (M). Next we show the other inclusion φP (M) ⊆
HL,l1(M). Let u1 ∈ φP (M) and consider elements u2, . . . , un ∈ M that satisfy the A-linear equa-
tions. The assignment ei 7→ ui extends uniquely to an A-homomorphism f ′ : An →M . As

f ′Φ(dj) = f ′(
n∑
i=1

ajiei) =
n∑
i=1

ajiui = 0,

there exists a unique A-homomorphism f : L→M such that fπ = f ′. In particular, we have that
u1 = f ′(e1) = f(l1) so u1 ∈ HL,l1(M) as desired. �

5. Pure Submodules and Pure-injective Modules

The aim of this next section is to define and give examples of the modules that give the points of
the Ziegler spectrum. The first definition is that of a pure submodule. These are the submodules
that respect the pp-definable (equivalently the finite matrix) subgroups.

Definition 5.1. Let L and M be A-modules such that L ⊆ M is an A-submodule. Then L
is a pure submodule of M if φP (L) = φP (M) ∩ L for all (m × n)-matrices P with entries in
A. A monomorphism f : L → M such that im(f) ⊆ M is a pure submodule is called a pure
monomorphism.

Example 5.2. Consider Example 3.7 and consider the submodule U1 ⊕U2 of M(y∗)∗ spanned (as
a K-vector space) by the elements {vn | n ∈ N} ∪ {wm | m ∈ N} and U1 ⊕ U2 ⊆ V1 ⊕ V2 be the
canonical embedding. This is a pure submodule of M(y∗)∗.

A useful characterisation of a pure monomorphism makes use of the duality defined Definition
3.4. Notice that, for any A-homomorphism g : M → N , the usual K-linear map g∗ : N∗ → M∗

induced byK-vector space duality is an Aop-homomorphism. It is well-known that a monomorphism
g : M → N is pure if and only if there exists an Aop-homomorphism h : M∗ → N∗ such that
g∗ ◦ h = idM∗ . To see a proof of this, as well as other characterisations of pure monomorphisms,
see [3, Lem. 2.19].

Example 5.3. For any A-module M , the morphism δM : M → M∗∗ given by m 7→ evm where
evm(f) = f(m) for all f ∈M∗ is a pure monomorphism. This follows from the discussion preceding
this example since δ∗M ◦ δM∗ = idM∗.

Definition 5.4. A non-zero A-module N is called pure-injective if, for every pure monomorphism
f : N →M , there exists an A-homomorphism g : M → N such that gf = idN .

Example 5.5. It follows from Example 5.3 that every pure-injective module is a direct summand
of a dual module. It turns out that this, in fact, characterises pure-injective modules (see [3,
Thm. 2.27]). In particular, any dual module is pure-injective.

For any finite-dimensional A-module M , we have that M ∼= M∗∗. It therefore follows that
finite-dimensional A-modules are pure-injective.

Example 5.6. The modules defined in Examples 2.7, 2.9, 3.6 and 3.7 are pure-injective modules.
The fact that the infinite string module (Example 2.9) and the dual infinite string module (Example
3.7) are pure-injective is proved in [10]. The k-Prüfer module (Example 2.7) is an injective K[X]-
module and so clearly it is also pure-injective. The k-adic module (Example 3.6) is a dual module
and so it is pure-injective by Example 5.5.

6. The Ziegler Spectrum

In this section we introduce a topological space called the Ziegler spectrum. The points of the
space are the indecomposable pure-injective modules.



Definition 6.1. A non-zero A-module M is called indecomposable if, whenever M ∼= N ⊕ L,
either L = 0 or N = 0.

Remark 6.2. The collection of isomorphism classes of indecomposable pure-injective A-modules
has cardinality at most 2κ+ℵ0 where κ is the cardinality of A. In particular, the isomorphism classes
of indecomposable pure-injective modules form a set, which we denote by ZgA.

The elements of ZgA are isomorphism classes [N ] but we will drop the square brackets and refer
instead to the representative N as a point of ZgA. If N is a finite-dimensional module we refer to
it as a finite-dimensional point. Similarly, if N is infinite-dimensional then we refer to N as a
infinite-dimensional point of ZgA.

The Ziegler topology on ZgA can be defined in many different ways (see, for example, [8, Ch. 5.1]).
In these lecture notes we will define the topology in terms of pp pairs.

Definition 6.3. Let (P,Q) be a pair of matrices with entries in A (possibly of different sizes). We
will call (P,Q) a pp pair if φP (M) ⊆ φQ(M) for all A-modules M .

According to Proposition 4.10, a pair (P,Q) of matrices with entries in A determines a pair of
pointed finitely presented modules (L, l) and (N,n) such that φP (M) = HL,l(M) and φQ(M) =
HN,n(M) for all A-modules M . Clearly this means that (P,Q) is a pp pair if and only if HL,l(M) ⊆
HN,n(M) for all A-modules M .

Definition 6.4. Let ZgA be the set of isomorphism classes of indecomposable pure-injective A-
modules. We call a set U ⊆ ZgA basic open if there exists a pp pair (P,Q) such that

U = {M ∈ ZgA | φP (M) ( φQ(M)}.

Denote the basic open set corresponding to a pp pair (P,Q) by (φP /φQ).

Recall that a topological space Z is called quasi-compact if, whenever Z =
⋃
i∈I Ui for Ui open

sets, we have that there is a finite subset F ⊆ I such that Z =
⋃
i∈F Ui. In other words, any open

cover of Z has a finite subcover

Theorem 6.5 (Ziegler, 1984). The basic open sets form a base of a topology on ZgA and, moreover,
the basic open sets are quasi-compact. This topological space is called the Ziegler spectrum of A.

The proof of the above theorem is originally due to Ziegler and is contained in his landmark
paper [12] on the model theory of modules. A more algebraic proof was given later by Herzog
using functor categories [4]. See also Krause [5]. Unfortunately, both the model theoretic and more
algebraic arguments require material that is beyond the scope of these lectures and so we do not
prove the theorem here.

Corollary 6.6. The Ziegler spectrum of A is a quasi-compact topological space.

Proof. By the theorem, it suffices to show that there is a pp pair (P,Q) such that ZgA = (φP /φQ).
If we take P to be the (1 × 1)-matrix 0 and Q to be the (1 × 1)-matrix 1, then φP (M) = M and
φQ(M) = 0 for any module M . Thus ZgA = (φP /φQ) is quasi-compact. �

In Example 6.8 we will describe the points of the Ziegler spectrum of the algebraKQ/I introduced
in Example 1.5. In order to do this we describe a way of building a representation of the bound
quiver (Q, I) from K[X]-modules. Recall from Example 1.8 that each K[X]-module is determined
by a K-vector space M and a K-linear endomorphism Φ: M →M . Given such a pair (M,Φ), we
may define a representation of (Q, I) as follows:

W1Wα
33

Wβ
// W2 Wδ

ss



where both W1 and W2 are isomorphic to M ⊕M and the K-linear maps are given by Wα :=(
0 0

idM 0

)
, Wβ :=

(
Φ 0
0 idM

)
and Wδ :=

(
0 0

idM 0

)
. A KQ/I-module of this kind is known as a

band module because it can be visualised as follows:

M
α

idM}}

β

Φ !!

M

β

idM

!!

M

δ

idM

}}

M

For every K[X]-module M , we will denote the corresponding band module over KQ/I by Ba(M).

Remark 6.7. The assignment M 7→ Ba(M) extends to a functor from the category of K[X]-
modules to the category of KQ/I-modules.

Example 6.8. Let K be an algebraically closed field. The following is a complete list of the points
of the Ziegler spectrum of KQ/I. This classification can be found in [9]:

• The finite-dimensional KQ/I-modules; see Example 5.5.
• The infinite string module M(z) described in Example 2.9 corresponding to the sequence

v1

α
��

v3

β
��

α
��

v5

β
��

α

��v2

β
��

w2

δ
��

v4

β
��

w4

δ
��

w1 w3

. . . . . .

• The submodule of M(z) spanned by {wi | i ≥ 2} ∪ {vj | j > 2}. This module is the infinite
string module M(w) associated to the sequence

v3

β
��

α
��

v5

β
��

α

��w2 v4

β
��

w4

δ
��

w3

. . . . . .

• The dual infinite string module M(y∗)∗ described in Example 3.7 corresponding to the dual
sequence y∗ = (. . . (β∗)−1(α∗)−1β∗δ∗(β∗)−1(α∗)−1β∗δ∗). The module M(y∗)∗ can be visu-
alised as

w1

α

��

β

��

w3

α

��

β

��
v2

δ

��

w2
β

��

v4

δ

��

w4
β

��

δ

��
v1 v3 v5

. . . . . .



• The submodule of M(y∗)∗ consisting of elements of the form
∑

n≥2 kn+1vn+1 + lnwn where

kn, ln ∈ K. This module is the dual string module M(x∗)∗ where x∗ = (. . . (β∗)−1(α∗)−1β∗δ∗(β∗)−1)
that can be visualised as

w3

α

��

β

��
w2

β

��

v4

δ

��

w4
β

��

δ

��
v3 v5

. . . . . .

• The following band modules:
– For each 0 6= k ∈ K, the module Ba(Mk,∞) where Mk,∞ is the k-Prüfer module

described in Example 2.7.
– For each 0 6= k ∈ K, the module Ba(Mk,−∞) where Mk,−∞ is the k-adic module

described in Example 3.6.
– The module Ba(K(X)) where K(X) denotes the field of rational functions.

7. Representation-finite Finite-dimensional Algebra and the Ziegler Spectrum

The finite-dimensional A-modules satisfy the following well-known decomposition theorem known
as the Krull-Remak-Schmidt Theorem. See, for example, [1, Thm. 4.19].

Theorem 7.1. Let M be a finite-dimensional A-module. Then M ∼=
⊕n

i=1Mi where Mi is an in-
decomposable module for each 1 ≤ i ≤ n. Moreover, this decomposition is unique up to isomorphism
and reordering of the direct summands.

This starting point suggests that, if we wish to know about the finite-dimensional A-modules,
then we should attempt to understand the indecomposable ones. By Example 5.5, the indecom-
posable finite-dimensional modules form a subset U0 ⊆ ZgA of the Ziegler spectrum of A.

In this section we will consider the case where A is a finite-dimensional K-algebra and consider
the topological properties of the subset U0. We will make use of the following three important
results about finite-dimensional modules over finite-dimensional algebras.

Proposition 7.2 ([8, Cor. 5.3.36, Cor. 5.3.37, Thm. 5.1.12]). Let A be a finite-dimensional algebra.

(1) The set U0 of finite-dimensional points in ZgA is dense in ZgA. In other words, the closure
U0 of U0 is equal to ZgA.

(2) The finite-dimensional points in ZgA are isolated. In other words, the set {M} is an open
set for all M ∈ U0.

(3) The finite-dimensional points in ZgA are closed. In other words, the set {M} is a closed
set for all M ∈ U0.

Using these three facts, together with what we have learned in the previous sections, we can
now prove the final theorem of the course, that characterises when the set U0 only has finitely
many elements. A finite-dimensional algebra A such that the set U0 ⊆ ZgA is finite is said to have
finite-representation type.

Theorem 7.3. Let A be a finite-dimensional algebra. The following statements are equivalent.

(1) The algebra A has finite-representation type.



(2) The Ziegler spectrum ZgA only has finitely many points.
(3) The Ziegler spectrum ZgA does not contain any infinite-dimensional points.

Proof. First we show that (1) and (2) are equivalent: The implication (2) implies (1) is immediate
because U0 ⊆ ZgA. Suppose that (1) holds. Then U0 =

⋃
M∈U0{M} is a finite union of closed sets

by Proposition 7.2(3) and therefore U0 is a closed set. In particular, we have that U0 = U0 = ZgA
by Proposition 7.2(1). We have shown that ZgA is a finite set and so (2) holds.

Next we show that (1) and (3) are equivalent: Note that it was shown in the above paragraph
that, if (1) holds, then U0 = ZgA, i.e. (3) holds. To show the converse, suppose that (3) holds.
Then U0 = ZgA and so U0 is a quasi-compact topological space by Corollary 6.6. We have that
U0 =

⋃
M∈U0{M} is an open cover by Proposition 7.2(2) and clearly this open cover does not have

a proper subcover. Since U0 is quasi-compact, it follows that U0 is a finite set and so (1) holds. �
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