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INTRODUCTION

The goal of representation theory is to use linear algebra to study groups, rings
and algebras. In these lecture notes, we consider representation theory of algebras.
Quivers provide a useful concrete way to visualise algebras. Given a quiver, i.e. a
directed graph, one can associate an algebra, called a path algebra, generated by the
paths of the quiver. From the point of view of representation theory, the study of finite
dimensional algebras reduces to the study of quotients of path algebras.

A central aim in representation theory of finite dimensional algebras is to classify all
their modules and the morphisms between them. Due to the Krull-Schmidt theorem,
the classification of modules can be reduced to the classification of indecomposable
modules. That is, in some sense, indecomposable modules are the building blocks
of all modules. It is then natural to ask when is a finite-dimensional algebra of finite
representation type, i.e. when does it have finitely many indecomposable modules up
to isomorphism? Gabriel’s theorem [15] gives an elegant answer for path algebras of
quivers without oriented cycles, also called hereditary algebras. This theorem is an
example of an ADE classification, i.e. in terms of simply-laced Dynkin diagrams, which
appear also in finite type classifications in many other areas of mathematics, including
Lie algebras, root systems and cluster algebras.

Auslander-Reiten theory gives us a way to visualise the representation theory of
a finite dimensional algebra using a quiver, called the Auslander-Reiten quiver. The
vertices of this quiver correspond to the indecomposable modules and the arrows cor-
respond to irreducible morphisms, which are the corresponding building blocks for the
morphisms.
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The aim of these lecture notes is to give a brief introduction to Auslander-Reiten
theory and to provide methods for constructing Auslander-Reiten quivers. We present
two methods to construct these quivers for some special classes of algebras. The
first method is the knitting algorithm, which works for instance for hereditary algebras
of finite representation type. The second method is a geometric model associated to
(partial) triangulations of surfaces. This method, which has its origins in cluster-tilting
theory [11], encodes the representation theory of an important class of algebras, called
gentle algebras, which have been subject of intensive study since the 1980’s due to
the fact that they remain one of the relatively few classes of algebras for which the
representation theory is computationally tractable.

The pre-requisites are a basic knowledge of linear algebra and rings and modules.
Knowledge of the basic concepts of category theory is beneficial, but not essential.
The list of references is not exhaustive, but it includes some of the main references for
this subject. We refer the reader to [3, 4, 6, 24] for further study on quiver representa-
tions and Auslander-Reiten theory. The language of categories used in these theories
is also nicely explained in [3, 24].

1. BOUND PATH ALGEBRAS

In this section we will associate algebras to quivers, i.e. directed graphs. From a
representation-theoretic point of view, we will see that it is enough to study algebras
associated to quivers.

Definition 1.1. A quiver Q = (Q0, Q1, s, t) consists of the following data:
(1) a set Q0 of vertices,
(2) a set Q1 of arrows between vertices,
(3) two maps s, t : Q1 → Q0, called source and target, respectively, such that, for

each arrow α : i→ j ∈ Q1, i = s(α) and j = t(α).

A quiver is finite if Q0 and Q1 are finite sets. Throughout these notes, we will only
consider finite quivers.

Definition 1.2. Let Q be a quiver.
(1) A path in Q of length ` is a sequence p = α1α2 · · ·α`, with αi ∈ Q1 such that

s(αi) = t(αi−1), for each i = 2, . . . , `. In particular, p has length 1 if and only if
p ∈ Q1.

(2) We associate a path εi of length 0 to each vertex i of Q, which is called the
stationary path at i.

(3) If s(α1) = t(α`), then p is said to be an oriented cycle. An oriented cycle of
length 1 is called a loop. An acyclic quiver is a quiver with no oriented cycles.

Sometimes we denote a path from i to j by i; j.
Throughout k denotes an algebraically closed field.

Definition 1.3. The path algebra kQ of Q is an algebra whose underlying vector space
has all the paths of Q as basis and with multiplication defined on two basis elements
given by concatenation of paths, i.e. given two paths p = α1 · · ·α`, p′ = α′1 · · ·α′m,

pp′ =

{
α1 · · ·α`α′1 · · ·α′m if t(α`) = s(α′1)

0 otherwise.
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Example 1.4.
(1) Let Q be the quiver:

1

α

kQ has basis given by {αt | t > 0}, where α0 denotes the stationary path ε1.
The multiplication is given by αsαt = αs+t. The algebra kQ is isomorphic to the
algebra k[x] of polynomials with one indeterminate.

(2) Let Q be the quiver

1 2 · · · n
α1 α2 αn−1

kQ is generated by the paths εi(1 6 i 6 n), αi(1 6 i 6 n), αi · · ·αj(1 6 i < j 6
n), and it is isomorphic to the algebra of upper triangular 3× 3 matrices.

Remark 1.5. The path algebra kQ satisfies the following properties:
(1) kQ has an identity 1 =

∑
i∈Q0

εi if and only if Q0 is finite.
(2) kQ is an associative algebra.
(3) kQ is finite dimensional if and only if Q is finite and acyclic.

Definition 1.6. Let Q be a finite quiver.
(1) The arrow ideal RQ is the two-sided ideal of kQ generated by all arrows in Q.
(2) An admissible ideal I is a two-sided ideal of kQ such that there is m > 2 for

which Rm
Q ⊆ I ⊆ R2

Q.
(3) Given an admissible ideal I, the quotient algebra kQ/I is said to be a bound

path algebra.

The bound path algebra kQ/I is finite dimensional, since Rm
Q ⊆ I and it is connected

(i.e. it is not the direct product of two algebras) because I ⊆ R2
Q.

A relation ρ is a linear combination ρ =
∑

p λpp of paths, all with length at least two,
and with same start and same endpoints. It is easy to check that any admissible ideal
can be generated by a set of relations.

Example 1.7. Let Q be the quiver

2

1 3

4

α2

α3

α1

α6

α5α4

The ideal I1 = 〈α1α2 − α5α4, α6α3, α2α3, α
4
3〉 is admissible since R5

Q ⊆ I ⊆ R2
Q.

The ideal I2 = 〈α1α2 − α5α4, α6α3, α2α3〉 is not admissible because αm3 6∈ I2, for all
m > 2.
The ideal I3 = 〈α1α2 − α6〉 is not admissible as α1α2 − α6 6∈ R2

Q.

Theorem 1.8. Any finite dimensional algebra A is Morita equivalent to a bound path
algebra kQ/I, i.e. mod(A) ' mod(kQ/I).

For a proof, see [3, I.6.10, II.3.7].
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2. REPRESENTATIONS OF A BOUND PATH ALGEBRA

In the previous section we saw that quivers provide a nice way to visualise finite
dimensional algebras. Now, we will explain how quivers can be used to visualise also
modules and morphisms between modules.

Throughout this section Q denotes a finite, connected quiver and I an admissible
ideal. Note that if I = 0 is admissible, then Q must be acyclic.

Definition 2.1. A representation M = (Mi, ϕα)i∈Q0,α∈Q1 of Q is given by:

• k-vector spaces Mi, for all i ∈ Q0, and
• linear maps ϕα : Ms(α) →Mt(α), for all α ∈ Q1.

Let p = α1 · · ·α` be a path in Q and M = (Mi, ϕα)i∈Q0,α∈Q1 be a representation of
Q. We denote by ϕp the composition of linear maps ϕp = ϕα` · · ·ϕα1. Given a relation
ρ =

∑
p λpp in I, we have ϕρ =

∑
p λpϕp.

Definition 2.2. A representation M = (Mi, ϕα)i∈Q0,α∈Q1 of Q is said to be bound by I,
or to be a representation of (Q, I), if ϕρ = 0 for all ρ ∈ I.

A representation M is finite dimensional if Mi is finite dimensional, for all i ∈ Q0.
The dimension vector of M is the vector dimM = (dimMi)i∈Q0.

Example 2.3. Consider the quiver Q:

2

1 3

α2

α3

α1

bound by I = 〈α1α2, α2α3, α3α1〉. The representation:

k2

k3 k2

1 0

0 0

0 0



[
0 1 0

0 0 0

]

[
0 0

0 1

]

is bound by I. However, the representation given by

k

k k2

1

[
0

1

]
[1 0]

is not bound by I.

Definition 2.4. Let M = (Mi, ϕα), N = (Ni, ψα) be representations of (Q, I).

(1) A morphism of representations f : M → N is a collection (fi)i∈Q0 of linear
maps, fi : Mi → Ni, such that for each α : i → j ∈ Q1, the following diagram
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commutes:

Mi Mj

Ni Nj.

ϕα

fi fj

ψα

(2) The morphism f = (fi)i∈Q0 is an isomorphism if each fi is bijective.

Example 2.5. Let Q be the quiver

1

α

The following represents a morphism of representations:

k2 k2[
2 0

0 3

]
[
0 1

1 1

]
[
3 0

1 2

]

This morphism is bijective with inverse given by

k2 k2[
2 0

0 3

] [
−1 1

1 0

]

[
3 0

1 2

]

We obtain the category rep(Q, I) of finite-dimensional bound quiver representations
of (Q, I), whose objects are finite-dimensional bound quiver representations and maps
are given by morphisms of bound quiver representations.

Given a finite dimensional algebra A, we denote by mod(A) the category of finite
dimensional right A-modules.

Theorem 2.6. There is an equivalence of categories mod(kQ/I) ' rep(Q, I).

Proof. Denote the algebra kQ/I by A and write ei = εi + I. We begin by constructing
a functor F : mod(A)→ rep(Q, I).

Given M ∈ mod(A), we define F (M) to be the representation (Mi, ϕα), where Mi =
Mei, and ϕα : Ms(α) →Mt(α) is the map mes(α) 7→ mᾱ := m(α + I).

Note that each ϕα is a k-linear map since M is an A-module.
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In order to check that F (M) ∈ rep(Q, I), we need to show that F (M) is bound by I.
Given a relation ρ =

∑
p:i;j λpp in I, we have

ϕρ(mei) =
∑
p:i;j

λpϕp(mei)

=
∑
p:i;j

λpm(p+ I)

= m
∑
p:i;j

λp(p+ I)

= m(ρ+ I) = m0 = 0.

This defines F on the objects. Now, let f : M → N be a morphism in mod(A), and
let F (M) = (Mi, ϕα), F (N) = (Ni, ψα). We define F (f) = (fi)i∈Q0 by fi(mei) := f(m)ei.

We need to check that fjϕα = ψαfi, for each α : i→ j ∈ Q1. Indeed, given mei ∈Mi,
we have:

fjϕα(mei) = fj(mᾱ) = f(mᾱ)ej

= f(m)ᾱej = ψα(f(m)ei)

= ψα(fi(mei)) = ψαfi(mei).

Therefore, F (f) is a morphism of representations.
It is easy to check that F (f) is indeed a (covariant) functor, i.e. that F (1M) = 1F (M),

for any A-module M , and F (gf) = F (g)F (f), for f : L→M, g : M → N ∈ mod(A).
The next step is to construct a functor G : rep(Q, I) → mod(A). Given (Mi, ϕα) ∈

rep(Q, I), we define G(Mi, ϕα) = M as follows. The underlying vector space of M is
⊕i∈Q0Mi. It is enough to define the right A-action on paths in Q. Let p be a path in Q
and m = (mi)i∈Q0 be an element of M . If p = εi for some i, let mp := mi, and if p has
length > 1, we define mp to be the following element in M :

(mp)k :=

{
0 if k 6= t(p)

ϕp(ms(p)) if k = t(p).

In order to check that the A-action is well defined, we need to show that if ρ =∑
p:i;j λpmp ∈ I, then mρ = 0. Indeed, we have that mρ is the element in M whose

only possible non-zero coordinate is (mρ)j =
∑
λpϕp(mi). But

∑
λpϕp(mi) = 0 since

(Mi, ϕα) is bound by I.
The definition of G on morphisms is as follows: given f = (fi) : (Mi, ϕα) → (Niψα),

we have G(f) : M → N defined by G(f)(m) := (fi(mi))i∈Q0.
Clearly G(f) is linear as each fi is linear. In order to show that G(f) is a module

homomorphism, it is enough to check G(f)(ma) = G(f)(m)a for all m = mi ∈ Mi and
a = p+ I ∈ A, where p is a path from i to j.

On the one hand, we have (ma)k = 0 for k 6= j and (ma)j = ϕp(mi), and so

(G(f)(ma))k =

{
0 if k 6= j

fjϕp(mi) = ψpfi(mi) if k = j.

On the other hand, (G(f)(m))k = 0 for k 6= i, and (G(f)(m))i = fi(mi), and so accord-
ing to the definition of A action,

(G(f)(m)a)k =

{
0 if k 6= j

ψp(fi(mi)) if k = j.
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It is easy to check that G is indeed a functor and that FG ' 1rep(Q,I) and GF ' 1mod(A),
thus giving the required equivalence of categories. �

3. REPRESENTATION FINITE HEREDITARY ALGEBRAS

The Krull-Schmidt theorem states that every module over a finite-dimensional alge-
bra can be written as a direct sum of indecomposable modules in a unique way (up to
isomorphism and changing the order). Therefore, in order to classify all the modules
over an algebra, it is sufficient to classify the indecomposable ones.

In this section we discuss representation types of algebras, and discuss the simplest
case one can hope for, which is when there are finitely many indecomposable modules.

Definition 3.1.

(1) Given two representations M = (Mi, ϕα), N = (Ni, ψα) of Q, we can construct
a new representation

M ⊕N := (Mi ⊕Ni,

[
ϕα 0
0 ψα

]
),

called the direct sum of M and N .
(2) A representation M is indecomposable if M 6= 0 and it cannot be written as a

direct sum of two non-zero representations.

Example 3.2.

(1) Let Q be the quiver 1 2 3 . The representation

M = k k2 k

1
0

 [
0 1

]

is not indecomposable since M ∼= ( k
1 // k // 0 )⊕ ( 0 // k

1 // k ).
(2) Let Q be the quiver 1 2 . We have

k k2

1
2


2
4


∼= ( k k

1

2
)⊕ ( 0 k ).

Definition 3.3. An algebra A is:

(1) of finite representation type if, up to isomorphism, there are only finitely many
indecomposable objects in mod(A).

(2) hereditary if A ' kQ, for some finite, connected and acyclic quiver Q.

Representation finite hereditary algebras have been classified by Gabriel.

Theorem 3.4 (Gabriel’s theorem). An hereditary algebra kQ is of finite representation
type if and only if Q is an orientation of an ADE diagram, i.e. the underlying graph of
Q is of one of the following forms:
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An : 1 2 3 · · · n− 1 n , n > 1

Dn : 1 2 3 · · · n− 2 n− 1

n

, n > 4

E6 : 1 2 3 4 5

6

E7 : 1 2 3 4 5 6

7

E8 : 1 2 3 4 5 6 7

8

There are two different proofs of this theorem in [3, 24] worth studying. The proof
in [3] uses reflection functors, which are at the origin of tilting theory, where one studies
an algebra by comparing its representation theory with that of a simpler algebra. The
proof in [24] uses algebraic geometry, namely by studying the space of representations
of a quiver with a given dimension vector, which is an algebraic variety.

There are two subtypes of infinite-representation algebras:

• tame type: infinitely many indecomposable finite dimensional representations
(up to isomorphism), but which are possible to parametrise.
• wild type: infinitely many indecomposable finite dimensional representations

(up to isomorphism) which cannot be parametrised.

Hereditary algebras of tame type correspond to orientations of the Euclidean quiv-
ers:
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Ãn : n+ 1

1 2 3 · · · n− 1 n, n > 1

D̃n : 1 3 4 · · · n− 1 n, n > 4

2 n+ 1

Ẽ6 : 1 2 3 6 7

5

4

Ẽ7 : 1 2 3 4 6 7 8

5

Ẽ8 : 1 2 3 5 6 7 8 9

4

Example 3.5. Let Q be the quiver 1 2 . The indecomposable representations
over kQ are of the following form:

kn kn
1

Jn,λ

, kn kn
Jn,0

1
, kn+1 kn

[1 0]

[0 1]
, kn kn+1

[
1

0

]
[
0

1

] ,

where n > 0, and Jn,λ denotes the nilpotent n × n Jordan block corresponding to the
eigenvalue λ ∈ k.

Example 3.6. The path algebra kQ associated to the quiver:

• 1 2 is of finite type.

• 1 2 is of tame type.

• 1 2 is of wild type.

4. AUSLANDER-REITEN THEORY

In this section we give a brief overview of Auslanter-Reiten (AR) theory, giving the
basic concepts and main results in order to define the AR-quiver and describe the
knitting algorithm, which provides a method to construct the AR-quiver of the finite-
representation hereditary algebras.
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4.1. (Short) exact sequences and extensions.

Definition 4.1. Let A be a finite dimensional algebra.

A sequence of morphisms · · · // M1
f1 // M2

f2 // M3
f3 // · · · in mod(A) is exact

if imfi = kerfi+1, for all i.
A short exact sequence (s.e.s. for short) is an exact sequence of the form

0 // L
f // M

g // N // 0 .

In other words, f is injective, g is surjective and imf = kerg. This is also called an
extension of N by L.

Note that, in an exact sequence, we have fi+1fi = 0, for all i.

Example 4.2. (1) Given a morphism f : M → N of A-modules, the sequence

0 kerf M N cokerf 0
i f p

,

where i is the inclusion and p is the projection, is exact, and

0 kerf M M/kerf 0
i p

is short exact.
(2) LetQ be the quiver 1 // 2 , and consider the representations S(2) := 0 // k ,

M := k
1 // k and S(1) := k // 0 . Then

0 S(2) M S(1) 0
(0,1) (1,0)

, and

0 S(2) S(1)⊕ S(2) S(1) 0
(0,1) (1,0)

are short exact sequences.

The following lemma, known as the splitting lemma, holds for any abelian category
(see [3, Definition A.1.5] for the definition of abelian category).

Lemma 4.3. Given a s.e.s. 0 // L
f // M

g // N // 0 in mod(A), the following
statements are equivalent:

(1) f is a split monomorphism (also called a section), i.e. there exists h : M → L
such that hf = 1L,

(2) g is a split epimorphism (also called a retraction), i.e. there exists h′ : N → M
such that gh′ = 1N ,

(3) The sequence is equivalent to the s.e.s. 0 L L⊕N N 0
i p

,
i.e. there is a commutative diagram:

0 L M N 0

0 L L⊕N N 0.

f

∼=

g

i p

In this case, the s.e.s. is said to split.

The set of equivalence classes Ext1(N,L) of extensions of N by L, with the equiv-
alence relation defined in Lemma 4.3 (3), is an abelian group, whose zero element is
the class of the split extension.
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Example 4.4. Let Q be the quiver 1 2 . The sequences

0 S(2) E S(1) 0 , and

0 S(2) E ′ S(1) 0 ,

where S(1) = k 0 , S(2) = 0 k , E = k k
1

0
andE ′ = k k

0

1
,

are non-equivalent short exact sequences.
4.2. Simple, projective and injective representations. Let A = kQ/I, with Q a
finite, connected quiver, and I an admissible ideal.

A simple A-module is a non-zero module that has no proper submodules.
Proposition 4.5. The simple representations of (Q, I) are, up to isomorphism, of the
form S(i) = (S(i)j, ϕα), for each i ∈ Q0, where ϕα = 0 for all α ∈ Q1 and

S(i)j =

{
k if i = j

0 if i 6= j
.

An A-module P is projective if any s.e.s. ending at P splits, i.e. Ext1(P,−) = 01. An
A-module I is injective if any s.e.s. starting at I splits, i.e. Ext1(−, I) = 0.
Remark 4.6.

(1) P is projective if and only if for every epimorphism f : M → N and every
morphism g : P → N , there is g′ : P → M such that g = fg′. In other words,
Hom(P,−)1 maps surjective morphisms to surjective morphisms.

(2) I is injective if and only if for every monomorphism u : L → M and every
morphism g : L → I, there is g′ : M → I such that g = g′u. In other words,
Hom(−, I) maps injective morphisms to surjective morphisms.

Proposition 4.7. The projective representations of (Q, I) are, up to isomorphism, of
the form P (i) = (P (i)j, ϕα), for each i ∈ Q0, where

• P (i)j is the vector space generated by {p+ I | p path from i to j },
• Given an arrow α : j → `, ϕα : P (i)j → P (i)` is the linear map defined on the

basis by composing the paths from i to j with the arrow α.
Similarly, the injective representations of (Q, I) are, up to isomorphism, of the form
I(i) = (I(i)j, ϕα), for each i ∈ Q0, where

• I(i)j is the vector space generated by {p+ I | p path from j to i },
• Given an arrow α : j → `, ϕα : P (i)j → P (i)` is the linear map defined on the

basis by deleting the arrow α from the paths from j to i which start with α and
sending to zero the remaining paths.

Example 4.8. Consider the algebra given by the quiver

2

1 3

4

α1 α4

α2

α3

1The reader can find the definition and basic results on Hom and Ext functors both in [3] and [24].
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subject to the relations α3α1 = α1α2 = 0.
The projective and injective representations are as follows:

P (1) = I(3) =

k

k k

k

0 1

1

1 P (2) =

k

k k

0

1 1

0

0

P (3) = S(3) =

0

0 k

0

0 0

0

0 P (4) =

k

0 k

k

0 1

0

1

I(1) =

k

k 0

0

1 0

0

0 I(2) =

k

k 0

k

0 0

1

1 I(4) =

0

k 0

k

0 0

1

0

Notation: We will simplify the notation of an indecomposable representation, by
encoding their composition series. For instance, the projective module P (1) in the
example above can be denoted by:

P (1) =
1
4
2
3

meaning P (1)i = k, for all i ∈ Q0, and there is an identity map from top to bottom,

i.e. (P (1))1 (P (1))4 (P (1))2 (P (1))3
1 1 1 . This module has a unique

composition series given by:

0 3 2
3

4
2
3

1
4
2
3

3 2 4 1

Theorem 4.9. Given a representation M = (Mi, ϕα) in rep(Q, I), we have for all i ∈ Q0:

Hom(P (i),M) 'Mi ' Hom(M, I(i)).

For a proof, see for instance [3, Lemma III.2.11].

Corollary 4.10. If 0 // L
f // M

g // N // 0 is a s.e.s. in rep(Q, I), then

dimM = dimL+ dimN.
12



4.3. Irreducible morphisms and AR-sequences.

Definition 4.11. A morphism f : M → N is irreducible if:
• f is not a split monomorphism,
• f is not a split epimorphism, and
• if f = gh, then h is a split monomorphism or g is a split epimorphism.

It is easy to check that an irreducible morphism is either injective or surjective, but
not both.

Lemma 4.12. A morphism is irreducible if and only if it admits no nontrivial factorisa-
tion.

Example 4.13. Let Q be the quiver 1 // 2 // 3 . The map S(3)
(0,0,1)

// P (2) is

irreducible. But the map S(3)
(0,0,1)

// P (1) is not irreducible as it factors nontrivially
through P (2).

Definition 4.14. A s.e.s. 0 // L
f // M

g // N // 0 is an AR-sequence if the
following conditions hold:

(1) L,N are indecomposable;
(2) f, g are irreducible morphisms.

Remark 4.15. An AR-sequence is also known as an almost-split sequence, in the
sense that any map u : L → U which is not a split monomorphism (resp. any map
v : V → N which is not split epimorphism) factors through f (resp. g).

Remark 4.16.
(1) An AR-sequence never splits. Therefore, no AR-sequence starts with an injec-

tive module or ends with a projective module.
(2) An AR-sequence is uniquely determined, up to isomorphism, by each of its end

terms.

Theorem 4.17 (Auslander-Reiten theorem). Let M be an indecomposable A-module.

(1) IfM is non-projective, there is an AR-sequence 0 // τM
f // E

g // M // 0
ending at M .

(2) IfM is non-injective, there is an AR-sequence 0 // M
f // E ′

g // τ−1M // 0
starting at M .

The module τM is called the AR-translate of M , and τ−1M is the inverse AR-
translate of M .

We recommend [3, Section IV] for a proof of Theorem 4.17. Key tools in this proof
are the AR-formulas, which describe the relationship between morphisms and exten-
sions. Namely, for any pair of modules M,N ∈ mod(A), we have:

Ext1(M,N) ∼= DHom(τ−1N,M) ∼= DHom(N, τM).

Here, D is the standard k-duality Homk(−,k), τ−1I = 0, for all injective module I,
τP = 0 for all projective module P , and the underlining (resp. overlining) means we
are considering morphisms which do not factor through projective (resp. injective)
modules.

When A is an hereditary algebra, the AR-formulas can be simplified to

Ext1(M,N) ∼= DHom(τ−1N,M) ∼= DHom(N, τM).
13



4.4. The AR-quiver and the knitting algorithm. Given a finite dimensional algebra
A, we can record the information about mod(A) in a quiver, called the AR-quiver. In
the case when A is of finite representation type, this quiver gives a complete picture of
the representation theory of A.

Definition 4.18. The AR-quiver Γ(mod(A)) of mod(A) is defined by:
• the vertices of Γ(mod(A)) are the isomorphism classes of indecomposable A-

modules,
• the arrows are the irreducible morphisms between the indecomposable mod-

ules.

Each AR-sequence 0 // τM // L1 ⊕ · · · ⊕ Lr // M // 0 is represented in
the AR-quiver by a mesh:

L1

��

L2

  
τM

FF

==

!!

M

Lr

>>

The AR-quiver is a translation quiver, i.e. for each arrowM → L, for which τ−1M 6= 0
(resp. τL 6= 0), there is an arrow L→ τ−1M (resp. τL→M ).

The knitting algorithm is an algorithm that allows us to construct, in some special
cases, the AR-quiver (or part thereof). One of these special cases is when A = kQ,
where the underlying graph of Q is ADE. It owes its name to the fact that it recursively
constructs one mesh after the other, from left to right.

What follows is a description of this algorithm. We start by computing all the projec-
tive modules and their radicals.

The radical rad(M) of a module M is the intersection of all maximal submodules
of M . The representation (P (i)′j, ϕ

′
α) corresponding to the radical rad(P (i)) of the

projective P (i) = (P (i)j, ϕα) at i is such that P (i)′j = P (i)j if i 6= j, P (i)i is the vector
space spanned by all nonconstant paths from i to i, and ϕ′α is the restriction of ϕα to
P (i)s(α).

Proposition 4.19. Every direct predecessor of P (i) in Γ(mod(A)), i.e. every indecom-
posable module X for which there is an irreducible morphism X → P (i), is a direct
summand of rad(P (i)). In the case when A is hereditary, all predecessors of projective
modules are projective modules.

Base step:
(1) Draw a vertex for each simple projective P (i).
(2) If P (i) is a summand of rad(P ) for some projective P , then add a vertex cor-

responding to P and arrows from P (i) to P (the number of arrows equals the
multiplicity of P (i) in rad(P )).

(3) Add vertices associated to remaining summands R of rad(P ) and arrows R →
P .

(4) Repeat previous steps for each R.
14



At this point we get a quiver ∆0.
Induction ∆n from ∆n−1:
If X ∈ ∆n−1 and all its direct predecessors are in ∆n−1, then:

(1) if X is a direct summand of rad(Q) for some projective Q, add a vertex associ-
ated to Q and arrows X → Q.

(2) if X is not injective, add a vertex corresponding to τ−1X and for each arrow
X → Y , add Y → τ−1X.

(3) Continue this procedure, and stop if you get negative integers in the dimension
vector, or you get all the injectives.

If A is hereditary of finite representation type, it is known that each indecompos-
able A-module is uniquely determined by its dimension vector. Therefore, in order to
calculate τ−1X in the knitting algorithm, one can simply use the formula dimτ−1X =∑

X→Y dimY − dimX, by Corollary 4.10.

Example 4.20. Let Q be the quiver 1 // 2 // 3 oo 4 // 5 of type A5. The
AR-quiver of kQ is given by:

1
2
3

��

4
5

��
2
3

CC

��

1
2 4
3 5

CC

��

4

3

EE

��

2 4
3 5

BB

��

1
2 4
3

EE

��
4

3 5

BB

��

2 4
3

BB

��

1
2

��
5

CC

4
3

??

2

CC

1

Example 4.21. Let Q be the following quiver of type D4:

1 // 2 //

��

3

4

The AR-quiver of kQ is given by:

1
2

3 4

��

2

��

1

2
3 4

DD

��

��

1
2 2

3 4

CC

��

��

1
2

FF

3

EE

2
4

BB

1
2
3

FF

4

JJ

2
3

II

1
2
4

KK
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Here we have: 1
2 2

3 4
=

k k2 k

k

1
1

 [
1 0

]
[
0 1

]

5. GEOMETRIC MODELS

The knitting algorithm might not work when we start with a non-simple projective
module.

For instance, consider the quiver Q

1 4

3

2 5

α1

α2α3

α4

α5

α6

together with the admissible ideal I = 〈α1α2, α2α3, α3α1, α4α5, α5α6, α6α4〉, and let A =
kQ/I.

Suppose we start the knitting algorithm with P (5), whose radical is rad(P (5)) = 3
1.

This module is not the summand of the radical of any other projective module, and so
according to the algorithm, we would knit the following mesh:

5
3
1

��
3
1

DD

5.

However, this mesh is not correct; the algorithm did not compute the irreducible mor-

phism
5
3
1
→ 3.

This section is devoted to a different way of computing the AR-quiver of certain
classes of algebras, using the geometry of Riemann surfaces with boundary.

5.1. Geometric model of type An. We start by illustrating how to construct the AR-
quiver of an hereditary algebra of type An, with the example

Q = 1 // 2 // 3 oo 4 // 5 .

Consider a disc with 8(= n + 3) marked points on its boundary, together with the
triangulation T, i.e. maximal set of non-crossing diagonals, given in Figure 1.

Before associating an algebra to this data, we need to introduce some terminology
and notation.

We call a curve γ in the marked disc (or any marked surface) an arc if it satisfies the
following properties:

• The endpoints of γ are marked points on the boundary.
• γ intersects the boundary of the surface only in its endpoints.
• γ does not cut out a monogon or a digon.

16



FIGURE 1. A triangulation of an octogon.

Given a marked point p, let m′,m′′ be two points in the same boundary component
of p such that m′,m′′ are not marked points and p is the only marked point lying in the
boundary segment δ between m′ and m′′. Draw a curve c homotopic to δ but lying in
the interior of the disc except for its endpoints m′ and m′′. The complete fan at p is the
sequence of diagonals in T which c crosses in the clockwise order.

We can now associate a quiver QT to this triangulation, in the following way:
• vertices of QT are in one to one correspondence with diagonals of T. We will

use the same notation for both.
• Given two vertices i and j, there is an arrow i→ j if and only if i and j share a

marked point p and j is the immediate successor of i in the complete fan at p.
Note that we can associate a marked point to each arrow of QT. Namely, using the

notation above, the marked point associated to the arrow i→ j is p.

1

2

34
5

FIGURE 2. The quiver QT of the triangulation.

The quiver QT in Figure 2 is indeed Q, and in fact one can obtain any orientation of
a Dynkin graph of type An from a triangulation of a disc with n + 3 marked points on
the boundary whose triangles are outer-triangles, i.e. triangles with at least one side
on the boundary of the disc.

We will now describe how to obtain the AR-quiver of kQ from this triangulation.
We will always consider arcs up to homotopy relative to their endpoints. Given an

arc γ distinct from any diagonal of T, we define a representation Mγ = (Mi, ϕα) of kQT,
as follows:

Mi =

{
k if γ crosses diagonal i
0 otherwise,

ϕα =

{
1 if Ms(α) = Mt(α) = k

0 otherwise.

Irreducible morphisms correspond to pivoting one of the endpoints of an arc to its
counterclockwise neighbour (pivoting elementary move). Given an arc γ, we define
its translate τ(γ) to be the arc obtained from γ by rotating both endpoints to their
counterclockwise neighbour. In particular, Mγ = P (i) (resp. Mγ = I(j)) if and only if
τγ = i (resp. τ−1 = j).

A presentation of the AR-quiver of mod(kQT) in terms of these combinatorics is
presented in Figure 3

17



FIGURE 3. The geometric model of the AR-quiver of mod(kQT).

Extensions have a nice description in terms of arcs. Indeed, there is an extension
from N to M if and only if the corresponding arcs γN and γM cross each other as in
Figure 4.

γM

γN

γE2

γE1

γE

γM
γN

FIGURE 4. Extensions of N by M as crossings of γN and γM .

The summands of the middle term of the extension correspond to the arcs drawn in
red in Figure 4.

5.2. Geometric model for cluster-tilted algebras of type An. Cluster-tilted algebras
arise in the context of cluster-tilting theory. We refer the reader to [5] for a nice survey
on this class of algebras.

Cluster-tilted algebras of type An are precisely the algebras associated to an arbi-
trary triangulation of the (n+ 3)-gon.

An arbitrary triangulation T may include inner triangles, i.e. triangles whose three
boundaries are all diagonals of T. The quiver QT is defined as above, but now we
include relations αβ, if s(α), t(α) = s(β), t(β) are the boundaries of an inner triangle.

The algebra A at the start of this section is a cluster-tilted algebra of type A, which
can be obtained from the triangulation in Figure 5.
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FIGURE 5. The triangulation associated to A.

Using the same rule for arcs, pivot elementary moves and translates, we are now
able to compute the AR-quiver of mod(A) in terms of the geometric model (see Fig-
ure 6).

FIGURE 6. The geometric model of the AR-quiver of mod(A).

Note that when we have inner triangles, we can get a new type of crossing, see
Figure 7.

γM

γN

FIGURE 7. Crossing associated to an inner triangle.

However, this type of crossing does not give rise to an extension, and so all ex-
tensions are described in the same way as we have seen above. For more details
see [13].
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5.3. Geometric model for gentle algebras. We will now consider two possible gen-
eralisations of this combinatorial construction: on the one hand we can consider partial
triangulations instead (i.e. any set of non-crossing diagonals), and on the other hand
we can consider other surfaces.

Let C be the bound path algebra given by 1
α // 2

β // 3 bound by αβ. This alge-
bra can be obtained from the partial triangulation of a disc in Figure 8.

FIGURE 8. The partial triangulation of the algebra C.

The quiver is obtained in the same way as before. The relations are given by com-
position of two arrows in the same region. Note that this rule applied to an arbitrary
triangulation of the disc gives rise to the same rule described in the previous subsec-
tion.

For partial triangulations, not every arc gives rise to an indecomposable module
and two different arcs may give rise to the same indecomposable module. Therefore,
we need to define permissible arcs and equivalence of arcs (this is not the same as
homotopy).

An arc is permissible if each consecutive crossing corresponds to an arrow in the
quiver. See Figure 9 for a counter-example.

FIGURE 9. An arc which is not permissible

Two arcs are isomorphic if they intersect the same diagonals of the partial triangu-
lation (see Figure 10).

≃

FIGURE 10. Isomorphic permissible arcs.

Indecomposable modules are therefore in bijection with equivalence classes of per-
missible arcs.

If we perform a pivot elementary move as described in the previous subsections,
we may get an isomorphic arc. Hence, an irreducible morphism corresponds to a
sequence of pivot elementary moves until one gets a non-equivalent arc.
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FIGURE 11. The geometric model of the AR-quiver of mod(C).

The AR-quiver of mod(C) is given in Figure 11.
Now, let us consider an example coming from an annulus (see Figure 12).

a

bcd

1

2

3 4

FIGURE 12. A partial triangulation in an annulus and corresponding quiver.

The quiver of the algebra D associated to this partial triangulation is defined as
previously. But we refine the definition of relations as follows: the composition of two
arrows with different marked points is zero and if α is a loop, i.e. its start and endpoints
correspond to a loop arc of the partial triangulation, then α2 = 0.

The algebra D is then
2

1 3

4

α1 α4

α2

α3

bound by the relations α3α1 = α1α2 = 0. By refining the notions of permissible arcs,
equivalence of arcs, and pivot elementary moves, we get the AR-quiver of D as in
Figure 13.

An algebra associated to an unpunctured surface with a finite set of marked points
on the boundary is called a tiling algebra. It turns out that these algebras are precisely
gentle algebras.
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FIGURE 13. Γ(mod(D)).

Definition 5.1. A finite dimensional algebra A is gentle if it admits a presentation A =
kQ/I satisfying the following conditions:

(1) Each vertex of Q is the source of at most two arrows and the target of at most
two arrows.

(2) For each arrow α in Q, there is at most one arrow β in Q such that αβ 6∈ I, and
there is at most one arrow γ such that γα 6∈ I.

(3) For each arrow α in Q, there is at most one arrow δ in Q such that αδ ∈ I, and
there is at most one arrow µ such that µα ∈ I.

(4) I is generated by paths of length 2.

Gentle algebras first appeared in the context of tilting theory [4] (see also [3, Sec-
tion IX]), where iterated tilted algebras of types A and Ã were observed to satisfy the
properties above. Gentle algebras, which are tame, remain one of the relatively few
classes of algebras for which the representation theory is computationally tractable.
Partly due to this reason, there has been widespread interest in this class of algebras
in many different contexts, such as Fukaya categories [17], dimer models [8], envelop-
ing algebras of Lie algebras [18] and cluster theory [2, 16, 19]. We refer the reader
to [7, 9, 12, 13, 21] for examples of recent developments in this area.
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[9] Brüstle, T., Douville, G., Mousavand, K., Thomas, H., Yildirim, E., On the combinatorics of gentle
algebras, arXiv:1707.07665.

[10] Butler, M. C. R., Ringel, C. M., Auslander-Reiten sequences with few middle terms and applications
to string algebras; Comm. Algebra 15 (1987), 145–179.

[11] Caldero, P., Chapoton, F., Schiffler, R., Quivers with relations arising from clusters (An case), Trans.
Amer. Math. Soc. 358, no. 3 (2006), 1347–1364.

[12] Canakci, I., Pauksztello, D., Schroll, S., Mapping cones in the bounded derived category of a gentle
algebra, J. Algebra 530 (2019), 163–194.

[13] Canakci, I., Schroll, S., Extensions in Jacobian algebras and cluster categories of marked surfaces,
with an appendix by Claire Amiot. Adv. Math. 313 (2017), 1–49.

[14] K. Erdmann, T. Holm, Algebras and Representation Theory, Springer Undergraduate Mathematics
Series. Springer, Cham, 2018.

[15] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71–103; correction, ibid. 6
(1972), 309.

[16] Garcia Elsener, A., Gentle m-Calabi-Yau tilted algebras; preprint arXiv:1701.07968.
[17] Haiden, F., Katzarkov, L., Kontsevich, M., Flat surfaces and stability structures, Publ. Math. Inst.

Hautes Études Sci. 126 (2017), 247–318.
[18] Huerfano, R. S., Khovanov, M., A category for the adjoint representation, J. Algebra 246, no. 2

(2001), 514–542.
[19] Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, Proc. Lond.

Math. Soc. 98, no. 3 (2009), 787–839.
[20] Labourie, F., Lectures on representations of surface groups; Zurich Lectures in Advanced Mathe-

matics, European Mathematical Society (EMS), Zürich, 2017.
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