Number Theory - key research area in UK mathematics

Rough decomposition, underlying undergraduate courses, driving problems:

Algebraic NT

Algebraic Number Theory, Galois Theory, Local Fields Inverse Galois Problem, Class groups

Arithmetic Geometry

Elliptic Curves, Algebraic Number Theory, Algebraic curves/geometry Birch-Swinnerton-Dyer conjecture, integral and rational points

Automorphic forms

Modular forms, Complex analysis, Representation theory Langlands Programme

• Analytic NT / Discrete analysis

Analytic Number Theory, Complex analysis, Combinatorics Distribution of primes, Riemann Hypothesis, Prime gaps

+ Additional dimension: Theoretical - Explicit - Algorithmic + Cryptography [Elliptic curves, Lattices, Number fields]

Number theorists in the UK

Bath:	Loughran
Bristol:	Bober, Booker, T Dokchitser, Klurman, Lee, Maistret, Martindale
Glasgow:	Bartel, Sofos
Cambridge:	Coates, Fisher, Scholl, Thorne
Cardiff:	Aliev
Durham:	Abrashkin, Bouganis, Funke, Gangl, Shotton, Vishe
UEA:	Stevens
Edinburgh:	Smyth
Exeter:	Andrade, Byott, Jonhston, Langer, Saidi
Imperial:	Buzzard, Caraiani, Gee, Helm, Pal, Skorobogatov
KCL:	Burns, Diamond, Dogra, J Newton, R Newton, Pataschnick, Wigman
Queen Mary:	Saha, Sasaki
UCL:	V Dokchitser, Hill, Solomon, Yafaev
Manchester:	Bui, Coleman, Jones
Nottingham:	Fesenko, Wuthrich
Oxford:	Brown, Flynn, Green, Keating, Lauder, Maynard, Pila, Sanders, Wiles
Reading:	Daw
Sheffield:	Berger, Dummigan, Jarvis, Kurinczuk, Manoharmayum, Sengun
Warwick:	Chow, Cremona, Harper, Kim, Lazda, Loeffler, Siksek, Williams
York:	Beresnevich, Hughes, Levesley, Velani, Zorin

London School of Geometry & Number Theory (LSGNT)

Imperial College / King's College / University College London

CDT in Mathematics at Warwick

Pure, Applied, Interdisciplinary

Heilbronn Doctoral Training Partnership

Bristol / Manchester / Oxford Discrete mathematics (in broadest sense)

Optional summer placements at the Heilbronn Institute for Mathematical Research (HIMR) for classified research (UK Nationals)

One story: elliptic curves

Mordell (1922)

Points on an elliptic curve over ${\ensuremath{\mathbb Q}}$ form a finitely generated abelian group.

Birch, Swinnerton-Dyer (1960s)

Computer experiments that led to the Birch-Swinnerton-Dyer conjecture.

Since then: Cassels, Birch, Swinnerton-Dyer, Coates, Wiles, Cremona, ...

Wiles et al (1995)

Elliptic curves are modular, and Fermat's Last Theorem

Current research

Siksek, Gee, Thorne, Caraiani (Modularity), V Dokchitser (Birch-Swinnerton-Dyer), Coates (Iwasawa theory of elliptic curves), Burns, Johnston, Bartel (Integral structure of points), Cremona, Fisher (Selmer groups), Wuthrich (Modular curves), Loeffler (Euler systems), ...