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Dunkl theory

... generalizes Euclidean harmonic analysis and important aspects of
harmonic analysis on Riemannian symmetric spaces

fundamental tool: Dunkl operators = differential reflection operators
associated with root systems

Special functions of several variables play an important role!

Some applications/connections:
◮ quantum integrable particle systems of Calogero-Moser type
◮ representation theory of (double) affine Hecke algebras (Cherednik,

1990ies) ; Macdonald-Cherednik theory

“rational” DOs: Dunkl (since 1989), Opdam, de Jeu,...

“trigonometric” DOs and hypergeometric functions: Heckman,
Opdam (since 1991), Cherednik, Schapira,...

Here: rational setting
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Ingredients
R : a (reduced) root system in R

n, i.e.

◮ R ⊂ Rn \ {0} finite
◮ For each α ∈ R , R ∩ Rα = {±α}
◮ For each α ∈ R , the reflection sα

in the hyperplane α⊥ leaves R invariant
B2

k2

k1

W = 〈sα , α ∈ R〉 associated reflection group (Weyl group)
k : R → C a W -invariant multiplicity function

In this talk always: k ≥ 0.

Examples:

R = An−1 = {±(ei − ej ) : 1 ≤ i < j ≤ n}
W = Sn, acts on R

n by permutation of the coordinates

R = Bn = {±ei , ±(ei ± ej ) : 1 ≤ i < j ≤ n}
W = Sn ⋉ {±1}n, generated by permutations and sign changes
Multiplicity: k = (k1, k2); k1 on ±ei , k2 on ±ei ± ej
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Dunkl operators associated with R and k:

Tξ(k)f (x) = ∂ξf (x) +
1

2

∑

α∈R

k(α)〈α, ξ〉 f (x)− f (sαx)

〈α, x〉 (x , ξ ∈ R
n)

Nice mapping properties (as usual partial derivatives).

Case k = 0: Tξ(0) = ∂ξ.

”
Rank 1“ case: R = {±1} ⊂ R, W = Z/2Z

T (k)f (x) = f ′(x) + k · f (x) − f (−x)

x

Theorem (Dunkl, ’89) R , k fixed

The Tξ(k), ξ ∈ R
n commute.
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Dunkl kernel and intertwining operator
For a spectral parameter y ∈ C

n, consider the joint eigenvalue problem

(∗)
{
Tξ(k)f = 〈ξ, y〉 f ∀ ξ ∈ R

n (〈., .〉 bilinear on C
n × C

n)

f (0) = 1

How to solve?

If k = 0, then f (x) = e〈x ,y〉.

Nice method in the general case:

Dunkl’s intertwining operator

There is a unique isomorphism Vk of the space C[Rn] of polynomials on
R
n which preserves the degree of homogeneity and satisfies

Vk(1) = 1; Tξ(k)Vk = Vk∂ξ ∀ ξ ∈ R
n.

Vk extends to large classes of analytic functions (including exponentials);
the intertwining properties remains.
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Dunkl kernel (associated with R , k)

Ek(x , y) := Vk

(
e〈 . ,y〉

)
(x), x ∈ R

n, y ∈ C
n.

Consequence:
f (x) = Ek(x , y) is the unique real analytic solution of the EVP (∗)

Basic properties of Ek :

Tξ(k)Ek ( . , y) = 〈ξ, y〉Ek( ., y).

Ek(0, y) = 1

Ek extends analytically to C
n ×C

n.

Ek(x , y) = Ek(y , x)

Ek(λx , y) = Ek(x , λy), Ek(wx ,wy) = Ek(x , y) ∀λ ∈ C,w ∈ W
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Explicit expressions for Ek and Vk are a topic of intensive current research!

Rank 1 (Dunkl ’91):

Vk f (x) = c ·
∫ 1

−1
f (tx)(1 − t)k−1(1 + t)kdt

Ek(x , y) = jk−1/2(ixy) +
ixz

2k + 1
jk+1/2(ixy) with

jα(z) = 0F1

(
α+ 1;−z2/4

)
(normalized Bessel function)

Type A: Dunkl ’95; Amri ’14; Sawyer ’17 (recursive formula);
further partial results by Xu as well as de Bie/Lian (both arXiv ’20)

Dihedral groups: Amri/Demni ’17: Xu ’19; de Bie/Lian arXiv’20
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Harmonic analysis: the Dunkl transform

Fact: |Ek(x , iy)| ≤ 1 for all x , y ∈ R
n (back to this later!)

ωk(x) =
∏

α∈R

|〈α, x〉|k(α) (W -invariant weight)

For f ∈ L1(Rn, ωk),

f̂ k(ξ) := ck

∫

Rn

f (x)Ek (x ,−iξ)ωk(x)dx

Many results for the Euclidean Fourier transform carry over (Fourier
inversion, Plancherel theorem, Paley-Wiener theorem...)
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Bessel functions

Bessel function associated with R and k:

Jk(x , y) :=
1

|W |
∑

w∈W

Ek(wx , y) (W -invariant in x , y)

rank 1 case: Jk(x , y) = jk−1/2(ixy), y ∈ C.

For k = n−1
2 (n ∈ N), these are the smooth and even eigenfunctions of the

SO(n)-radial part of the Laplacian on R
n,

d2

dr2
+

n − 1

r

d

dr
.
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Further Example : R = Bn , k = (k1, k2), k2 > 0

JBk (x , y) =
∑

λ≥0

1

[µ]αλ 4
|λ||λ|! ·

Cα
λ (x

2)Cα
λ (y

2)

Cα
λ (1)

, x , y ∈ C
n

with α = 1
k2
, µ = k1 + k2(n − 1) + 1

2 (Baker/Forrester ’97)

the sum is over all partitions of length ≤ n

[µ]αλ : a generalized Pochhammer symbol

Cα
λ : Jack polynomials of index α in n variables. (Important in

algebraic combinatorics, theory of symmetric functions)

the Cα
λ are symmetric, homogeneous of degree |λ| and orthogonal on

the torus Tn w.r.t. the weight
∏

i<j |zi − zj |2/α

The Cα
λ generalize the powers xm in one variable;

for α = 1: Schur polynomials
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Excursion: Geometric cases

Setting: G/K a Riemannian symmetric space of the non-compact type,
i.e. G non-compact Lie group of

”
Harish-Chandra class“, K ≤ G maximal

compact subgroup.

Examples:

GLn(F)/Un(F), F = R,C,H;

SO0(n, 1)/SO(n) (real hyperbolic spaces),

SO0(p, q)/SO(p)× SO(q) (noncompact Grassmann manifolds)

Consider (G ,K ):

Cartan decomposition of the Lie algebra of G : g = k⊕ p

p: Euclidean space with the Killing form as scalar product

K acts on p via Ad (orthogonal transformations)

Consider p as a (flat) symmetric space with this action:

p ∼= (K ⋉ p)/K (K ⋉ p: Cartan motion group)
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Basis functions for
”
radial“ harmonic analysis on p :

The spherical functions of (p,K ), i.e. the smooth, K -invariant functions
on p which are eigenfunctions of all K -invariant constant coefficient
differential operators on p.

By their K -invariance, the spherical functions can be considered as
functions on a maximal abelian subspace a ⊂ p.

Example: G/K = SO0(n, 1)/SO(n)

p ∼= R
n, a ∼= R; the spherical functions are the 1-variable Bessel functions

x 7→ jk−1/2(ixy), y ∈ C, k = n−1
2 .

Important observation by Heckman:

The spherical functions of (p,K ), considered as functions on a ∼= R
n, are

given by
ϕ(x) = Jk(x , y), y ∈ C

n

Jk : Dunkl-type Bessel function. R , k : associated with G/K ;
the k(α) are half-integer dimension numbers ( 1

2× root multiplicities)
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Examples

(1) G/K = GLn(F)/Un(F)

p = {X ∈ Mn(F) : X = X ∗} (Hermitian matrices)

K = Un(F) acts by conjugation

a = {diag(x1, . . . , xn) : xi ∈ R} ∼= R
n

; Bessel functions of type An−1 , k = d
2 , d = dimRF ∈ {1, 2, 4}

(2) G/K = SO0(p, q)/SO(p)× SO(q), similar over C,H; p ≥ q ≥ 2

; Bessel functions of type Bq

k = (k1, k2) =
(
d
2 (p − q + 1)− 1

2 ,
d
2

)
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Harish-Chandra integral

In the geometric cases described before,

Jk(x , y) =

∫

K

e〈k.x ,y〉dk 〈., .〉 : Killing form on p

=
Kostant

∫

co(W.x)
e〈ξ,y〉dµx(ξ)

co(W.x) ⊆ a ∼= R
n: convex hull of the Weyl group orbit of x

µx a probability measure

Now back to the general Dunkl setting!

There is an abstract generalization of the Harish-Chandra integral formula,
not only for the Bessel function, but also for the Dunkl kernel:
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Positivity of Vk and abstract Harish-Chandra formula

Theorem (R. ’99) R , k ≥ 0 arbitrary

(1) The intertwiner Vk is positive on C[Rn], i.e. p ≥ 0 =⇒ Vkp ≥ 0.

(2) For each x ∈ R
n there exists a (unique) probability measure µk

x on
co(W .x) such that

Ek(x , y) =

∫

co(W .x)
e〈ξ,y〉dµk

x (ξ) ∀y ∈ C
n.

Some consequences:

Ek(x , y) > 0 for all x , y ∈ R
n

; probabilistic applications

Good bounds on Ek , e.g. |Ek(x , iy)| ≤ 1 for all x , y ∈ R
n

positivity of generalized translations (in the Dunkl sense) of radial
functions ; Useful for harmonic analysis
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Intertwiner between Tξ(k) and Tξ(k
′)

For multiplicities k , k ′ ≥ 0 on the same root system R , the operator
Vk′,k := Vk′ ◦ V−1

k intertwines the Dunkl operators w.r.t k and k ′:

Tξ(k
′)Vk′,k = Vk′,kTξ(k)

Old conjecture (P): If k ′ ≥ k , i.e. k ′(α) ≥ k(α) ∀α, then
Vk′,k is positive.

Equivalent: If k ′ ≥ k , then for each x ∈ R
n there exists a (unique)

compactly supported probability measure µk′,k
x on R

n such that

(∗) Ek′(x , y) =

∫

Rn

Ek(ξ, y)dµ
k′,k
x (ξ) ∀y ∈ C

n (Sonine formula)

Then also
Jk′(x , y) =

∫

Rn

Jk(ξ, y)dν
k′,k
x (ξ)

with a unique W -invariant probability measure νk
′,k

x .
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(P) is true in rank 1 (Y. Xu ’03): k ′ > k =⇒

Vk′,k f (x) = ck′,k

∫ 1

−1
f (xt)|t|2k(1 + t)(1− t2)k

′−k−1dt.

In this case, the Sonine formula for Jk is just the classical Sonine formula
for one-variable Bessel functions (N. Sonine, 1849–1915):

jβ(x) = cα,β

∫ 1

0
jα(xt)t

2α+1(1− t2)β−α−1dt ∀ β > α > −1.

But (P) is not true in general!

We have positive examples, but also counterexamples for R = Bn .
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Results on conjecture (P) for R = Bn (with M. Voit, 2020)

Bn = {±ei , ±ei ± ej , 1 ≤ i < j ≤ n} ⊂ R
n

k = (k1, k2) with k1 ≥ 0 (on ±ei ), k2 > 0 (on ±ei ± ej)

Consider k ′ = (k1 + h, k2) with h ≥ 0 .

Theorem 1 (Necessary condition)

If Vk′,k = Vk′V
−1
k

is positive, then either h > k2(n − 1), or h belongs to
the discrete set

{
0, k2, . . . , k2(n − 1)

}
− N0

Proof:

(1) Vk is a topological isomorphism of E(Rn) =⇒ for fixed x ∈ R
n,

ϕ 7→ Vk′,k ϕ(x), E(Rn) → C

defines a compactly supported distribution on R
n.

(2) With ϕ(x) = JBk (x , y) =⇒ JBk′(1, y) = 〈uk,h , JBk ( . , y)〉 ∀y ,
with a unique Bn-invariant distribution uk,h ∈ E ′(Rn).

If Vk′,k is positive, then uk,h must be a positive measure.
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(3) Series expansion of JBk in terms of Jack polynomials shows:

For h > k2(n − 1), uk,h is a positive measure with a compactly
supported probability density:

〈uk,h, ϕ〉 =
∫

Rn

ϕ(x)fk,h(x)dx ,

fk,h(x) = ck,h ·
n∏

j=1

x2k1j (1− x2j )
h−k2(n−1)−1

∏

i<j

|x2i − x2j |2k2 · 1]−1,1[n(x)

As a function of h, fk,h(x) extends analytically to {Re h > 0}.
Arguments of A. Sokal ’11 show:
If the distribution uk,h with h > 0 is a measure, then fk,h must be
locally integrable on R

n.

=⇒ either h > k2(n − 1), or ck,h = 0 ; discrete values of h.
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Corollary

If JB(k1+h,k2)
has a positive Sonine integral representation w.r.t. JB(k1,k2),

then either h > k2(n − 1), or h ∈ {0, k2, . . . k2(n − 1)} − N0.

The same holds for the Dunkl kernel.

A further consequence:
Multivariate Jacobi polynomials (Heckman-Opdam polynomials of type
BC ) allow limit transitions to Bessel functions of type B . Theorem 1
implies that there occur negative connection coefficients between Jacobi
polynomials from multiplicity k to k ′ ≥ k , which do not show up in the
1-variable case.
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Positive results for Bn

Again k = (k1, k2), k1 ≥ 0, k2 > 0; k ′ = (k1 + h, k2), h ≥ 0.

Conjecture: Vk′,k is positive iff h belongs to the
”
generalized Wallach

set“ {
0, k2, . . . , k2(n − 1)

}
∪ ]k2(n − 1),∞[ .

For certain half-integer values of k2, this set is well-known in the analysis
on symmetric cones (e.g. the cone of positive definite matrices).
It characterizes those Riesz distributions which are positive measures
(Gindikin, ’75).

Theorem 2 (k2 ”
geometric“, h large)

Denote by Ṽk′,k the restriction of Vk′,k to Bn-invariant functions.

If k2 ∈ {1
2 , 1, 2} and h > k2(n − 1), then Ṽk′,k is positive.

Proof: Based on explicit Sonine integrals for JBk which are derived from
known Sonine formulas for Bessel functions on symmetric cones.
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Theorem 3 (arbitrary k2, discrete values of h)

If k2 > 0 is arbitrary and h ∈ {0, k2, 2k2, . . .}, then Ṽk′,k is also positive.

Proof: based on multivariate extensions of the following properties of the
classical Laguerre polynomials:

(a) lim
n→∞

L̃αn
(x
n

)
= jα(2

√
x); L̃αn =

Lαn
Lαn (0)

(b) If β > α, then L̃βn (x) =

n∑

k=0

cn,k L̃
α
k (x) with cn,k ≥ 0,

∑n
k=0 cn,k = 1.

Idea: Take the limit (a) in formula (b) =⇒ there exists a probability
measure µ on [0, 1] such that

jβ(2
√
x) =

∫ 1

0
jα(2

√
xξ )dµ(ξ) ∀ x ≥ 0.

For multivariate Laguerre polynomials Lαλ (indexed by partitions λ), the
connection coefficients as in (b) are ≥ 0 if β − α ∈ {0, k2, 2k2, . . .}.
But: There exist β > α, where negative connection coefficients occur!
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Thank you for your attention!
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