Intertwining operators between Dunkl operators of type B_n

Margit Rösler (Paderborn, Germany) based on joint work with Michael Voit, Dortmund

OPSFOTA Seminar, September 17, 2020

Dunkl theory

- ... generalizes Euclidean harmonic analysis and important aspects of harmonic analysis on Riemannian symmetric spaces
- fundamental tool: Dunkl operators = differential reflection operators associated with root systems
- Special functions of several variables play an important role!
- Some applications/connections:
 - quantum integrable particle systems of Calogero-Moser type
 - representation theory of (double) affine Hecke algebras (Cherednik, 1990ies) → Macdonald-Cherednik theory
- "rational" DOs: Dunkl (since 1989), Opdam, de Jeu,...
- "trigonometric" DOs and hypergeometric functions: Heckman, Opdam (since 1991), Cherednik, Schapira,...

Here: rational setting

< 日 > < 同 > < 回 > < 回 > < 回 > <

Ingredients

• R: a (reduced) **root system** in \mathbb{R}^n , i.e.

- $R \subset \mathbb{R}^n \setminus \{0\}$ finite
- For each $\alpha \in R$, $R \cap \mathbb{R}\alpha = \{\pm \alpha\}$
- ► For each $\alpha \in R$, the reflection s_{α} in the hyperplane α^{\perp} leaves R invariant

W = ⟨s_α, α ∈ R⟩ associated reflection group (Weyl group)
k : R → C a W-invariant multiplicity function

In this talk always: $k \ge 0$.

Examples:

- $R = A_{n-1} = \{\pm (e_i e_j) : 1 \le i < j \le n\}$ $W = S_n$, acts on \mathbb{R}^n by permutation of the coordinates
- $R = B_n = \{\pm e_i, \pm (e_i \pm e_j) : 1 \le i < j \le n\}$ $W = S_n \ltimes \{\pm 1\}^n$, generated by permutations and sign changes Multiplicity: $k = (k_1, k_2)$; k_1 on $\pm e_i$, k_2 on $\pm e_i \pm e_j$

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Dunkl operators associated with R and k:

$$T_{\xi}(k)f(x) = \partial_{\xi}f(x) + \frac{1}{2}\sum_{\alpha \in R} k(\alpha) \langle \alpha, \xi \rangle \frac{f(x) - f(s_{\alpha}x)}{\langle \alpha, x \rangle} \quad (x, \, \xi \in \mathbb{R}^n)$$

• Nice mapping properties (as usual partial derivatives).

• Case
$$k = 0$$
: $T_{\xi}(0) = \partial_{\xi}$.

• "Rank 1" case: $R = \{\pm 1\} \subset \mathbb{R}, \ W = \mathbb{Z}/2\mathbb{Z}$

$$T(k)f(x) = f'(x) + k \cdot \frac{f(x) - f(-x)}{x}$$

Theorem (Dunkl, '89) R, k fixed The $T_{\xi}(k), \ \xi \in \mathbb{R}^n$ commute.

Margit Rösler

Dunkl kernel and intertwining operator

For a spectral parameter $y \in \mathbb{C}^n$, consider the joint eigenvalue problem

(*)
$$\begin{cases} T_{\xi}(k)f = \langle \xi, y \rangle f & \forall \xi \in \mathbb{R}^n \\ f(0) = 1 \end{cases} \quad (\langle ., . \rangle \text{ bilinear on } \mathbb{C}^n \times \mathbb{C}^n) \end{cases}$$

How to solve?

If
$$k = 0$$
, then $f(x) = e^{\langle x, y \rangle}$.

Nice method in the general case:

Dunkl's intertwining operator

There is a unique isomorphism V_k of the space $\mathbb{C}[\mathbb{R}^n]$ of polynomials on \mathbb{R}^n which preserves the degree of homogeneity and satisfies

$$V_k(1) = 1; \ T_{\xi}(k)V_k = V_k\partial_{\xi} \ \forall \xi \in \mathbb{R}^n.$$

 V_k extends to large classes of analytic functions (including exponentials); the intertwining properties remains.

Margit Rösler

Dunkl kernel (associated with R, k)

$$E_k(x,y) := V_k(e^{\langle \cdot, y \rangle})(x), \quad x \in \mathbb{R}^n, y \in \mathbb{C}^n.$$

Consequence:

 $f(x) = E_k(x, y)$ is the unique real analytic solution of the EVP (*)

Basic properties of E_k :

•
$$T_{\xi}(k)E_k(.,y) = \langle \xi, y \rangle E_k(.,y).$$

•
$$E_k(0,y)=1$$

• E_k extends analytically to $\mathbb{C}^n \times \mathbb{C}^n$.

•
$$E_k(x,y) = E_k(y,x)$$

• $E_k(\lambda x, y) = E_k(x, \lambda y), \ E_k(wx, wy) = E_k(x, y) \ \forall \lambda \in \mathbb{C}, w \in W$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Explicit expressions for E_k and V_k are a topic of intensive current research!

Rank 1 (Dunkl '91):

•
$$V_k f(x) = c \cdot \int_{-1}^{1} f(tx)(1-t)^{k-1}(1+t)^k dt$$

• $E_k(x,y) = j_{k-1/2}(ixy) + \frac{ixz}{2k+1}j_{k+1/2}(ixy)$ with
 $j_{\alpha}(z) = {}_0F_1(\alpha+1;-z^2/4)$ (normalized Bessel function)

Type A: Dunkl '95; Amri '14; Sawyer '17 (recursive formula); further partial results by Xu as well as de Bie/Lian (both arXiv '20) **Dihedral groups:** Amri/Demni '17: Xu '19; de Bie/Lian arXiv'20

A 12 N A 12 N

Harmonic analysis: the Dunkl transform Fact: $|E_k(x, iy)| \le 1$ for all $x, y \in \mathbb{R}^n$ (back to this later!)

$$\omega_k(x) = \prod_{lpha \in R} |\langle lpha, x
angle|^{k(lpha)}$$
 (*W*-invariant weight)

For $f \in L^1(\mathbb{R}^n, \omega_k)$,

$$\widehat{f}^{k}(\xi) := c_k \int_{\mathbb{R}^n} f(x) E_k(x, -i\xi) \omega_k(x) dx$$

Many results for the Euclidean Fourier transform carry over (Fourier inversion, Plancherel theorem, Paley-Wiener theorem...)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bessel functions

Bessel function associated with R and k:

$$J_k(x,y) := rac{1}{|W|} \sum_{w \in W} E_k(wx,y)$$
 (W-invariant in x,y)

rank 1 case:
$$J_k(x, y) = j_{k-1/2}(ixy), \quad y \in \mathbb{C}.$$

For $k = \frac{n-1}{2}$ $(n \in \mathbb{N})$, these are the smooth and even eigenfunctions of the SO(n)-radial part of the Laplacian on \mathbb{R}^n ,

$$\frac{d^2}{dr^2} + \frac{n-1}{r}\frac{d}{dr}.$$

• • = • • = •

Further Example : $R = B_n$, $k = (k_1, k_2)$, $k_2 > 0$

$$J_k^B(x,y) = \sum_{\lambda \ge 0} \frac{1}{[\mu]_\lambda^{\alpha} 4^{|\lambda|} |\lambda|!} \cdot \frac{C_\lambda^{\alpha}(x^2) C_\lambda^{\alpha}(y^2)}{C_\lambda^{\alpha}(\mathbf{1})}, \quad x,y \in \mathbb{C}^n$$

with $\alpha = \frac{1}{k_2}, \ \mu = k_1 + k_2(n-1) + \frac{1}{2}$ (Baker/Forrester '97)

- the sum is over all partitions of length $\leq n$
- $[\mu]^{\alpha}_{\lambda}$: a generalized Pochhammer symbol
- C_{λ}^{α} : Jack polynomials of index α in *n* variables. (Important in algebraic combinatorics, theory of symmetric functions)
- the C_{λ}^{α} are symmetric, homogeneous of degree $|\lambda|$ and orthogonal on the torus \mathbb{T}^n w.r.t. the weight $\prod_{i < i} |z_i z_j|^{2/\alpha}$
- The C^α_λ generalize the powers x^m in one variable; for α = 1: Schur polynomials

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Excursion: Geometric cases

Setting: G/K a Riemannian symmetric space of the non-compact type, i.e. *G* non-compact Lie group of "Harish-Chandra class", $K \leq G$ maximal compact subgroup.

Examples:

- $GL_n(\mathbb{F})/U_n(\mathbb{F}), \mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H};$
- $SO_0(n,1)/SO(n)$ (real hyperbolic spaces),
- $SO_0(p,q)/SO(p) \times SO(q)$ (noncompact Grassmann manifolds)

Consider (G, K):

- Cartan decomposition of the Lie algebra of $G: \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$
- \mathfrak{p} : Euclidean space with the Killing form as scalar product
- K acts on p via Ad (orthogonal transformations)
- Consider p as a (flat) symmetric space with this action:

 $\mathfrak{p} \cong (K \ltimes \mathfrak{p})/K$ ($K \ltimes \mathfrak{p}$: Cartan motion group)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Basis functions for "radial" harmonic analysis on p :

The **spherical functions of** (\mathfrak{p}, K) , i.e. the smooth, *K*-invariant functions on \mathfrak{p} which are eigenfunctions of all *K*-invariant constant coefficient differential operators on \mathfrak{p} .

By their K-invariance, the spherical functions can be considered as functions on a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Example: $G/K = SO_0(n, 1)/SO(n)$

 $\mathfrak{p} \cong \mathbb{R}^n$, $\mathfrak{a} \cong \mathbb{R}$; the spherical functions are the 1-variable Bessel functions $x \mapsto j_{k-1/2}(ixy), y \in \mathbb{C}, k = \frac{n-1}{2}$.

Important observation by Heckman:

The spherical functions of $(\mathfrak{p}, \mathcal{K})$, considered as functions on $\mathfrak{a} \cong \mathbb{R}^n$, are given by

$$\varphi(x)=J_k(x,y), y\in\mathbb{C}^n$$

 J_k : Dunkl-type Bessel function. R, k: associated with G/K; the $k(\alpha)$ are half-integer dimension numbers ($\frac{1}{2} \times$ root multiplicities)

3

(日)

Examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Harish-Chandra integral

In the geometric cases described before,

$$J_k(x,y) = \int_{\mathcal{K}} e^{\langle k,x,y \rangle} dk \qquad \langle .,. \rangle : \text{ Killing form on } \mathfrak{p}$$
$$= \int_{\text{Kostant}} \int_{co(W,x)} e^{\langle \xi,y \rangle} d\mu_x(\xi)$$

 $co(W.x) \subseteq \mathfrak{a} \cong \mathbb{R}^n$: convex hull of the Weyl group orbit of $x \mu_x$ a probability measure

Now back to the general Dunkl setting!

There is an abstract generalization of the Harish-Chandra integral formula, not only for the Bessel function, but also for the Dunkl kernel:

Positivity of V_k and abstract Harish-Chandra formula

Theorem (R. '99) $R, k \ge 0$ arbitrary

(1) The intertwiner V_k is positive on $\mathbb{C}[\mathbb{R}^n]$, i.e. $p \ge 0 \implies V_k p \ge 0$.

(2) For each $x \in \mathbb{R}^n$ there exists a (unique) probability measure μ_x^k on co(W.x) such that

$$E_k(x,y) = \int_{co(W.x)} e^{\langle \xi, y \rangle} d\mu_x^k(\xi) \quad \forall y \in \mathbb{C}^n.$$

Some consequences:

- $E_k(x, y) > 0$ for all $x, y \in \mathbb{R}^n \rightsquigarrow$ probabilistic applications
- Good bounds on E_k , e.g. $|E_k(x,iy)| \le 1$ for all $x,y \in \mathbb{R}^n$
- positivity of generalized translations (in the Dunkl sense) of radial functions \sim Useful for harmonic analysis

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Intertwiner between $T_{\xi}(k)$ and $T_{\xi}(k')$

For multiplicities $k, k' \ge 0$ on the same root system R, the operator $V_{k',k} := V_{k'} \circ V_k^{-1}$ intertwines the Dunkl operators w.r.t k and k':

$$T_{\xi}(k')V_{k',k}=V_{k',k}T_{\xi}(k)$$

Old conjecture (P): If $k' \ge k$, i.e. $k'(\alpha) \ge k(\alpha) \ \forall \alpha$, then $V_{k',k}$ is positive.

Equivalent: If $k' \ge k$, then for each $x \in \mathbb{R}^n$ there exists a (unique) compactly supported probability measure $\mu_x^{k',k}$ on \mathbb{R}^n such that

(*)
$$E_{k'}(x,y) = \int_{\mathbb{R}^n} E_k(\xi,y) d\mu_x^{k',k}(\xi) \quad \forall y \in \mathbb{C}^n$$
 (Sonine formula)

Then also

$$J_{k'}(x,y) = \int_{\mathbb{R}^n} J_k(\xi,y) d\nu_x^{k',k}(\xi)$$

with a unique *W*-invariant probability measure $\nu_x^{k',k}$.

Margit Rösler

(P) is true in rank 1 (Y. Xu '03): $k' > k \Longrightarrow$

$$V_{k',k}f(x) = c_{k',k}\int_{-1}^{1}f(xt)|t|^{2k}(1+t)(1-t^2)^{k'-k-1}dt.$$

In this case, the Sonine formula for J_k is just the classical Sonine formula for one-variable Bessel functions (N. Sonine, 1849–1915):

$$j_eta(x)=c_{lpha,eta}{\displaystyle\int_0^1}j_lpha(xt)t^{2lpha+1}(1-t^2)^{eta-lpha-1}dt\quad orall\,eta>lpha>-1.$$

But (P) is not true in general!

We have positive examples, but also counterexamples for $R = B_n$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Results on conjecture (P) for $R = B_n$ (with M. Voit, 2020)

- $B_n = \{\pm e_i, \pm e_i \pm e_j, 1 \le i < j \le n\} \subset \mathbb{R}^n$
- $k = (k_1, k_2)$ with $k_1 \ge 0$ (on $\pm e_i$), $k_2 > 0$ (on $\pm e_i \pm e_j$)
- Consider $k' = (k_1 + h, k_2)$ with $h \ge 0$.

Theorem 1 (Necessary condition)

If $V_{k',k} = V_{k'}V_k^{-1}$ is positive, then **either** $h > k_2(n-1)$, **or** h belongs to the discrete set $\{0, k_2, \ldots, k_2(n-1)\} - \mathbb{N}_0$

Proof:

(1) V_k is a topological isomorphism of $\mathcal{E}(\mathbb{R}^n) \Longrightarrow$ for fixed $x \in \mathbb{R}^n$,

$$\varphi \mapsto V_{k',k} \varphi(x), \ \mathcal{E}(\mathbb{R}^n) \to \mathbb{C}$$

defines a compactly supported distribution on \mathbb{R}^n .

(2) With $\varphi(x) = J_k^B(x, y) \Longrightarrow J_{k'}^B(1, y) = \langle u_{k,h}, J_k^B(., y) \rangle \ \forall y$, with a unique B_n -invariant distribution $u_{k,h} \in \mathcal{E}'(\mathbb{R}^n)$. If $V_{k',k}$ is positive, then $u_{k,h}$ must be a positive measure.

・ 同 ト ・ ヨ ト ・ ヨ ト

(3) Series expansion of J^B_k in terms of Jack polynomials shows:
 For h > k₂(n - 1), u_{k,h} is a positive measure with a compactly supported probability density:

$$\langle u_{k,h},\varphi\rangle = \int_{\mathbb{R}^n} \varphi(x) f_{k,h}(x) dx,$$

$$f_{k,h}(x) = c_{k,h} \cdot \prod_{j=1}^{n} x_j^{2k_1} (1-x_j^2)^{h-k_2(n-1)-1} \prod_{i < j} |x_i^2 - x_j^2|^{2k_2} \cdot 1_{]-1,1[^n}(x)$$

As a function of h, $f_{k,h}(x)$ extends analytically to $\{\operatorname{Re} h > 0\}$.

Arguments of A. Sokal '11 show:

If the distribution $u_{k,h}$ with h > 0 is a measure, then $f_{k,h}$ must be locally integrable on \mathbb{R}^n .

 \implies either $h > k_2(n-1)$, or $c_{k,h} = 0 \rightsquigarrow$ discrete values of h.

Corollary

If $J^B_{(k_1+h,k_2)}$ has a positive Sonine integral representation w.r.t. $J^B_{(k_1,k_2)}$, then either $h > k_2(n-1)$, or $h \in \{0, k_2, \dots, k_2(n-1)\} - \mathbb{N}_0$.

The same holds for the Dunkl kernel.

A further consequence:

Multivariate Jacobi polynomials (Heckman-Opdam polynomials of type BC) allow limit transitions to Bessel functions of type B. Theorem 1 implies that there occur negative connection coefficients between Jacobi polynomials from multiplicity k to $k' \ge k$, which do not show up in the 1-variable case.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Positive results for B_n

Again $k = (k_1, k_2), k_1 \ge 0, k_2 > 0; \ k' = (k_1 + h, k_2), \ h \ge 0.$

Conjecture: $V_{k',k}$ is positive iff *h* belongs to the **"generalized Wallach** set"

$$\{0, k_2, \ldots, k_2(n-1)\} \cup]k_2(n-1), \infty[.$$

For certain half-integer values of k_2 , this set is well-known in the analysis on symmetric cones (e.g. the cone of positive definite matrices). It characterizes those Riesz distributions which are positive measures (Gindikin, '75).

Theorem 2 (k_2 "geometric", h large)

Denote by $\widetilde{V}_{k',k}$ the restriction of $V_{k',k}$ to B_n -invariant functions. If $k_2 \in \{\frac{1}{2}, 1, 2\}$ and $h > k_2(n-1)$, then $\widetilde{V}_{k',k}$ is positive.

Proof: Based on explicit Sonine integrals for J_k^B which are derived from known Sonine formulas for Bessel functions on symmetric cones.

Theorem 3 (arbitrary k_2 , discrete values of h)

If $k_2 > 0$ is arbitrary and $h \in \{0, k_2, 2k_2, \ldots\}$, then $V_{k',k}$ is also positive.

Proof: based on multivariate extensions of the following properties of the classical Laguerre polynomials:

(a)
$$\lim_{n \to \infty} \tilde{L}_n^{\alpha}(\frac{x}{n}) = j_{\alpha}(2\sqrt{x}); \quad \tilde{L}_n^{\alpha} = \frac{L_n^{\alpha}}{L_n^{\alpha}(0)}$$

(b) If $\beta > \alpha$, then $\tilde{L}_n^{\beta}(x) = \sum_{k=0}^n c_{n,k} \tilde{L}_k^{\alpha}(x)$ with $c_{n,k} \ge 0$, $\sum_{k=0}^n c_{n,k} = 1$.

Idea: Take the limit (a) in formula (b) \implies there exists a probability measure μ on [0, 1] such that

$$j_{eta}(2\sqrt{x}) = \int_0^1 j_{lpha}(2\sqrt{x\xi}\,) d\mu(\xi) \quad \forall \, x \geq 0.$$

For **multivariate** Laguerre polynomials L^{α}_{λ} (indexed by partitions λ), the connection coefficients as in (b) are ≥ 0 if $\beta - \alpha \in \{0, k_2, 2k_2, \ldots\}$.

But: There exist $\beta > \alpha$, where negative connection coefficients occur!

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

References:

- M. Rösler, M. Voit, Sonine formulas and intertwining operators in Dunkl theory. To appear in IMRN; https://doi.org/10.1093/imrn/rnz313; arXiv:1902.02821.
- M. Rösler, M. Voit: Positive intertwiners for Bessel functions of type B. To appear in Proc. AMS. Preliminary version: ArXiv:1912.12711.

Thank you for your attention!