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Painlevé equations related to orthogonal polynomials



Painlevé equations related to orthogonal polynomials

The Painlevé differential equations
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)
In each case y = y(t) and α, β, γ, δ complex parameters.



Painlevé equations related to orthogonal polynomials

Three-term recurrence and recurrence coefficients

Orthonormal polynomials pn(x) satisfy a three-term recurrence:

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x).

The coefficients an and bn are usually refered to as the recurrence coefficients.

Differential and discrete systems for recurrence coefficients

I Usually it is first shown that the recurrence coefficients {an, bn}, as functions of the
discrete variable n, satisfy, after some change of variables, a system of non-linear
difference equations

I As functions of some continuous parameter appearing in the weight, satisfy a Toda-type
differential-difference system.

I Combining these, one can obtain a scalar second order (first or higher degree)
nonlinear differential equation, which can be very cumbersome.

These systems of differential and difference equations often turn out to be reducible
to differential or discrete Painlevé equations (see [Van Assche, 2018] and references
therein)



Painlevé equations related to orthogonal polynomials

The identification problem

The questions:

Given a second-order nonlinear nonautonomous discrete or differential equation suspected
to be transformable to a Painlevé equation, the following questions arise:

I If so, which Painlevé equation?
I What is the change of variables transforming the original system to the standard form?
I How are the parameters from the original system related to those from the Painlevé

equation?

The geometric approach:

Assuming the system is transformable to a Painlevé equation:
If we can construct a space of initial conditions for the system, then we can determine the
type of Painlevé equation it is transformable to, and obtain a change of variables from an
appropriate identification of this space of initial conditions with that of the standard form.



Geometric theory of differential Painlevé equations: Okamoto’s space



Okamoto’s space

Regularisation of ODE systems by blowups: a simple example
[Kajiwara et al., 2017]

dx
dt

= 1
dy
dt

=
y
x I At t0 ∈ R, any initial condition

(x(t0), y(t0)) = (x0, y0) with x0 < 0
gives a unique solution that can be
extended until it reaches the origin.

I The vector field giving the ODE system
is not defined (it diverges) on
{x = 0, y 6= 0}.

I On the other side of the origin, any
initial condition can similarly be
extended forever (in the direction of
increasing t)



Okamoto’s space

Make substitution

x = v , y = uv .

I The vector field (u′, v ′) is now regular
I Any initial condition

(u(t0), v(t0)) = (u0, v0) gives a solution
curve that can be continued for all
t ∈ R.

I We have separated the infinite family of
solutions of our original system passing
through the origin

du
dt

= 0
dv
dt

= 1



Okamoto’s space

That was a blowup!

Coordinates:

u =
y
x
, v = x .

Blowup of a point on a surface

I Essentially gluing in a projective line in
place of a point.

I The point is replaced by an exceptional
divisor E ∼= P1.

I After blowing up p : (x , y) = (x0, y0),
the exceptional line replacing p can be
covered by two local affine coordinate
charts (u, v) and (U,V ) given by

u =
y − y0

x − x0
, v = x − x0,

U =
x − x0

y − y0
, V = y − y0.



Okamoto’s space

The space of initial conditions

Space of initial conditions for the simple example

I We have a fibre bundle over R, with fibre given by the blown-up surface, with the
inaccessible divisor {x = 0, y 6= 0} removed.

I The flow of the ODE lifted under the blowup gives a foliation of the bundle into disjoint
solution curves that are transverse to the fibres.

I Each fibre over t0 ∈ R can be regarded as a space of initial conditions for the equation.

Okamoto’s space of initial conditions [Okamoto, 1979]

Okamoto discovered that all 6 Painlevé equations admit a similar space: A bundle over the
(complex) independent variable space foliated by solution curves transverse to the fibres.



Okamoto’s space

Standard Hamiltonian forms of the Painlevé equations
In constructing the space of initial conditions, Okamoto considered the each Painlevé
equation in the form of a non-autonomous Hamiltonian system with polynomial Hamiltonian.

Standard Hamiltonians [Kajiwara et al., 2017]

PI : H =
1
2

p2 − 2q3 − tq,

PII : H =
p2

2
−
(

q2 +
t
2

)
p − a1q

PIII : H =
1
t

(
p(p − 1)q2 + (a1 + a2)qp + tp − a2q

)
PIV : H = −a1p − a2q + qp(p − q − t)

PV : H =
1
t

(
q(q − 1)p(p + t)− (a1 + a3)qp + a1p + a2tq

)
,

where a0 + a1 + a2 + a3 = 1,

PVI : H =
q(q − 1)(q − t)

t(t − 1)

{
p2 −

(
a0 − 1
q − t

+
a3

q − 1
+

a4

q

)
p
}
+

a2(a1 + a2)(q − t)
t(t − 1)

,

where a0 + a1 + 2a2 + a3 + a4 = 1



Okamoto’s space

Construction of Okamoto’s space

(Step 1) Compactify phase space
Initially the phase space for PJ is the trivial bundle C2 × BJ, where
BJ = C\{fixed singularities}.
Compactify fibres from C2 to CP2 (or CP1 × CP1 is also fine for PII−VI)

(Step 2) Resolve singularities through blowups
In the fibres of the resulting space, identify points of indeterminacies of the vector
field (through which infinitely many solutions pass) and blow them up.

(Step 3) Remove inaccessible divisors
After all singularities are resolved, identify the curves where the vector field
diverges: no solution curve from a regular initial value will reach here, so remove
these curves.

We then have a bundle over the independent variable space, whose fibres are (complex
projective) rational surfaces with a number of curves removed, foliated by solution curves
transverse to the fibres.



Okamoto’s space

Example: PIV

Standard Hamiltonian form of PIV

q′ = 2pq − q2 − tq − a1, p′ = p2 − tp − 2pq + a2.

p =∞

q = 0 q =∞

p = 0

p1 p2

p3

p4

p5

p6 p7 p8

P1 × P1

Blp1...p8

E4

E2

E8

X



Okamoto’s space

I For each of the standard Hamiltonian forms of the Painlevé equations, after
compactifying to CP2 we require exactly nine blowups.

I For PII-PVI we can use CP1 × CP1 instead of CP2, then require exactly eight blowups.

Surface types for Painlevé differential equations

For each of PI−VI, Okamoto noticed that in each fibre, the inaccessible divisors had
intersection configuration given by an affine Dynkin diagram.

PI PII PIII PIV PV PVI

Surface E(1)
8 E(1)

7 D(1)
8 D(1)

7 D(1)
6 E(1)

6 D(1)
5 D(1)

4

Associating a Dynkin diagram to the surface is done formally in terms of root system
structures in its Picard lattice [Sakai, 2001, Saito and Takebe, 2002, Saito et al., 2002].



Okamoto’s space

The Picard lattice
For a nonsingular complex projective rational surface X , we have:

I Picard group / divisor class group: Pic(X ) ∼= Cl(X ) = Div(X )/ ∼
(abelian group of equivalence classes of formal integer sums of irreducible curves
on X , modulo linear equivalence)

I Intersection pairing: Symmetric bilinear form on Pic(X ) via intersections of curves

Example: when X is an eight-point blowup of CP1 × CP1:

I Pic(X ) = ZH1 + ZH2 +
∑8

i=1 ZEi , where
I H1,H2 are classes of hyperplanes in each CP1 factor,
I E1, . . . , E8 are exceptional divisor classes from the eight blowups.

I Intersection pairing:

H1 · H1 = H2 · H2 = H1 · Ei = H2 · Ej = 0, H1 · H2 = 1, Ei · Ej = −δij ,

I For the surfaces associated with Painlevé equations, the inaccessible divisors give a
basis for a root lattice in Pic(X ) associated with an affine root system [Sakai, 2001].
The type of this root system is the surface type.



The identification procedure: differential case



The identification procedure: differential case

The identification procedure for differential Painlevé equations

(Step 1) Construct a space of initial conditions.

(Step 2) Determine the surface type.

(Step 3) Find an identification with the standard model on the level of Pic(X ) .

(Step 4) Find the birational map between surfaces realising this identification, which
gives the change of variables to the standard form.



The identification procedure: differential case

Example: Semi-classical Laguerre weight
Discrete and differential systems derived and studied in [Han and Chen, 2017] for the weight

w(x , c) = w(x , α, c) := xαe−N(x+c(x2−x)), x ∈ (0,∞), α > −1, c ∈ [0, 1], N > 0.

Discrete system for recurrence coefficients

Letting bn = (c − 1 + xn)/(2c), a2
n = (n + Nyn)/(2Nc),

xnxn−1 =
2Ncyn(yn − α/N)

n + Nyn
, 2(yn+1 + yn) =

2α
N
− x2

n + (c − 1)xn

c
.

Differential system for recurrence coefficients with respect to c

x ′n
c + 1

= −N
x2

n

4c2 +

(
N(c − 1)

4c2 +
1

2c(c + 1)

)
xn − N

yn

c
+

α

2c
,

y ′n
c + 1

= −N
y2

n

2cx
+
( α

2cx
+ N

x
4c2

)
yn + n

xn

4c2 .



The identification procedure: differential case

Space of initial conditions (surface type E (1)
6 )

y =∞

x = 0 x =∞

y = 0
q1

q2

q3

q4

q5 q6 q7 q8

Blq1...q8

D4

D5 D1

F1

F2
F3

D2
D3

D6

D0

F8

Inaccessible divisors for the semi-classical Laguerre weight

D0 = F7 − F8, D1 = Hx − F3 − F4, D2 = F4 − F5,

D3 = F5 − F6, D4 = Hy − F4 − F5, D5 = Hx − F1 − F2, D6 = F6 − F7.



The identification procedure: differential case

Standard model of E (1)
6 surfaces

p =∞

q = 0 q =∞

p = 0

p1 p2

p3

p4

p5

p6 p7 p8

Blp1...p8

D4

D2

D5

E4

D1

E2

D3
D6

D0 E8

Inaccessible divisors for the standard form of PIV (surface type E (1)
6 )

D0 = E7 − E8, D1 = E1 − E2, D2 = Hq − E1 − E5,

D3 = E5 − E6, D4 = Hp − E3 − E4, D5 = E3 − E4, D6 = E6 − E7.



The identification procedure: differential case

Surface root basis for the semi-classical Laguerre weight

δ1 δ2 δ3 δ4 δ5

δ6

δ0 δ0 = F7 −F8, δ4 = Hy −F4 −F5,

δ1 = Hx −F3 −F4, δ5 = Hx −F1 −F2,

δ2 = F4 −F5, δ6 = F6 −F7,

δ3 = F5 −F6.

Surface root basis for the standard model of surfaces for PIV

δ1 δ2 δ3 δ4 δ5

δ6

δ0 δ0 = E7 − E8, δ4 = Hp − E3 − E5,

δ1 = E1 − E2, δ5 = E3 − E4,

δ2 = Hq − E1 − E5, δ6 = E6 − E7,

δ3 = E5 − E6.

Identification on the level of Picard lattices

Hx = Hq, Hy = Hq +Hp − E1 − E3, F1 = Hq − E3, F2 = E4,

F3 = E2, F4 = Hq − E1, F5 = E5, F6 = E6, F7 = E7, F8 = E8,



The identification procedure: differential case

Change of variables

Standard Hamiltonian form of PIV

q′ = 2pq − q2 − qt − a1, p′ = p2 − tp − 2pq + a2,

where q = q(t), p = p(t).

Theorem (Dzhamay, Filipuk, AS)

The change of variables

xn(c)
c − 1

=
q(t)

t
,

2cyn(c)
(c − 1)xn(c)

= −p(t)
t
, 2ct2 = (c − 1)2N,

transforms the differential system from the semi-classical Laguerre weight to the standard
Hamiltonian form of PIV, with parameters

a0 = 1 + n + α, a1 = −α, a2 = −n.



The identification procedure: differential case

Example: Hypergeometric weight

The discrete orthogonal polynomials pn(x) with the hypergeometric weight are defined as
follows [Filipuk and Van Assche, 2018]: they are orthonormal polynomials on the set
N = {0, 1, 2, . . .} of non-negative integers with respect to the hypergeometric weight wk , so

∞∑
k=0

pn(k)pm(k)wk = δm,n, wk =
(α)k(β)k

(γ)k k!
ck , α, β, γ > 0, 0 < c < 1,

where (·)k is the usual Pochhammer symbol and δm,n is the Kronecker delta.

Introduce variables

From the recurrence coefficients an, bn, introduce variables xn, yn according to

a2
n =

nαβc(n + α+ β − γ − 1)− c[n2 + n(α+ β − γ − 1)− αβ + γ]yn − cy2
n

(c − 1)2(αβ − xn−1xn − yn)
,

bn = xn +
n + (n + α+ β)c − γ

1− c
.



The identification procedure: differential case

Differential system from the hypergeometric weight

x ′n(c) =
P1(xn(c), yn(c), c)

c(c − 1) (αβ − (n + α+ β)xn + x2
n − yn)

,

y ′n(c) =
P2(xn(c), yn(c), c)

c(c − 1) (αβ − (n + α+ β)xn + x2
n − yn)

,

where P1, P2 can be written explicitly, with x = xn(c), y = yn(c), as

P1(x , y , c) = (1− c)x4 + (−α− β + 2c(α+ β + n)− γ − 1)x3

+
(
α(β + γ + 1) + βγ + β − c

(
β2 + 2β(2α+ n) + (α+ n)2)+ γ

)
x2

+ (αβ(2c(α+ β + n)− 1)− γ(αβ + α+ β)) x + αβ(γ − αβc)

+ 2cy
[
x2 − (α+ β + n)x + αβ

]
− cy2,

P2(x , y , c) = n
(
α2 + αβ − α+ β2 − β + γ + n2 − γ(α+ β + n) + 2αn + 2βn − n

)
x2

− 2αβn (α+ β − γ + n − 1) x + nαβ(αβ − γ)

+ y
[
(α+ β − γ + 2n − 1) x2 + 2

(
−αβ + γ + n2 + n(α+ β − γ − 1)

)
x

− αγ − βγ + αβ(γ − 2n + 1)
]
+ y2 [2x − γ + n − 1] .



The identification procedure: differential case

Space of initial conditions (surface type D(1)
4 )

y = 0

y =∞

x = 0 x =∞

q1

q2

q3 q4

q5

q6q7q8

Blq1···q8

Hy

Hy − F56

Hx Hx − F5

2Hx + Hy − F123456

F1

F2

F3

F4

F6 − F7

F5 − F6

F7 − F8F8

Inaccessible divisors for the differential system from hypergeometric weight

D0 = F5 − F6, D1 = 2Hx + Hy − F123456, D2 = F6 − F7,

D3 = F7 − F8, D4 = Hy − F56.



The identification procedure: differential case

Standard model of D(1)
4 -surfaces

g =∞

f = 0 f =∞

g = 0

p1

p2

p3

p4

p5

p6

p7

p8 Blp1...p8

D4 D1

E1

E2

E5

E6

D0D3

E4E8

Inaccessible divisors for the standard form of PVI (surface type D(1)
4 )

D0 = E3 − E4, D1 = Hf − E1 − E2, D2 = Hg − E3 − E7,

D3 = E7 − E8, D4 = Hf − E5 − E6.



The identification procedure: differential case

Surface root basis for the hypergeometric weight

δ0

δ1

δ2

δ3

δ4

δ0 = F5 −F6, δ3 = F7 −F8,

δ1 = 2Hx +Hy −F123456, δ4 = Hy −F56.

δ2 = F6 −F7,

Surface root basis for the standard model of surfaces for PVI

δ0

δ1

δ2

δ3

δ4

δ0 = E3 − E4, δ3 = E7 − E8,

δ1 = Hf − E1 − E2, δ4 = Hf − E5 − E6.

δ2 = Hg − E3 − E7,

Identification on the level of Picard lattices

Hx = Hg, Hy = Hf + 2Hg − E3456, F1 = E1, F2 = E2, F3 = Hg − E6,

F4 = Hg − E5, F5 = Hg − E3, F6 = Hg − E3, F7 = E7, F8 = E8,



The identification procedure: differential case

Change of variables

Standard Hamiltonian form of PVI

Letting (f , g) = (q, qp), the standard Hamiltonian form becomes

f ′

f
=
∂K
∂g

,
g′

f
= −∂K

∂f
,

K (f , g, t) = a2(a1 + a2)(f − t) + (a0 − 1)(f − 1)g − a3(f − t)g +
1
f

g(f − t)(f − 1)(g − a4),

Theorem (Dzhamay, Filipuk, AS)

The differential system from the hypergeometric weight is transformed to the standard form
of PVI via the following change of variables, where f = f (t), g = g(t), x = xn(c), y = yn(c):

f =
t(x − β)(x − γ)

αβ − (n + α+ β)x + x2 − y
, g = γ − x , ct = 1

where the root variable parameters ai from the standard form are related to α, β, γ, n by

a0 = α− γ + n, a1 = α− 1, a2 = 1− α− β + γ − n, a3 = β + n, a4 = β − γ.



Geometric theory of discrete Painlevé equations: Sakai surfaces



Geometric theory of discrete Painlevé equations: Sakai surfaces

Sakai’s classification [Sakai, 2001]
I Sakai defined generalised Halphen surfaces, which are generalisations of those that

form Okamoto’s space. Among these are the surfaces associated to discrete Painlevé
equations, which we call Sakai surfaces.

I A Sakai surface admits affine root system structures in the Picard lattice - one
associated to a configuration of curves and another to the affine Weyl group of
symmetries of the set of isomorphism classes of surfaces of the same type.

I Translation symmetries define discrete Painlevé equations.

A(1)′

7

A(1)
0 A(1)

1 A(1)
2 A(1)

3 A(1)
4 A(1)

5 A(1)
6 A(1)

7 A(1)
8

D(1)
4 D(1)

5 D(1)
6 D(1)

7 D(1)
8

E(1)
6 E(1)

7 E(1)
8

Figure: Surface types for Sakai surfaces



The identification procedure: discrete case



The identification procedure: discrete case

The identification procedure for discrete Painlevé equations

(Step 1) Construct a space of initial conditions (lift the mapping under blowups to a
family of isomorphisms).

(Step 2) Find the induced mapping on the Picard lattice.

(Step 3) Determine the surface type.

(Step 4) Find a preliminary identification with the standard model on the level of
Picard lattices.

(Step 5) Find the translation symmetry and compare it with that of the standard
discrete Painlevé equation.

(Step 6) Adjust the identification so that the translation matches that of the standard
discrete Painlevé equation.

(Step 7) Find the birational map between surfaces realising this identification, which
gives the change of variables to the standard form.



The identification procedure: discrete case

Example: Hypergeometric weight

Discrete system from the hypergeometric weight

(yn−αβ + (α+ β + n)xn − x2
n )(yn+1 − αβ + (α+ β + n + 1)xn − x2

n )

=
1
c
(xn − 1)(xn − α)(xn − β)(xn − γ),

(xn+Yn)(xn−1 +Yn)

=
(yn + nα)(yn + nβ)(yn + nγ − (γ − α)(γ − β))(yn + n − (1− α)(1− β))
(yn(2n + α+ β − γ − 1) + n((n + α+ β)(n + α+ β − γ − 1)− αβ + γ)2 ,

where

Yn =
y2

n + yn(n(n + α+ β − γ − 1)− αβ + γ)− αβn(n + α+ β − γ − 1)
yn(2n + α+ β − γ − 1) + n((n + α+ β)(n + α+ β − γ − 1)− αβ + γ)

.

I The space of initial conditions is given by the same surfaces we constructed for the
differential system.



The identification procedure: discrete case

A standard discrete Painlevé equation of surface type D(1)
4

The standard d-PV equation

f f =
tg(g − a4)

(g + a2)(g + a1 + a2)
, g + g = a0 + a3 + a4 +

a3

f − 1
+

ta0

f − t
,

a0 = a0 − 1, a1 = a1, a2 = a2 + 1, a3 = a3 − 1, a4 = a4.

I The identification used for the change of variables to PVI does not match the
translations.

I Thus we need to make an adjustment:

Final identification on the level of Picard lattices

Hx = Hf +Hg − E78, Hy = 3Hf + 2Hg − E3456 − 2E78, F1 = E1, F2 = E2,

F3 = Hf +Hg − E678, F4 = Hf +Hg − E578, F5 = Hf +Hg − E478,

F6 = Hf +Hg − E378, F7 = Hf − E8, F8 = Hf − E7,



The identification procedure: discrete case

Theorem (Dzhamay, Filipuk, AS)

The discrete system from the hypergeometric weight is transformed to the standard d-PV

equation via the following change of variables, which realises the final identification:

f =
t(xn − β)(xn − γ)

((xn − α)(xn − β)− nxn − yn)
,

g = −(xn − γ)(((xn − α)(xn − β)− nxn − yn)− t(xn − β)(xn − γ + β + n))
((xn − α)(xn − β)− nxn − yn)− t(xn − β)(xn − γ)

,

with parameters related according to

a0 = γ − n − α, a1 = α− 1, a2 = 1 + n + β − γ,
a3 = −n − β, a4 = γ − β, ct = 1

I This change of variables also transforms the differential system to the standard form of
PVI, with the same parameter correspondence.



Insights from the geometric approach beyond the identification problem



Applications of the geometric approach beyond the identification problem

Hamiltonian forms of differential equations for recurrence coefficients
Modified Laguerre weight [Chen and Its, 2010]

w(x) = w(x , s) = xαe−xe−s/x , x ∈ (0,∞), α, s > 0.

Introducing variables cn = cn(s), bn = bn(s) defined in terms of the recurrence coefficients,
we have

s
dcn

ds
= 2bn + (2n + 1 + α+ cn)cn − s,

s
dbn

ds
=

2
cn

(b2
n − sbn) + (2n + α+ 1)bn − ns,

n ∈ Z≥0.

Theorem (Dzhamay, Filipuk, Ligȩza, AS)

The system above can be written in the Hamiltonian form

1
c2

n

dcn

ds
=
∂K
∂bn

,
1
c2

n

dbn

ds
= − ∂K

∂cn
,

K =
bn(c2

n + (1 + α+ 2n)cn + bn − s)
sc2

n
− n

cn
.



Applications of the geometric approach beyond the identification problem

Determinantal expressions for recurrence coefficients

I Suppose we can find a transformation that maps the differential and discrete systems
for the recurrence coefficients to a pair consisting of

I A Painlevé differential equation
I A standard example of a discrete Painlevé equation of the same surface type

I The initial condition for the discrete system will likely correspond to a classical seed
solution of the Painlevé differential equation, and the discrete system will generate a
hierarchy of classical special solutions.

Example: Hypergeometric weight

x0(c) =
αβc
γ

2F1(α+ 1, β + 1; γ + 1; c)

2F1(α, β; γ; c)
+

(α+ β)c − γ
c − 1

, y0(c) = 0.
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Painlevé III and a singular linear statistics in Hermitian random matrix ensembles. I.
J. Approx. Theory, 162(2):270–297.

Dzhamay, A., Filipuk, G., Ligȩza, A., and Stokes, A. (2021).
Hamiltonian structure for a differential system from a modified Laguerre weight via the
geometry of the modified third Painlevé equation.
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