Uniform convergent expansions of special functions in terms of elementary functions

Ester Pérez Sinusía

Department of Applied Mathematics & IUMA, University of Zaragoza, Spain

OPSTOFA Seminar June 28th, 2021

Ester Pérez Sinusía (UZ)

Uniform convergent expansions

June 28th, 2021

Research group

Group members	Center	
Blanca Bujanda		
José Luis López	Public University of Neversa (UPNA) INAMAT Spain	
Pedro Pagola		
Pablo Palacios		
Chelo Ferreira	University of Zaragoza (UZ), IUMA, Spain	
Ester Pérez Sinusía		

EINA (UZ)

UPNA

Fac. Veterinaria (UZ)

Ester Pérez Sinusía (UZ)

Uniform convergent expansions

June 28th, 2021

- A first example: Bessel functions
- **③** General theory of uniform approximations of integral transforms
- Application to other special functions
- **5** A last example: Error Function
- 6 Final remarks

Content

1 Introduction

- A first example: Bessel functions
- General theory of uniform approximations of integral transforms
- Application to other special functions
- **5** A last example: Error Function
- 6 Final remarks

Expansions of special functions

June 28th, 2021

Expansions of special functions

Ester Pérez Sinusía (UZ)

Uniform convergent expansions

June 28th, 2021

Expansions of special functions

Goal

- Derive convergent expansions in terms of elementary functions that hold uniformly in z in a large region that includes small and large values of |z|.
- Provide error bounds for these expansions.

Content

Introduction

A first example: Bessel functions

General theory of uniform approximations of integral transforms

Application to other special functions

5 A last example: Error Function

6 Final remarks

Bessel functions

Definition

$$z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2)w = 0$$

 $J_{\nu}(z)$ and $Y_{\nu}(z)$ Bessel functions of the first and second kind

https://dlmf.nist.gov/10.3.F1.mag

Ester Pérez Sinusía (UZ)

Bessel functions

Chapter 10

Bessel Functions

F. W. J. Olver¹ and L. C. Maximon²

Notation 2		217
10.1	Special Notation	217
Bessel	and Hankel Functions	217
10.2	Definitions	217
10.3	Graphics	218
10.4	Connection Formulas	222
10.5	Wronskians and Cross-Products	222
10.6	Recurrence Relations and Derivatives	222
10.7	Limiting Forms	223
10.8	Power Series	223
10.9	Integral Representations	223
10.10	Continued Fractions	226
10.11	Analytic Continuation	226
10.12	Generating Function and Associated Series	226
10.13	Other Differential Equations	226
10.14	Inequalities; Monotonicity	227
10.15	Derivatives with Respect to Order	227
10.16	Relations to Other Functions	228
10.17	Asymptotic Expansions for Large Argument	228
10.18	Modulus and Phase Functions	230
10.19	Asymptotic Expansions for Large Order .	231
10.20	Uniform Asymptotic Expansions for Large	
	Order	232
10.21	Zeros	235
10.22	Integrals	240
10.00	6	0.40

10.40	Asymptotic Expansions for Large Argument 255
10.41	Asymptotic Expansions for Large Order . 256
10.42	Zeros
10.43	Integrals
10.44	Sums
10.45	Functions of Imaginary Order
10.46	Generalized and Incomplete Bessel Func-
	tions; Mittag-Leffler Function
Spheri	cal Bessel Functions 262
10.47	Definitions and Basic Properties 262
10.48	Graphs
10.49	Explicit Formulas
10.50	Wronskians and Cross-Products
10.51	Recurrence Relations and Derivatives 265
10.52	Limiting Forms
10.53	Power Series
10.54	Integral Representations
10.55	Continued Fractions
10.56	Generating Functions
10.57	Uniform Asymptotic Expansions for Large
	Order
10.58	Zeros
10.59	Integrals
10.60	Sums □. b

Bessel function

Known Expansions: Power Series

$$J_{\nu}(z) = \left(\frac{1}{2}z\right)^{\nu} \sum_{k=0}^{n-1} (-1)^{k} \frac{\left(\frac{1}{4}z^{2}\right)^{k}}{k!\Gamma\left(\nu+k+1\right)} + R_{n}^{J,0}(\nu,z)$$

NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/10.8

Bessel function

Known Expansions: Asymptotic expansions for large argument

$$J_{\nu}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \left(\cos\omega\sum_{k=0}^{n-1} \frac{(-1)^{k} a_{2k}(\nu)}{z^{2k}} - \sin\omega\sum_{k=0}^{\infty} \frac{(-1)^{k} a_{2k+1}(\nu)}{z^{2k+1}}\right) + R_{n}^{(J,\infty)}$$
$$a_{k}(\nu) = \frac{(4\nu^{2} - 1^{2})(4\nu^{2} - 3^{2})\cdots(4\nu^{2} - (2k-1)^{2})}{k!8^{k}}, \ k \ge 1,$$
$$a_{0}(\nu) = 1, \quad \omega = z - \frac{1}{2}\nu\pi - \frac{1}{4}\pi$$

NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/10.17

Ester Pérez Sinusía (UZ)

Integral representation

Integral representation

$$J_{\nu}(z) = \frac{2(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\Gamma\left(\nu + \frac{1}{2}\right)} \int_{0}^{1} (1 - t^{2})^{\nu - \frac{1}{2}} \cos\left(zt\right) \mathrm{d}t$$

- Valid for $\Re \nu > -1/2$.
- Analytic continuation formula:

$$J_{\nu}(e^{im\pi}z) = e^{im\nu\pi}J_{\nu}(z), \quad m = 0, \pm 1, \pm 2, \dots$$

Just the approximaton for $\Re z \ge 0$.

Integral representation

Integral representation and expansions of the Bessel function

$$J_{\nu}(z) = \frac{2(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\Gamma\left(\nu + \frac{1}{2}\right)} \int_{0}^{1} (1 - t^{2})^{\nu - \frac{1}{2}} \cos\left(zt\right) \mathrm{d}t$$

	Method	Properties
PS	Expand $\cos(zt)$ at the origin	Convergent
AE	Cauchy's theorem + Watson's lemma	Asymptotic

Not uniform

Ester Pérez Sinusía (UZ)

Integral representation

Integral representation and expansions of the Bessel function

$$J_{\nu}(z) = \frac{2(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\Gamma\left(\nu + \frac{1}{2}\right)} \int_{0}^{1} (1 - t^{2})^{\nu - \frac{1}{2}} \cos\left(zt\right) \mathrm{d}t$$

	Method	Properties
PS	Expand $\cos(zt)$ at the origin	Convergent
AE	Cauchy's theorem + Watson's lemma	Asymptotic

Not uniform

Ester Pérez Sinusía (UZ)

Uniform convergent expansions

$$J_{\nu}(z) = \frac{2(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\Gamma(\nu + \frac{1}{2})}\bar{J}_{\nu}(z),$$

$$\bar{J}_{\nu}(z) = \int_{0}^{1} (1 - t^{2})^{\nu - \frac{1}{2}} \cos(zt) \,\mathrm{d}t$$

- Taylor expansion at the origin of $(1-t^2)^{\nu-\frac{1}{2}}$.
- Interchange series and integral.
- **③** Bound remainder term independently of $\Re z$.

1 Taylor expansion at the origin of $(1-t^2)^{
u-rac{1}{2}}$

$$\bar{J}_{\nu}(z) = \int_{0}^{1} (1 - t^{2})^{\nu - \frac{1}{2}} \cos(zt) \,\mathrm{d}t$$

$$(1-t^2)^{\nu-1/2} = \sum_{k=0}^{n-1} \frac{(1/2-\nu)_k}{k!} t^{2k} + r_n(t,\nu), \quad t \in [0,1).$$

where

$$r_n(t,\nu) := \frac{(1/2-\nu)_n t^{2n}}{n!} {}_2F_1 \left(\begin{array}{c|c} n+1/2-\nu, & 1\\ n+1 & \\ \end{array} \right)$$

2 Replace Taylor expansion and interchange series and integral

$$\bar{J}_{\nu}(z) = \sum_{k=0}^{n-1} \frac{(1/2 - \nu)_k}{k!} A_k(z) + R_n(z, \nu)$$

Explicit formula for the coefficients $A_k(z)$

$$\begin{aligned} A_k(z) &:= \int_0^1 t^{2k} \cos(zt) dt = (-1)^k \frac{d^{2k}}{dz^{2k}} \left(\frac{\sin z}{z}\right) \\ &= (-1)^k \frac{(2k)!}{z^{2k+1}} \left[\sin z \sum_{j=0}^k \frac{(-z^2)^j}{(2j)!} - z \cos z \sum_{j=0}^{k-1} \frac{(-z^2)^j}{(2j+1)!} \right] \end{aligned}$$

Ester Pérez Sinusía (UZ)

2 Replace Taylor expansion and interchange series and integral

$$\bar{J}_{\nu}(z) = \sum_{k=0}^{n-1} \frac{(1/2 - \nu)_k}{k!} A_k(z) + R_n(z, \nu)$$

Recurrence relation for the coefficients $A_k(z)$

$$A_{n+1}(z) = \frac{1}{z} \left[\sin z + 2(n+1)\frac{\cos z}{z} \right] - \frac{2(n+1)(2n+1)}{z^2} A_n(z),$$
$$A_0(z) = \frac{\sin z}{z}$$

Rearranging terms, for $n = 1, 2, 3, \ldots$, the Bessel function $J_{\nu}(z) \ldots$

$$\frac{\sqrt{\pi}\Gamma(\nu+1/2)}{2(z/2)^{\nu}}J_{\nu}(z) = P_{n-1}(z,\nu)\frac{\sin z}{z} - Q_{n-1}(z,\nu)\cos z + R_n(z,\nu)$$

$$P_n(z,\nu) := \sum_{m=0}^n \frac{a_{n,m}(\nu)}{(-z^2)^m}, \quad a_{n,m}(\nu) := \sum_{k=m}^n \frac{(1/2-\nu)_k(2k)!}{k!(2(k-m))!},$$
$$Q_n(z,\nu) := \sum_{m=1}^n \frac{b_{n,m}(\nu)}{(-z^2)^m}, \quad b_{n,m}(\nu) := \sum_{k=m}^n \frac{(1/2-\nu)_k(2k)!}{k!(2(k-m)+1)!}$$
Elementary functions

Bounding the remainder term

June 28th, 2021

Bounds for the remainder term

Bounds and properties

For $n > \Re \nu - 1/2$

$$|R_n(z,\nu)| \le \frac{2|(1/2-\nu)_n|}{(n-1)!(2n-1)(2\Re\nu+1)}e^{|\Im z|}$$

- **1** It behaves as $n^{-\Re \nu 1/2}$ as $n \to +\infty \to \text{convergent}$.
- **2** Uniform in z in any fixed horizontal strip.

For real $\nu > 1/2$ and $n \ge \nu - 1/2$

$$|R_n(z,\nu)| \le \frac{4|(1/2-\nu)_n|}{(n-1)!(2\nu-1)|z|} e^{|\Im z|}$$

Numerical experiments

Plot of the function $\overline{J}_2(x)$ and the approximation for n = 10, n = 15 (top) and n = 20, n = 25 (bottom) in the real interval [0, 50].

Ester Pérez Sinusía (UZ)

Numerical experiments

Comparison between the three approximations of $(2/z)^{\nu}J_{\nu}(z)$ for $\nu = 1, z \in [0, 10]$ and $n = 1, 2, \dots, 5$.

Numerical experiments

Absolute error in the approximation of $(2/z)^{\nu}J_{\nu}(z)$ in the interval $z \in [0, 10]$ given by the three expansions for $n = \nu = 1$ (left), n = 1 and $\nu = 2$ (middle) and $n = \nu = 3$ (right).

Remarks

Remarks

() The formulas derived may be extended to $\Re \nu \leq -1/2$ using

$$J_{\nu-1}(z) + J_{\nu+1}(z) = \frac{2\nu}{z} J_{\nu}(z)$$

Remarks

Remarks

$$\frac{15\pi}{2x^3}J_3(x) = \left[\frac{3x^4 - 140x^2 + 360}{8x^6} + \theta_1(x)\right]x\sin x + \left[\frac{5(x^2 - 18)}{2x^4} + \theta_2(x)\right]\cos x,$$

with $|\theta_1(x)| < 0.0062$ and $|\theta_2(x)| < 0.051$.

イロン 不聞 とくほと 不良 とう

Content

Introduction

- A first example: Bessel functions
- 3 General theory of uniform approximations of integral transforms
- Application to other special functions
- **5** A last example: Error Function
- 6 Final remarks

Is it possible to design a general theory of uniform approximations of special functions based on integral transforms?

$$F(z) = \int_{a}^{b} h(t, z)g(t)dt$$

- (a,b) is a bounded or unbounded interval
- $h(\cdot,z)g(\cdot)$ is integrable on (a,b)
- g(t) analytic in $\Omega \subset \mathbb{C}$ and includes $(a,b) \subset \Omega$
- Often, F(z) is a special function

General theory of uniform approximations of integral transforms

General theory of uniform approximations

$$F(z) = \int_{a}^{b} h(t, z)g(t)dt$$

$$\Downarrow$$

Bounded interval

$$[a,b] \text{ bounded } \rightarrow [0,1]$$

$$F(z) = \int_0^1 h(t,z)g(t)dt$$

Unbounded interval

(a,b) unbounded $\rightarrow [0,\infty)$

$$F(z) = \int_0^\infty \tilde{h}(u, z)\tilde{g}(u)du$$
$$[u = -\log t]$$
$$F(z) = \int_0^1 h(t, z)g(t)dt$$

General theory of uniform approximations of integral transforms

General theory of uniform approximations

$$F(z) = \int_{a}^{b} h(t, z)g(t)dt$$

$$\Downarrow$$

Bounded interval

 $[a,b] \text{ bounded } \rightarrow [0,1]$ $F(z) = \int_0^1 h(t,z)g(t)dt$

Unbounded interval

(a,b) unbounded $\rightarrow [0,\infty)$

$$F(z) = \int_0^\infty \tilde{h}(u, z)\tilde{g}(u)du$$
$$[u = -\log t]$$
$$F(z) = \int_0^1 h(t, z)g(t)dt$$

General theory of uniform approximations of integral transforms

General theory of uniform approximations

Ester Pérez Sinusía (UZ)

June 28th, 2021

Cases

We consider four different cases concerning the position of the end points t=0,1 of the integration interval with respect to Ω

- Case (i) $[0,1] \subset \Omega$.
- Case (ii) $(0,1] \subset \Omega$, $[0,1] \not\subset \Omega$.
- Case (iii) $[0,1) \subset \Omega$, $[0,1] \not\subset \Omega$.
- Case (iv) $(0,1) \subset \Omega, [0,1] \not\subset \Omega.$

Hypotheses

$$F(z) = \int_0^1 h(t, z)g(t)dt, \ z \in D$$

• g(t) analytic in an open region Ω that contains (0, 1) and $f(t) := t^{1-\sigma}(1-t)^{1-\gamma}g(t)$, with $0 < \sigma, \gamma \leq 1$ bounded in Ω

To include the possibility of an integrable singularity at l=0 and/or at

Hypotheses

$$F(z) = \int_0^1 h(t, z)g(t)dt, \ z \in D$$

 $\label{eq:gt} \begin{array}{l} \bullet \quad g(t) \text{ analytic in an open region } \Omega \text{ that contains } (0,1) \text{ and} \\ f(t) := t^{1-\sigma}(1-t)^{1-\gamma}g(t) \text{, with } 0 < \sigma, \gamma \leq 1 \text{ bounded in } \Omega \end{array}$

To include the possibility of an integrable singularity at t = 0 and/or at t = 1.

Hypotheses

$$F(z) = \int_0^1 h(t, z)g(t)dt, \ z \in D$$

2 We can choose a point t_0 such that the disk $D_r(t_0)$ for g(t) satisfies $(0,1) \subset D_r(t_0) \subset \Omega$.

To impose that $(0,1)\subset D_r(t_0)\subset \Omega_r$
Hypotheses

$$F(z) = \int_0^1 h(t, z)g(t)dt, \ z \in D$$

2 We can choose a point t_0 such that the disk $D_r(t_0)$ for g(t) satisfies $(0,1) \subset D_r(t_0) \subset \Omega$.

To impose that $(0,1) \subset D_r(t_0) \subset \Omega$ (not always possible!).

Hypotheses

$$F(z) = \int_0^1 h(t, z)g(t)dt, \ z \in D$$

③ We assume that $|h(t, z)| \le Ht^{\alpha}(1 - t)^{\beta}$ for $(t, z) \in [0, 1] \times D$, with H > 0 independent of z and t and $\alpha + \sigma > 0$, $\beta + \gamma > 0$.

is natural to assume this form for the bound of the function h(t,z), the function $h(\cdot,z)g(\cdot)$ must be integrable in [0,1].

Hypotheses

$$F(z) = \int_0^1 h(t, z)g(t)dt, \ z \in D$$

③ We assume that $|h(t, z)| \le Ht^{\alpha}(1 - t)^{\beta}$ for $(t, z) \in [0, 1] \times D$, with H > 0 independent of z and t and $\alpha + \sigma > 0$, $\beta + \gamma > 0$.

It is natural to assume this form for the bound of the function h(t,z), as the function $h(\cdot,z)g(\cdot)$ must be integrable in [0,1].

Hypotheses

$$F(z) = \int_0^1 h(t, z)g(t)dt, \ z \in D$$

③ The moments of *h*, $M[h(\cdot, z); k] := \int_0^1 h(t, z)(t - t_0)^k dt$ are elementary functions of *z*.

'Elementary' means that the moments $M[h(\cdot, z); k]$ are functions of fewer variables than F(z) (this means that at least one of the 'extra' variables of F(z) is in g(t)).

Hypotheses

$$F(z)=\int_0^1 h(t,z)g(t)dt,\ z\in D$$

④ The moments of *h*, $M[h(\cdot, z); k] := \int_0^1 h(t, z)(t - t_0)^k dt$ are elementary functions of *z*.

'Elementary' means that the moments $M[h(\cdot, z); k]$ are functions of fewer variables than F(z) (this means that at least one of the 'extra' variables of F(z) is in g(t)).

How to obtain the expansion?

STEP 1
$$\longrightarrow$$
 STEP 2 \longrightarrow **STEP 3** $\int_0^1 h(z,t)g(t)dt$

Consider the Taylor expansion of g(t) at t_0 , such that $(0,1) \subset D_r(t_0) \subset \Omega$

$$g(t) = \sum_{k=0}^{n-1} A_k (t - t_0)^k + g_n(t)$$

where

$$g_n(t) := \frac{(t-t_0)^n}{2\pi i} \oint_{C_r} \frac{g(w)dw}{(w-t)(w-t_0)^n}, \quad t \in (0,1]$$

How to obtain the expansion?

$$\mathsf{STEP 1} \longrightarrow \mathsf{STEP 2} \longrightarrow \mathsf{STEP 3}$$

$$\int_0^1 h(z,t) g(t) dt$$

Introduce the expansion into the integral

$$F(z) = \sum_{k=0}^{n-1} A_k M[h(\cdot, z), k] + R_n(z)$$

where the moments of \boldsymbol{h} are

$$M[h(\cdot, z), k] = \int_0^1 h(t, z)(t - t_0)^k dt,$$

and the remainder term

$$R_n(z) = \int_0^1 h(t, z)g_n(t)dt.$$

How to obtain the expansion?

$$\mathsf{STEP 1} \longrightarrow \mathsf{STEP 2} \longrightarrow \mathsf{STEP 3}$$

$$\int_0^1 h(z,t) g(t) dt$$

Introduce the expansion into the integral

$$F(z) = \sum_{k=0}^{n-1} A_k M[h(\cdot, z), k] + R_n(z)$$

where the moments of \boldsymbol{h} are

$$M[h(\cdot, z), k] = \int_0^1 h(t, z)(t - t_0)^k dt,$$

and the remainder term

$$R_n(z) = \int_0^1 h(t, z)g_n(t)dt.$$

How to obtain the expansion?

$$\mathsf{STEP 1} \longrightarrow \mathsf{STEP 2} \longrightarrow \mathsf{STEP 3}$$

$$F(z) = \sum_{k=0}^{n-1} A_k M[h(\cdot, z), k] + R_n(z)$$

where the moments of \boldsymbol{h} are

$$M[h(\cdot, z), k] = \int_0^1 h(t, z)(t - t_0)^k dt,$$

and the remainder term

$$R_n(z) = \int_0^1 h(t, z) g_n(t) dt.$$

 $\int_0^1 h(z,t) g(t) dt$

How to obtain the expansion? Coefficients

STEP 1
$$\longrightarrow$$
 STEP 2 \longrightarrow STEP 3

In the case that the initial interval of integration is unbounded

 $\sum_{k=0}^{n-1} A_k M[h(\cdot, z), k]$

How to obtain the expansion? Bounds

STEP 1
$$\longrightarrow$$
 STEP 2 \longrightarrow STEP 3 $R_n(z) = \int_0^1 h(t, z)g_n(t)dt$
Case (i) $[0, 1] \subset \Omega$.

$$|g_n(t)| \le \frac{1}{2\pi a^n} \oint_{C_r} \frac{|g(w)dw|}{|w-t|} = \frac{M}{a^n}, \quad t \in [0,1], \quad a > 1$$
$$|h(t,z)| \le Ht^{\alpha - 1}$$

$$|R_n(z)| \le \frac{MH}{a^n} = \mathcal{O}(a^{-n}), \ n \to \infty$$

How to obtain the expansion? Bounds

STEP 1
$$\longrightarrow$$
 STEP 2 \longrightarrow STEP 3 $R_n(z) = \int_0^1 h(t, z)g_n(t)dt$
Case (ii) $(0, 1] \subset \Omega$. \odot $t^{1-\sigma}g(t)$ bounded in Ω

$$R_n(z) = \int_0^{t_0} h(t, z) g_n(t) dt + \int_{t_0}^1 h(t, z) g_n(t) dt, \quad |h(t, z)| \le H t^{\alpha - 1},$$

$$|g_n(t)| \le \begin{cases} \frac{M(t_0-t)^n t^{\sigma-1}}{t_0^n} & \text{if } t \in [0,t_0] \\ \frac{M}{a^n} & \text{if } t \in [t_0,1] \end{cases}$$

$$|R_n(z)| \le \frac{MHt_0^{\alpha+\sigma}\Gamma(\alpha+\sigma)n!}{\Gamma(n+\alpha+\sigma+1)} = \mathcal{O}(n^{-\sigma-\alpha}), \ n \to \infty$$

How to obtain the expansion? Bounds

$$\mathsf{STEP 1} \longrightarrow \mathsf{STEP 2} \longrightarrow \mathsf{STEP 3}$$

$$R_n(z) = \int_0^1 h(t, z) g_n(t) dt$$

$$R_n(z) = \mathcal{O}(a^{-n} + A n^{-\sigma - \alpha} + B n^{-\gamma - \beta}), \quad n \to \infty$$

$$(A,B) := \begin{cases} (0,0) \text{ in case (i),} \\ (1,0) \text{ in case (ii),} \\ (0,1) \text{ in case (iii),} \\ (1,1) \text{ in case (iv),} \end{cases}$$

- Expansion uniformly convergent for $z \in D$ in the four cases.
- Convergence exponential in (i) and of power type in (ii)-(iv).

Some remarks

Function g(t) may posses singularities located near the integration interval (0,1) such that $D_r(t_0) \not\subset \Omega$ for any $t_0 \in \Omega$.

Solution: Multipoint Taylor expansions

Ester Pérez Sinusía (UZ)

June 28th, 2021

Example: Multipoint Taylor expansion

Consider the hypergeometric function

$$\frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1+z_2)} {}_2F_1(d,z_1,z_1+z_2;u) = \int_0^1 t^{z_1-1} (1-t)^{z_2-1} (1-zt)^{-d} dt$$

We can apply the method with

•
$$g(t) = (1 - zt)^{-d}$$

• $h(t, z_1, z_2) = t^{z_1-1}(1-t)^{z_2-1}$, considering z_1 and z_2 as uniform variables

•
$$\alpha = \beta = \delta - 1$$
, $\sigma = \gamma = 1$ (case (i))

Example: Multipoint Taylor expansion

We take the points $t_1 = 0$ and $t_2 = 1$ as base points (m = 2) in order to better avoid the singularity at t = 1/z

Content

Introduction

- A first example: Bessel functions
- General theory of uniform approximations of integral transforms

Application to other special functions

5 A last example: Error Function

6 Final remarks

Uniform convergent expansions of special functions

Ester Pérez Sinusía (UZ)

Uniform convergent expansions of special functions

Special function	Integral
Incomplete Gamma	$\gamma(a,z) = z^a \int_0^1 t^{a-1} e^{-zt} dt$
Incomplete Beta	$\beta_z(a,b) = z^a \int_0^1 t^{a-1} (1-zt)^{b-1} dt$
Confluent M	$M(a,b;z) = \frac{\Gamma(b)}{\Gamma(a)\Gamma(b-a)} \int_0^1 t^{a-1} (1-t)^{b-a-1} e^{zt} dt$
Hypergeometric	$_{2}F_{1}(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}} dt$
Confluent U	$U(c,b,z) = \frac{1}{\Gamma(c)} \int_0^\infty e^{-zu} u^{c-1} (1+u)^{b-c-1} du$

Uniform convergent expansions of special functions

Special function	Integral
Incomplete Gamma	$\gamma(a,z) = z^a \int_0^1 t^{a-1} e^{-zt} dt$
Incomplete Beta	$\beta_z(a,b) = z^a \int_0^1 t^{a-1} (1-zt)^{b-1} dt$
Confluent M	$M(a,b;z) = \frac{\Gamma(b)}{\Gamma(a)\Gamma(b-a)} \int_0^1 t^{a-1} (1-t)^{b-a-1} e^{zt} dt$
Hypergeometric	$_{2}F_{1}(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}} dt$
Confluent U	$U(c,b,z) = \frac{1}{\Gamma(c)} \int_0^\infty e^{-zu} u^{c-1} (1+u)^{b-c-1} du$

The incomplete Gamma function

The incomplete Gamma function

For $\Re a > 0$, $z \in \mathbb{C}$ and $n = 1, 2, 3, \ldots$,

$$z^{-a}\gamma(a,z) = 2^{1-a}\sum_{k=0}^{n-1} \frac{(1-a)_k}{k!}\gamma_k(z) + R_n(a,z)$$

$$\gamma_k(z) := \frac{(-2)^k \, k!}{z^{k+1}} \left[e_k \left(-\frac{z}{2} \right) - e^{-z} e_k \left(\frac{z}{2} \right) \right], \ e_k(z) := \sum_{j=0}^k \frac{z^j}{j!},$$

$$\gamma_{n+1}(z) = \frac{1 + (-1)^n e^{-z}}{z} - 2\frac{n+1}{z}\gamma_n(z), \quad \gamma_0(z) = \frac{1 - e^{-z}}{z}$$

 $R_n(a,z) \sim n^{-\Re a}$ as $n \to \infty$ uniformly in z with $\Re z \ge \Lambda$, for any fixed $\Lambda \in \mathbb{R}$.

The incomplete Gamma function

Graphics of $\gamma_{3/2}(z)$ (red) and the approximations for n = 1 (orange), n = 2 (green), n = 3 (blue) in several intervals: [0, 10] (top left), [-10, 0] (top right), [0, $10e^{i\pi/4}$] (bottom left) and [0, 10i] (bottom right)

The incomplete Gamma function

Relative errors in the approximation of $\gamma_{5/2}(z)$ by using the uniform expansion (red and dashed), the power series expansion (green) and the asymptotic expansion (blue) in the intervals $z \in [0, 10]$ (left), $z \in [0, 10e^{i\pi/4}]$ (middle) and $z \in [0, 10e^{i\pi}]$ (right) with n = 10.

Ester Pérez Sinusía (UZ)

Uniform convergent expansions

June 28th, 2021

The incomplete Beta function

The incomplete Beta function

For $\Re a>0,\ \Re b\leq 1,\ z\in\mathbb{C}\setminus[1,\infty)$ and $n=1,2,3,\ldots,$

$$z^{-a}B_z(a,b) = 2^{1-a}\sum_{k=0}^{n-1} \frac{(1-a)_k}{k!}\beta_k(z,b) + R_n(z,a,b)$$

$$\beta_k(z,b) := \frac{k!}{z(b)_{k+1}} \sum_{j=0}^k \frac{(-b-k)_j}{j!} \left(-\frac{2}{z}\right)^{k-j} \left[(-1)^j - (1-z)^{b+k-j}\right],$$

$$\beta_k(z,b) = \frac{1}{zb} \left[1 - (-1)^k (1-z)^b \right] - \frac{2k}{zb} \beta_{k-1}(z,b+1),$$

$$\beta_0(z,b) = \frac{1}{zb} \left[1 - (1-z)^b \right]$$

Elementary functions

June 28th, 2021

イロト イヨト イヨト イヨト

The incomplete Beta function

$$S_{\theta} := \{\theta \leq |\arg(z)| \leq \pi\} \cup \{z \in \mathbb{C}; |z - 1/2| < 1/2 \text{ and } |z - 1| > \sin \theta\}$$

$$|R_n(z,a,b)| \le [\sin(\theta)]^{\Re b - 1} \frac{e^{\pi |\Im b|} |(1-a)_n|}{n! \, 2^{\Re a - 1} \, \Re a} \max\{2^{\Re a - n - 1}, 1\} \text{ Green and Blue}$$

$$|R_n(z,a,b)| \le \frac{e^{\pi |\Im b|} |(1-a)_n|}{n! \, 2^{\Re a - 1} \, \Re a} \max\{2^{\Re a - n - 1}, 1\} \text{ Green}$$

The incomplete Beta function

Relative errors on a logarithmic scale for n = 1 (red), n = 2 (green), n = 3 (blue), n = 4 (black) and n = 5 (orange) for $z = \rho e^{i\theta}$ with $\theta = 0$, a = 1.5, b = 3 (top left), $\theta = \pi/4$, a = 1.3 + 0.75i, b = 2 (top right), $\theta = \pi/2$, a = 1.1, b = 2.25 + 0.25i (bottom left), $\theta = -\pi/3$, a = 1.5 - 0.2i, b = 3.0 - i (bottom right) and $\rho \in [-100, 1)$ or $\rho \in [-100, 100]$.

The confluent hypergeometric function

The confluent hypergeometric function

For $\Re b > \Re a > 0$ and $n = 1, 2, 3, \ldots$,

$$M(a,b;z) = \frac{\Gamma(b)}{\Gamma(a)\Gamma(b-a)} \sum_{k=0}^{n-1} A_k(a,b) F_k(z) + R_n(a,b,z)$$

$$A_n(a,b) := 2^{n+2-b} \sum_{k=0}^n (-1)^k \frac{(1-a)_k (a+1-b)_{n-k}}{k! (n-k)!}$$

$$F_n(z) := \frac{n!}{(-z)^{n+1}} \left[e_n\left(\frac{z}{2}\right) - e^z e_n\left(-\frac{z}{2}\right) \right], \ e_n(z) := \sum_{k=0}^n \frac{z^k}{k!},$$

$$F_{n+1}(z) = \frac{e^z + (-1)^n}{z2^{n+1}} - \frac{n+1}{n}F_n(z), \quad F_0(z) = \frac{e^z - 1}{z}$$

Elementary functions

Ester Pérez Sinusía (UZ)

June 28th, 2021

The confluent hypergeometric function

The confluent hypergeometric function

For $1 - \Re b + n > 0$,

$$|R_n(a,b,z)| \leq H(z)\frac{2|\Gamma(b)|\,\Gamma(1-\Re b+n)}{\pi\,|\Gamma(a)||\Gamma(b-a)|} \left(\frac{|\sin[(b-a)\pi]|}{\Gamma(1-\Re a+n)} + \frac{|\sin(a\pi)|}{\Gamma(1+\Re a-\Re b+n)}\right)$$

$$H(z) := \begin{cases} e^{\Re z} & \text{if } \Re z > 0, \\ \\ 1 & \text{if } \Re z \le 0. \end{cases}$$

The remainder behaves as $R_n(a, b, z) \sim n^{-\min\{\Re a, \Re b - \Re a\}}$ as $n \to \infty$ uniformly

in z with $\Re z \geq \Re z_0$, for any fixed $z_0 \in \mathbb{C}$.

The confluent hypergeometric function

Graphics of M(2.1 + i, 4.2 + 1.2i; z) (red dashed) and the approximations for n = 3 (blue), n = 5 (green) in several intervals: [-20, 0] (left), [-20i, 0] (middle) and $[-20e^{i\pi/4}, 0]$ (right). Top graphics \rightarrow real part; bottom graphics \rightarrow imaginary part.

The confluent hypergeometric function

Relative errors in the third order approximation (n = 3) of M(2.1 + i, 4.2 + 1.2i, z) by using the power series expansion (blue), the asymptotic expansion (green) and the uniform convergent expansion (red dashed) in the intervals $z \in [-10, 0]$ (left), $z \in [-10e^{-i\pi/3}, 0]$ (middle) and $z \in [-10e^{-i\pi/4}, 0]$ (right).

Ester Pérez Sinusía (UZ)

Uniform convergent expansions

June 28th, 2021

The Gauss hypergeometric function

The Gauss hypergeometric function

For $\Re a \ge 0$, $\Re c > \Re b > 0$, $z \in S_{\theta}$, with $0 < \theta \le \pi/2$, and $n = 1, 2, 3, \ldots$,

$${}_{2}F_{1}(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \sum_{k=0}^{n-1} A_{k}(b,c)H_{k}(z,a) + R_{n}(a,b,c;z)$$

$$A_k(b,c) := 2^{k+2-c} \sum_{j=0}^k (-1)^j \frac{(1-b)_j (1+b-c)_{k-j}}{j! (k-j)!},$$

$$H_k(z,a) := \frac{(-1)^k}{2^k z^{k+1}} \sum_{j=0}^k \binom{k}{j} 2^j (z-2)^{k-j} \\ \times \left[\frac{1 - (1-z)^{j+1-a}}{j+1-a} (1-\delta_{j,a-1}) - \delta_{j,a-1} \log(1-z) \right]$$

Elementary functions

Ester Pérez Sinusía (UZ)

The Gauss hypergeometric function

$$S_{\theta}:=\left\{\theta\leq |\arg(z)|\leq \pi\right\}\cup\left\{z\in\mathbb{C}; |z-1/2|\leq 1/2 \ \text{ and } \ |z-1|\geq \sin\theta\right\},$$

$$|R_n(a,b,c;z)| \le \frac{2e^{\pi|\Im a|}|\Gamma(c)|\Gamma(1-\Re c+n)}{\pi|\Gamma(b)||\Gamma(c-b)|[\sin(\theta)]^{\Re a}} \left(\frac{|\sin[(c-b)\pi]|}{\Gamma(1-\Re b+n)} + \frac{|\sin(b\pi)|}{\Gamma(1+\Re b-\Re c+n)}\right)$$

The remainder term behaves as $R_n(z, a, b, c) \sim n^{-\min\{\Re b, \Re c - \Re b\}}$ as $n \to \infty$ uniformly in |z| in the extended sector S_{θ} .

The Gauss hypergeometric function

Plots of the absolute value of $_2F_1(0.5, 1.3, 2.5, z)$ (dashed) and the approximations for n = 2 (red), n = 4 (green) and n = 6 (blue) in several intervals: [-10, 1] (top left), $[-10e^{i\pi/4}, 10e^{i\pi/4}]$ (top right), $[-10e^{i\pi/2}, 10e^{i\pi/2}]$ (bottom left) and $[-10e^{-i\pi/3}, 10e^{-i\pi/3}]$ (bottom right).

Ester Pérez Sinusía (UZ)

The confluent hypergeometric function U

Define $\mathcal{D} = \{z \in \mathbb{C}; \Re z \ge \delta > 0\}$ and $b, c \in \mathbb{C}$ with $\Re c > 0$

$$U(c,b,z) = \frac{1}{\Gamma(c)} \int_0^\infty e^{-zu} u^{c-1} (1+u)^{b-c-1} du$$
$$= \frac{1}{\Gamma(c)} \int_0^1 t^{z-1} (-\log t)^{c-1} (1-\log t)^{b-c-1} dt.$$

•
$$g(t) = (-\log t)^{c-1} (1 - \log t)^{b-c-1}$$

•
$$h(t,z) = t^{z-1}$$

• $\alpha = \delta - 1$, $\beta = 0$, any $0 < \sigma < 1$ and $\gamma = 1$ if $\Re c \ge 1$ or $\gamma = \Re c$ if $0 < \Re c < 1$

• We consider $t_1 = 1/2$ as the base point.

The confluent hypergeometric function U

$$U(c,b,z) = \frac{1}{\Gamma(c)} \left[\sum_{k=0}^{n-1} A_k(c,b) G_k(z) + R_n(z) \right]$$

• Moments:

$$G_k(z) := \int_0^1 t^{z-1} \left(t - \frac{1}{2} \right)^k dt = \sum_{j=0}^k \binom{k}{j} \left(\frac{-1}{2} \right)^{k-j} \frac{1}{z+j}.$$

• Coefficients:

$$A_0(c,b) = (\log 2)^{c-1} (1 + \log 2)^{b-c-1},$$

$$A_n(c,b) = \frac{A_0(c,b)}{n!} \sum_{k=1}^n \frac{(-1)^k b(n,k)}{(1 + \log 2)^k} (b-c-k)_k$$

$$\times_2 F_1\left(1-c,-k;-c+b-k;1+\frac{1}{\log 2}\right), n \ge 1$$

Ester Pérez Sinusía (UZ)

The confluent hypergeometric function U

Approximations of $U(2, \frac{3}{2}, x)$ (thicker graphics) given by the Taylor expansion (left), the asymptotic expansion (middle) and the uniform expansion (right) for $x \in [0, 10]$ and n = 1, 2, 3, 4, 5. The approximations are similar for complex x and other values of c, b.
Content

Introduction

- A first example: Bessel functions
- General theory of uniform approximations of integral transforms
- Application to other special functions
- **5** A last example: Error Function

6 Final remarks

Hindawi International Journal of Mathematics and Mathematical Sciences Volume 2018, Article ID 5146794, 12 pages https://doi.org/10.1155/2018/5146794

Research Article A New Special Function and Its Application in Probability

Zeraoulia Rafik ,¹ Alvaro H. Salas,² and David L. Ocampo^{2,3}

$$I(a) = \int_0^a e^{-x^2 \operatorname{erf} x} dx$$

Applications

- Statistics and probability theory.
- Uniform asymptotic expansions of integrals.
- Stokes phenomenon.

Uniform convergent expansions for the error function?

Integral representations

$$\operatorname{erf} z = \frac{z}{\sqrt{\pi}} \int_0^1 \frac{e^{-z^2 t}}{\sqrt{t}} dt$$

erfc
$$z = \frac{2}{\pi} e^{-z^2} \int_0^\infty \frac{e^{-z^2 t^2}}{t^2 + 1} dt$$

$$\int_{0}^{\infty} \frac{e^{-at}}{\sqrt{t+z^2}} dt = \sqrt{\frac{\pi}{a}} e^{az^2} \operatorname{erfc}\left(\sqrt{az}\right)$$

No good results

Ester Pérez Sinusía (UZ)

$$F(a) := \frac{\pi}{4}e^{a}(1 - (\operatorname{erf}\sqrt{a})^{2}) = \int_{0}^{1} \frac{e^{-at^{2}}}{1 + t^{2}} dt, \quad \Re a > 0$$

Ester Pérez Sinusía (UZ)

June 28th, 2021

Expansion

For $a \in \mathbb{C}$ with $\Re a > 0$, $n = 1, 2, 3, \ldots$,

$$F(a) = \sum_{k=0}^{n-1} (-1)^k \gamma_k(a) + R_n(a),$$

where the functions $\gamma_k(a)$ are the elementary functions

$$\gamma_k(a) := \int_0^1 e^{-at^2} t^{2k} \, dt = -\frac{e^{-a}}{2a} \sum_{j=0}^{k-1} \frac{(k-j+1/2)_j}{a^j} + \frac{\sqrt{\pi}}{2a^{k+1/2}} (1/2)_k \operatorname{erf} \sqrt{a},$$

that satisfy the recurrence relation

$$\gamma_k(a) = -\frac{e^{-a}}{2a} + \frac{2k-1}{2a}\gamma_{k-1}(a), \quad \gamma_0(z) = \frac{1}{2}\sqrt{\frac{\pi}{a}}\operatorname{erf}\sqrt{a}.$$

$$F(a) := \frac{\pi}{4}e^{a}(1 - (\operatorname{erf}\sqrt{a})^{2}) = \int_{0}^{1} \frac{e^{-at^{2}}}{1 + t^{2}} dt, \quad \Re a > 0$$

Ester Pérez Sinusía (UZ)

June 28th, 2021

Second order equation in $x = \operatorname{erf} \sqrt{a}$

$$x^{2} + \frac{4}{\sqrt{\pi}}e^{-a}A_{n}(a)x - 1 - \frac{4}{\pi}e^{-2a}B_{n}(a) + \frac{4}{\pi}e^{-a}R_{n}(a) = 0,$$

where

$$A_n(a) := \sum_{k=0}^{n-1} (-1)^k (1/2)_k \frac{1}{2a^{k+1/2}},$$
$$B_n(a) := \sum_{k=0}^{n-1} (-1)^k \sum_{j=0}^{k-1} \frac{(k-j+1/2)_j}{2a^{j+1}}.$$

Expansion for $\operatorname{erf} \sqrt{a}$

erf
$$\sqrt{a} \approx \frac{2}{\sqrt{\pi}} e^{-a} \frac{\frac{\pi}{4} e^{2a} + B_n(a)}{A_n(a) + \sqrt{A_n(a)^2 + \frac{\pi}{4} e^{2a} + B_n(a)}}$$

and

$$|r_n(a)| \le \frac{4e^{-\Re a}}{\pi(2n+1)} \le \frac{4}{\pi(2n+1)},$$
$$|r_n(a)| \le \frac{4e^{-\Re a}}{\pi} \frac{\frac{1}{2}(\Re a)^{-n-1/2} n! (1-e^{-\Re a})^{n+\frac{1}{2}}}{1+\frac{1}{\pi}(n-1)! \frac{|a|^{1/2-n}e^{-\Re a}}{n+|a|+1/2}}$$

and when $\Re a \to 0^+$

$$|r_n(a)| \le \frac{4}{\pi^2} \frac{(n+|a|+1/2)|a|^{n-1/2}}{(n-1)!}.$$

Ester Pérez Sinusía (UZ)

June 28th, 2021

・ロト ・聞ト ・ヨト ・ヨト

$$\operatorname{erf}(\sqrt{a}) \approx \frac{\sqrt{\pi}\sqrt{a}e^a}{\sqrt{1+\pi ae^{2a}}+1}$$

$$\operatorname{erf}(\sqrt{a}) \approx \frac{4\sqrt{a}e^{-a} \left(\pi e^{2a}a^2 + 3\right)}{\sqrt{\pi} \left(4a^2 + \sqrt{16\pi e^{2a}a^5 + 16a^4 + 32a^3 + 28a^2 - 12a + 9} - 2a + 3\right)}$$

Ester Pérez Sinusía (UZ)

June 28th, 2021

A last example: Error Function

The error function: Other expansions

Power series

erf
$$z = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{n!(2n+1)}, \quad z \in \mathbb{C}$$

• Other power series

erf
$$z = \frac{2}{\sqrt{\pi}} e^{-z^2} \sum_{n=0}^{\infty} \frac{2^n z^{2n+1}}{1 \cdot 3 \cdots (2n+1)}, \quad z \in \mathbb{C}$$

A last example: Error Function

The error function: Other expansions

Asymptotic expansion

erf
$$z \sim 1 - \frac{e^{-z^2}}{\sqrt{\pi}} \sum_{m=0}^{\infty} (-1)^m \frac{\left(\frac{1}{2}\right)_m}{z^{2m+1}}, \quad |\operatorname{ph} z| < \frac{3\pi}{4}$$

$$\operatorname{erf}(-z) \sim \frac{e^{-z^2}}{\sqrt{\pi}} \sum_{m=0}^{\infty} (-1)^m \frac{\left(\frac{1}{2}\right)_m}{z^{2m+1}} - 1$$

Ester Pérez Sinusía (UZ)

Graphics of erf a (dashed) and the power series (red), the other power series (blue), the asymptotic expansion (green) and our new expansion (black), for n = 1, 3, 5 and 7.

Graphics of erf a (dashed) and the power series (red), the other power series (blue), the asymptotic expansion (green) and our new expansion (black), for n = 1 and n = 3.

Content

Introduction

- A first example: Bessel functions
- General theory of uniform approximations of integral transforms
- Application to other special functions
- **5** A last example: Error Function

6 Final remarks

Final remarks and future work

- We have designed a general theory of uniformly convergent approximations of special functions based on their integral representations.
- ② Apply the method to other special functions.
- Investigate the stability of the recurrence relations for the coefficients if they are applied forward or look for other recurrence relations.
- Investigate if the new expansions can be interested from a numerical point of view depending on the range of the variable: for moderate values. The empirical results point in that direction.
- For intermediate values, compare the results with Chebyshev expansions or quadrature formulas.

Thank you for your attention!