Multiple orthogonal polynomials and branched continued fractions

Alan Sokal

University College London

OPSFOTA, 19 April 2021

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Multiple orthogonal polynomials (MOPs)

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

3 1 4

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s

3 1 4

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

Production matrices

Enumerative-combinatorics community — since 2000s

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

Production matrices

Enumerative-combinatorics community — since 2000s

But go back to Stieltjes:

Classical continued fractions \longrightarrow tridiagonal production matrices

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

Production matrices

Enumerative-combinatorics community — since 2000s But go back to Stielties:

Classical continued fractions \longrightarrow tridiagonal production matrices

• Branched continued fractions (BCFs)

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

Production matrices

Enumerative-combinatorics community — since 2000s But go back to Stieltjes: Classical continued fractions → tridiagonal production matrices

Branched continued fractions (BCFs)
Enumerative combinatorialists (Viennot, ...) — since 1980s

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

Production matrices

Enumerative-combinatorics community — since 2000s
But go back to Stieltjes:
Classical continued fractions → tridiagonal production matrices
Branched continued fractions (BCFs)
Enumerative combinatorialists (Viennot, ...) — since 1980s
Pétréolle–A.S.–Zhu 2018

- Multiple orthogonal polynomials (MOPs)
- *d*-orthogonal polynomials

Special-functions community — since 1980s But go back to Hermite (Hermite–Padé approximation)

Production matrices

Enumerative-combinatorics community — since 2000s
But go back to Stieltjes:
Classical continued fractions → tridiagonal production matrices

• Branched continued fractions (BCFs)

Enumerative combinatorialists (Viennot, ...) — since 1980s Pétréolle–A.S.–Zhu 2018

Branched CFs \longrightarrow lower-Hessenberg production matrices

Alan Sokal (University College London)

OPSFOTA 3 / 27

< m

3 ×

• Orthogonal with respect to measures μ_1, \ldots, μ_r

.⊒ . ►

- Orthogonal with respect to measures μ_1, \ldots, μ_r
- Indexed by $\mathbf{n} = (n_1, \dots, n_r) \in \mathbb{N}^r$. Write $|\mathbf{n}| = n_1 + \dots + n_r$.

- Orthogonal with respect to measures μ_1,\ldots,μ_r
- Indexed by $\mathbf{n} = (n_1, \dots, n_r) \in \mathbb{N}^r$. Write $|\mathbf{n}| = n_1 + \dots + n_r$.
- Monic $P_{\mathbf{n}}(x) = x^{|\mathbf{n}|} + \dots$ satisfy $|\mathbf{n}|$ orthogonality relations:

$$\int x^k P_{\mathbf{n}}(x) d\mu_j(x) = 0 \quad \text{for all } 1 \le j \le r \text{ and } 0 \le k \le n_j - 1$$

- Orthogonal with respect to measures μ_1, \ldots, μ_r
- Indexed by $\mathbf{n} = (n_1, \dots, n_r) \in \mathbb{N}^r$. Write $|\mathbf{n}| = n_1 + \dots + n_r$.
- Monic $P_{\mathbf{n}}(x) = x^{|\mathbf{n}|} + \dots$ satisfy $|\mathbf{n}|$ orthogonality relations:

$$\int x^k P_{\mathbf{n}}(x) d\mu_j(x) = 0 \quad \text{for all } 1 \le j \le r \text{ and } 0 \le k \le n_j - 1$$

• System is perfect if all *P*_n exist and are unique (sufficient conditions for this are known)

- Orthogonal with respect to measures μ_1,\ldots,μ_r
- Indexed by $\mathbf{n} = (n_1, \dots, n_r) \in \mathbb{N}^r$. Write $|\mathbf{n}| = n_1 + \dots + n_r$.
- Monic $P_{\mathbf{n}}(x) = x^{|\mathbf{n}|} + \dots$ satisfy $|\mathbf{n}|$ orthogonality relations:

$$\int x^k P_{\mathbf{n}}(x) d\mu_j(x) = 0 \quad \text{for all } 1 \le j \le r \text{ and } 0 \le k \le n_j - 1$$

- System is perfect if all *P*_n exist and are unique (sufficient conditions for this are known)
- Along any increasing nearest-neighbor path $\mathbf{n}_0 = \mathbf{0}, \mathbf{n}_1, \mathbf{n}_2, \dots$ in \mathbb{N}^r , the sequence $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ satisfies an (r+2)-term recurrence

$$x\widehat{P}_n(x) = \sum_{k=n-r}^{n+1} \pi_{nk} \widehat{P}_k(x)$$

with $\pi_{n,n+1} = 1$: (r, 1)-banded unit-lower-Hessenberg matrix Π

Remark: Can "algebraize" the theory:

Remark: Can "algebraize" the theory:

• Replace measure μ by linear functional \mathcal{L} on polynomial ring $\mathbb{R}[x]$:

$$\mathcal{L}(x^n) = \int x^n \, d\mu(x)$$

Remark: Can "algebraize" the theory:

• Replace measure μ by linear functional \mathcal{L} on polynomial ring $\mathbb{R}[x]$:

$$\mathcal{L}(x^n) = \int x^n \, d\mu(x)$$

(I.e. forget about μ and consider only its sequence of moments.)

Remark: Can "algebraize" the theory:

• Replace measure μ by linear functional \mathcal{L} on polynomial ring $\mathbb{R}[x]$:

$$\mathcal{L}(x^n) = \int x^n \, d\mu(x)$$

(I.e. forget about μ and consider only its sequence of moments.)

• Replace \mathbb{R} by an arbitrary commutative ring R

Alan Sokal (University College London)

• Work over an arbitrary commutative ring R

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1} = 1$$
, $\pi_{ij} = 0$ for $j > i+1$

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1}=1,\quad \pi_{ij}=0 ext{ for } j>i+1$$

• Output matrix: $A = (a_{nk})_{n,k \ge 0}$ defined by $a_{nk} = (\Pi^n)_{0k}$

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1} = 1$$
, $\pi_{ij} = 0$ for $j > i+1$

- Output matrix: $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = (\Pi^n)_{0k}$
- *n*-step walks on \mathbb{N} from 0 to *k* with weight π_{ij} for a step $i \rightarrow j$

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1} = 1$$
, $\pi_{ij} = 0$ for $j > i+1$

- Output matrix: $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = (\Pi^n)_{0k}$
- *n*-step walks on \mathbb{N} from 0 to *k* with weight π_{ij} for a step $i \rightarrow j$
- These are Łukasiewicz walks $\longrightarrow A$ is unit-lower-triangular

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1} = 1$$
, $\pi_{ij} = 0$ for $j > i+1$

- Output matrix: $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = (\Pi^n)_{0k}$
- *n*-step walks on \mathbb{N} from 0 to *k* with weight π_{ij} for a step $i \rightarrow j$
- These are Łukasiewicz walks $\longrightarrow A$ is unit-lower-triangular
- Recurrence $a_{nk} = \sum_{i} a_{n-1,i} \pi_{ik}$

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1} = 1$$
, $\pi_{ij} = 0$ for $j > i+1$

- Output matrix: $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = (\Pi^n)_{0k}$
- *n*-step walks on $\mathbb N$ from 0 to *k* with weight π_{ij} for a step $i \to j$
- These are Łukasiewicz walks $\longrightarrow A$ is unit-lower-triangular
- Recurrence $a_{nk} = \sum_{i} a_{n-1,i} \pi_{ik}$
 - \longrightarrow Matrix formulation: $\Delta A = A \Pi$

where Δ is the matrix with 1 on the superdiagonal and 0 elsewhere

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1} = 1$$
, $\pi_{ij} = 0$ for $j > i+1$

- Output matrix: $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = (\Pi^n)_{0k}$
- *n*-step walks on $\mathbb N$ from 0 to *k* with weight π_{ij} for a step $i \to j$
- These are Łukasiewicz walks $\longrightarrow A$ is unit-lower-triangular
- Recurrence $a_{nk} = \sum_{i} a_{n-1,i} \pi_{ik}$

 \longrightarrow Matrix formulation: $\Delta A = A \Pi$

where Δ is the matrix with 1 on the superdiagonal and 0 elsewhere • Hence $\Pi = A^{-1} \Delta A$

- Work over an arbitrary commutative ring R
- Production matrix: Unit-lower-Hessenberg matrix $\Pi = (\pi_{ij})_{i,j \ge 0}$

$$\pi_{i,i+1} = 1$$
, $\pi_{ij} = 0$ for $j > i+1$

- Output matrix: $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = (\Pi^n)_{0k}$
- *n*-step walks on $\mathbb N$ from 0 to *k* with weight π_{ij} for a step $i \to j$
- These are Łukasiewicz walks $\longrightarrow A$ is unit-lower-triangular
- Recurrence $a_{nk} = \sum_{i} a_{n-1,i} \pi_{ik}$

 \rightarrow Matrix formulation: $\Delta A = A \Pi$

where \triangle is the matrix with 1 on the superdiagonal and 0 elsewhere

- Hence $\Pi = A^{-1}\Delta A$
- Write $A = \mathcal{O}(\Pi)$

Alan Sokal (University College London)

Classical continued fractions

• Stieltjes-type continued fractions (S-fractions):

Classical continued fractions

• Stieltjes-type continued fractions (S-fractions):

Jacobi-type continued fractions (J-fractions):

Classical continued fractions

• Stieltjes-type continued fractions (S-fractions):

• Jacobi-type continued fractions (J-fractions):

• This is combinatorialists' notation. Analysts take $t^n \rightarrow \frac{1}{z^{n+1}}$

Alan Sokal (University College London)

Paths in $\mathbb{N} \times \mathbb{N}$ starting at (0, 0):

Paths in $\mathbb{N} \times \mathbb{N}$ starting at (0, 0):

Motzkin path of length n: From (0,0) → (n,0) using steps (1,1) [rise], (1,0) [level step], (1,-1) [fall]

Paths in $\mathbb{N} \times \mathbb{N}$ starting at (0, 0):

Motzkin path of length n: From (0,0) → (n,0) using steps (1,1) [rise], (1,0) [level step], (1,-1) [fall]

• Dyck path of length 2n: From $(0,0) \rightarrow (2n,0)$ using steps (1,1) [rise], (1,-1) [fall]

Paths in $\mathbb{N} \times \mathbb{N}$ starting at (0, 0):

Motzkin path of length n: From (0,0) → (n,0) using steps (1,1) [rise], (1,0) [level step], (1,-1) [fall]

• Dyck path of length 2n: From $(0,0) \rightarrow (2n,0)$ using steps (1,1) [rise], (1,-1) [fall]

Theorem (Flajolet 1980)

- The Jacobi-Rogers polynomial $J_n(\beta, \gamma)$ is the generating polynomial for Motzkin paths of length n, in which each rise gets weight 1, each level step at height i gets weight γ_i , and each fall from height i gets weight β_i .
- The Stieltjes-Rogers polynomial $S_n(\alpha)$ is the generating polynomial for Dyck paths of length 2n, in which each rise gets weight 1 and each fall from height *i* gets weight α_i .

イロト イ団ト イヨト イヨト

More general paths in $\mathbb{N} \times \mathbb{N}$ starting at (0,0):

• Partial Motzkin path: From $(0,0) \rightarrow (n,k)$ using same steps

- Partial Motzkin path: From $(0,0) \rightarrow (n,k)$ using same steps
- Generalized Jacobi–Rogers polynomial $J_{n,k}(\beta, \gamma)$: Walks from $(0,0) \rightarrow (n,k)$ using same weights

- Partial Motzkin path: From $(0,0) \rightarrow (n,k)$ using same steps
- Generalized Jacobi–Rogers polynomial $J_{n,k}(\beta, \gamma)$: Walks from $(0,0) \rightarrow (n,k)$ using same weights
- Unit-lower-triangular matrix $J = (J_{n,k})_{n,k\geq 0}$ that has Jacobi–Rogers polynomials $J_n = J_{n,0}$ in zeroth column

- Partial Motzkin path: From $(0,0) \rightarrow (n,k)$ using same steps
- Generalized Jacobi–Rogers polynomial J_{n,k}(β, γ): Walks from (0,0) → (n, k) using same weights
- Unit-lower-triangular matrix $J = (J_{n,k})_{n,k\geq 0}$ that has Jacobi–Rogers polynomials $J_n = J_{n,0}$ in zeroth column
- J is output matrix for tridiagonal production matrix

More general paths in $\mathbb{N} \times \mathbb{N}$ starting at (0,0):

- Partial Motzkin path: From $(0,0) \rightarrow (n,k)$ using same steps
- Generalized Jacobi–Rogers polynomial J_{n,k}(β, γ): Walks from (0,0) → (n, k) using same weights
- Unit-lower-triangular matrix $J = (J_{n,k})_{n,k\geq 0}$ that has Jacobi–Rogers polynomials $J_n = J_{n,0}$ in zeroth column
- J is output matrix for tridiagonal production matrix

$$\Pi = \begin{bmatrix} \gamma_0 & 1 & & \\ \beta_1 & \gamma_1 & 1 & & \\ & \beta_2 & \gamma_2 & 1 & \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$

• Analogously: Partial Dyck paths from $(0,0) \rightarrow (2n,2k)$ \rightarrow Generalized Stieltjes-Rogers polynomials $S_{n,k}(\alpha)$

Alan Sokal (University College London)

Generalize classical continued fractions by considering more general paths.

Generalize classical continued fractions by considering more general paths. (I will show only branched S-fractions. Can also do branched J-fractions.)

• Fix an integer $m \ge 1$.

- Fix an integer $m \ge 1$.
- *m*-Dyck path of length (m + 1)n: From $(0, 0) \rightarrow ((m + 1)n, 0)$ using steps (1, 1) [rise], (1, -m) [*m*-fall]

- Fix an integer $m \ge 1$.
- *m*-Dyck path of length (m + 1)n: From $(0, 0) \rightarrow ((m + 1)n, 0)$ using steps (1, 1) [rise], (1, -m) [*m*-fall]
- For m = 1 these are ordinary Dyck paths.

- Fix an integer $m \ge 1$.
- *m*-Dyck path of length (m + 1)n: From $(0, 0) \rightarrow ((m + 1)n, 0)$ using steps (1, 1) [rise], (1, -m) [*m*-fall]
- For m = 1 these are ordinary Dyck paths.
- Define *m*-Stieltjes-Rogers polynomial $S_n^{(m)}(\alpha)$ to be generating polynomial for *m*-Dyck paths of length (m + 1)n in which each rise gets weight 1 and each *m*-fall from height *i* gets weight α_i .

Generalize classical continued fractions by considering more general paths. (I will show only branched S-fractions. Can also do branched J-fractions.)

- Fix an integer $m \ge 1$.
- *m*-Dyck path of length (m + 1)n: From $(0, 0) \rightarrow ((m + 1)n, 0)$ using steps (1, 1) [rise], (1, -m) [*m*-fall]
- For m = 1 these are ordinary Dyck paths.
- Define *m*-Stieltjes-Rogers polynomial $S_n^{(m)}(\alpha)$ to be generating polynomial for *m*-Dyck paths of length (m+1)n in which each rise gets weight 1 and each *m*-fall from height *i* gets weight α_i .
- Generalizing what Flajolet did for m = 1: Their generating function can be written as a branched continued fraction ...

イロン イ団ン イヨン イヨ

Pétréolle-A.S.-Zhu 2018

Alan Sokal (University College London)

MOPs and BCFs

OPSFOTA 10 / 27

Yet more general paths in $\mathbb{N}\times\mathbb{N}$ starting at (0,0):

• Partial *m*-Dyck path:

From $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same steps

- Partial *m*-Dyck path: From $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same steps
- Generalized *m*-Stieltjes–Rogers polynomial $S_{n,k}^{(m)}(\beta, \gamma)$: Walks from $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same weights

- Partial *m*-Dyck path: From $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same steps
- Generalized *m*-Stieltjes–Rogers polynomial $S_{n,k}^{(m)}(\beta,\gamma)$: Walks from $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same weights
- Unit-lower-triangular matrix $S^{(m)} = (S_{n,k}^{(m)})_{n,k\geq 0}$ that has *m*-Stieltjes–Rogers polynomials $S_n^{(m)}$ in zeroth column

- Partial *m*-Dyck path: From $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same steps
- Generalized *m*-Stieltjes-Rogers polynomial $S_{n,k}^{(m)}(\beta,\gamma)$: Walks from $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same weights
- Unit-lower-triangular matrix $S^{(m)} = (S_{n,k}^{(m)})_{n,k\geq 0}$ that has *m*-Stieltjes–Rogers polynomials $S_n^{(m)}$ in zeroth column
- $S^{(m)}$ is output matrix for an (m, 1)-banded production matrix Π

- Partial *m*-Dyck path: From $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same steps
- Generalized *m*-Stieltjes–Rogers polynomial $S_{n,k}^{(m)}(\beta,\gamma)$: Walks from $(0,0) \rightarrow ((m+1)n, (m+1)k)$ using same weights
- Unit-lower-triangular matrix $S^{(m)} = (S_{n,k}^{(m)})_{n,k\geq 0}$ that has *m*-Stieltjes–Rogers polynomials $S_n^{(m)}$ in zeroth column
- $\mathsf{S}^{(m)}$ is output matrix for an (m,1)-banded production matrix Π
- E.g. for m = 2:

$$\Pi = \begin{bmatrix} \alpha_2 & 1 \\ \alpha_2 \alpha_3 + \alpha_2 \alpha_4 & \alpha_3 + \alpha_4 + \alpha_5 & 1 \\ \alpha_2 \alpha_4 \alpha_6 & \alpha_4 \alpha_6 + \alpha_5 \alpha_6 + \alpha_5 \alpha_7 & \alpha_6 + \alpha_7 + \alpha_8 & 1 \\ & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

• Work over an arbitrary commutative ring R

- Work over an arbitrary commutative ring R
- Linear functional $\mathcal{L}: R[x] \to R$ \longleftrightarrow sequence of "moments" $\ell_n = \mathcal{L}(x^n)$

- Work over an arbitrary commutative ring R
- Linear functional $\mathcal{L}: R[x] \to R$ \longleftrightarrow sequence of "moments" $\ell_n = \mathcal{L}(x^n)$
- Sequence $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals \longleftrightarrow representing matrix $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = \mathcal{L}_k(x^n)$

- Work over an arbitrary commutative ring R
- Linear functional $\mathcal{L}: R[x] \to R$ \longleftrightarrow sequence of "moments" $\ell_n = \mathcal{L}(x^n)$
- Sequence $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals \longleftrightarrow representing matrix $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = \mathcal{L}_k(x^n)$
- We call the sequence $(\mathcal{L}_k)_{k\geq 0}$ normalized if A is unit-lower-triangular

- Work over an arbitrary commutative ring R
- Linear functional $\mathcal{L}: R[x] \to R$ \longleftrightarrow sequence of "moments" $\ell_n = \mathcal{L}(x^n)$
- Sequence $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals \longleftrightarrow representing matrix $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = \mathcal{L}_k(x^n)$
- We call the sequence $(\mathcal{L}_k)_{k\geq 0}$ normalized if A is unit-lower-triangular
- Sequence of monic polynomials $P_n(x) = \sum_{k=0}^n b_{nk} x^k$ \longleftrightarrow unit-lower-triangular representing matrix $B = (b_{nk})_{n,k>0}$

- Work over an arbitrary commutative ring R
- Linear functional $\mathcal{L}: R[x] \to R$ \longleftrightarrow sequence of "moments" $\ell_n = \mathcal{L}(x^n)$
- Sequence $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals \longleftrightarrow representing matrix $A = (a_{nk})_{n,k\geq 0}$ defined by $a_{nk} = \mathcal{L}_k(x^n)$
- We call the sequence $(\mathcal{L}_k)_{k\geq 0}$ normalized if A is unit-lower-triangular
- Sequence of monic polynomials $P_n(x) = \sum_{k=0}^n b_{nk} x^k$ \longleftrightarrow unit-lower-triangular representing matrix $B = (b_{nk})_{n.k>0}$
- Sequence L = (L_k)_{k≥0} of linear functionals and sequence P = (P_n(x))_{n≥0} of monic polynomials are dual to each other in case L_k(P_n(x)) = δ_{kn}
Proposition (very easy)

Given any sequence $(P_n(x))_{n\geq 0}$ of monic polynomials, there exists a unique sequence $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals satisfying $\mathcal{L}_k(P_n(x)) = \delta_{kn}$, and it is normalized.

Conversely, given any normalized sequence $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals, there exists a unique sequence $(P_n(x))_{n\geq 0}$ of monic polynomials that satisfies $\mathcal{L}_k(P_n(x)) = \delta_{kn}$.

The relation between these sequences is:

The representing matrix A of the sequence $(\mathcal{L}_k)_{k\geq 0}$ and the representing matrix B of the sequence $(P_n(x))_{n\geq 0}$ are inverses of each other: $B = A^{-1}$

Proposition (quite easy)

Given any sequence $(P_n(x))_{n\geq 0}$ of monic polynomials, there exists a unique unit-lower-Hessenberg matrix $\Pi = (\pi_{nk})_{n,k\geq 0}$ such that

$$xP_n(x) = \sum_{k=0}^{n+1} \pi_{nk} P_k(x)$$

Conversely, given any unit-lower-Hessenberg matrix $\Pi = (\pi_{nk})_{n,k\geq 0}$, there exists a unique sequence $(P_n(x))_{n\geq 0}$ of polynomials satisfying this recurrence with the initial condition $P_0(x) = 1$, and it is monic.

The relation between these objects is: The representing matrix B of the sequence $(P_n(x))_{n\geq 0}$ satisfies $B = \mathcal{O}(\Pi)^{-1}$ or equivalently $\Pi = B \Delta B^{-1}$.

Summary of results thus far

There is a one-to-one correspondence between:

Summary of results thus far

There is a one-to-one correspondence between:

• Sequences $(P_n(x))_{n\geq 0}$ of monic polynomials (with representing matrix B)

Summary of results thus far

There is a one-to-one correspondence between:

- Sequences $(P_n(x))_{n\geq 0}$ of monic polynomials (with representing matrix B)
- Sequences $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals (with representing matrix A)

There is a one-to-one correspondence between:

- Sequences $(P_n(x))_{n\geq 0}$ of monic polynomials (with representing matrix B)
- Sequences $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals (with representing matrix A)
- Linear recurrences (with production matrix Π)

There is a one-to-one correspondence between:

- Sequences $(P_n(x))_{n\geq 0}$ of monic polynomials (with representing matrix B)
- Sequences $(\mathcal{L}_k)_{k\geq 0}$ of linear functionals (with representing matrix A)
- Linear recurrences (with production matrix **Π**)

and these correspondences are given by

$$A = \mathcal{O}(\Pi) = B^{-1}$$
$$B = \mathcal{O}(\Pi)^{-1} = A^{-1}$$
$$\Pi = A^{-1}\Delta A = B\Delta B^{-1}$$

• Sequence of linear functionals $\Gamma = (\Gamma_k)_{k \geq 0} \longrightarrow$ representing matrix Γ

- Sequence of linear functionals $\Gamma = (\Gamma_k)_{k \geq 0} \longrightarrow$ representing matrix Γ
- Sequence of monic polynomials $\mathbf{P} = (P_n(x))_{n \ge 0} \longrightarrow$ unit-lower-triangular representing matrix B

- Sequence of linear functionals $\Gamma = (\Gamma_k)_{k \geq 0} \longrightarrow$ representing matrix Γ
- Sequence of monic polynomials $\mathbf{P} = (P_n(x))_{n \ge 0} \longrightarrow$ unit-lower-triangular representing matrix B
- We say that **P** is orthogonal to Γ in case $\Gamma_k(P_n(x)) = 0$ for $0 \le k \le n-1$

- Sequence of linear functionals $\Gamma = (\Gamma_k)_{k \geq 0} \longrightarrow$ representing matrix Γ
- Sequence of monic polynomials $\mathbf{P} = (P_n(x))_{n \ge 0} \longrightarrow$ unit-lower-triangular representing matrix B
- We say that ${\sf P}$ is orthogonal to Γ in case

 $\Gamma_k(P_n(x)) = 0$ for $0 \le k \le n-1$

Now

$$\Gamma_k(P_n(x)) = \sum_{j=0}^n b_{nj} \gamma_{jk} = (B\Gamma)_{nk}$$

So **P** is orthogonal to $\Gamma \iff B\Gamma$ vanishes below the diagonal \iff $B\Gamma$ is an upper-triangular matrix $U \iff \Gamma = B^{-1}U$

(4) ヨト (4) 耳

Alan Sokal (University College London)

• Given Γ with representing matrix Γ and LU factorization $\Gamma = LU$:

 Given Γ with representing matrix Γ and LU factorization Γ = LU: Then B = L⁻¹ is the representing matrix for a sequence of monic polynomials orthogonal to Γ.

 Given Γ with representing matrix Γ and LU factorization Γ = LU: Then B = L⁻¹ is the representing matrix for a sequence of monic polynomials orthogonal to Γ. (unique if LU factorization is)

- Given Γ with representing matrix Γ and LU factorization Γ = LU: Then B = L⁻¹ is the representing matrix for a sequence of monic polynomials orthogonal to Γ. (unique if LU factorization is)
- Given **P** with representing matrix *B*:

- Given Γ with representing matrix Γ and LU factorization Γ = LU: Then B = L⁻¹ is the representing matrix for a sequence of monic polynomials orthogonal to Γ. (unique if LU factorization is)
- Given **P** with representing matrix *B*:
 - There is a canonically associated sequence of linear functionals with respect to which P is orthogonal: the dual sequence L = (L_k)_{k≥0} with representing matrix A = B⁻¹.

- Given Γ with representing matrix Γ and LU factorization Γ = LU: Then B = L⁻¹ is the representing matrix for a sequence of monic polynomials orthogonal to Γ. (unique if LU factorization is)
- Given **P** with representing matrix *B*:
 - There is a canonically associated sequence of linear functionals with respect to which P is orthogonal: the dual sequence L = (L_k)_{k≥0} with representing matrix A = B⁻¹.
 - But P is also orthogonal with respect to any sequence Γ = (Γ_k)_{k≥0} where Γ = AU with U upper-triangular, i.e. Γ_k is any linear combination of L₀,..., L_k.

Alan Sokal (University College London)

OPSFOTA 18 / 27

Fix a linear functional L, with representing sequence ℓ = (ℓ_n)_{n≥0} given by ℓ_n = L(xⁿ).

- Fix a linear functional L, with representing sequence ℓ = (ℓ_n)_{n≥0} given by ℓ_n = L(xⁿ).
- Choose Γ_k to be the k-shift of \mathcal{L} : $\Gamma_k(x^n) = \mathcal{L}(x^{n+k})$.

- Fix a linear functional L, with representing sequence ℓ = (ℓ_n)_{n≥0} given by ℓ_n = L(xⁿ).
- Choose Γ_k to be the k-shift of \mathcal{L} : $\Gamma_k(x^n) = \mathcal{L}(x^{n+k})$.
- Then the representing matrix Γ of the sequence Γ = (Γ_k)_{k≥0} of linear functionals is the Hankel matrix H_∞(ℓ) = (ℓ_{i+j})_{i,j≥0} associated to the sequence ℓ.

- Fix a linear functional L, with representing sequence ℓ = (ℓ_n)_{n≥0} given by ℓ_n = L(xⁿ).
- Choose Γ_k to be the k-shift of \mathcal{L} : $\Gamma_k(x^n) = \mathcal{L}(x^{n+k})$.
- Then the representing matrix Γ of the sequence Γ = (Γ_k)_{k≥0} of linear functionals is the Hankel matrix H_∞(ℓ) = (ℓ_{i+j})_{i,j≥0} associated to the sequence ℓ.
- A sequence P = (P_n(x))_{n≥0} of monic polynomials is orthogonal to Γ in case L(x^k P_n(x)) = 0 for 0 ≤ k ≤ n − 1, i.e. precisely when P is a sequence of monic orthogonal polynomials in the usual sense for the linear functional L.

→ 3 → 4 3

- Fix a linear functional *L*, with representing sequence ℓ = (ℓ_n)_{n≥0} given by ℓ_n = *L*(xⁿ).
- Choose Γ_k to be the k-shift of \mathcal{L} : $\Gamma_k(x^n) = \mathcal{L}(x^{n+k})$.
- Then the representing matrix Γ of the sequence Γ = (Γ_k)_{k≥0} of linear functionals is the Hankel matrix H_∞(ℓ) = (ℓ_{i+j})_{i,j≥0} associated to the sequence ℓ.
- A sequence P = (P_n(x))_{n≥0} of monic polynomials is orthogonal to Γ in case L(x^k P_n(x)) = 0 for 0 ≤ k ≤ n − 1, i.e. precisely when P is a sequence of monic orthogonal polynomials in the usual sense for the linear functional L.
- Such a sequence P exists (and is unique) whenever R is a field and all the leading principal minors Δ₁, Δ₂,... of Γ are nonzero.

(日) (周) (三) (三)

Now relate this to continued fractions and production matrices.

Now relate this to continued fractions and production matrices.

Continue to assume that *R* is a field and all the leading principal minors Δ₁, Δ₂,... of the Hankel matrix Γ = H_∞(ℓ) are nonzero.

Now relate this to continued fractions and production matrices.

- Continue to assume that R is a field and all the leading principal minors Δ₁, Δ₂,... of the Hankel matrix Γ = H_∞(ℓ) are nonzero.
- Then ℓ is given by a classical J-fraction

$$\sum_{n=0}^{\infty} \ell_n t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \cdots}}}$$

with tridiagonal production matrix

$$\Pi = \begin{bmatrix} \gamma_0 & 1 & & \\ \beta_1 & \gamma_1 & 1 & & \\ & \beta_2 & \gamma_2 & 1 & \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$

• Fact: The Hankel matrix $\Gamma = H_{\infty}(\ell)$ has the LDL^{T} factorization $\Gamma = JDJ^{T}$

where $J = O(\Pi)$ is the unit-lower-triangular matrix of generalized Jacobi–Rogers polynomials, and $D = \text{diag}(1, \beta_1, \beta_1\beta_2, ...)$.

• Fact: The Hankel matrix $\Gamma = H_{\infty}(\ell)$ has the LDL^{T} factorization $\Gamma = JDJ^{T}$

where $J = O(\Pi)$ is the unit-lower-triangular matrix of generalized Jacobi–Rogers polynomials, and $D = \text{diag}(1, \beta_1, \beta_1\beta_2, ...)$. [Stieltjes 1889!]

• Fact: The Hankel matrix $\Gamma = H_{\infty}(\ell)$ has the $LDL^{\rm T}$ factorization $\Gamma = JDJ^{\rm T}$

where $J = O(\Pi)$ is the unit-lower-triangular matrix of generalized Jacobi–Rogers polynomials, and $D = \text{diag}(1, \beta_1, \beta_1\beta_2, ...)$. [Stieltjes 1889!]

This is our general factorization Γ = B⁻¹U, specialized to a case in which the matrix Γ is symmetric. Hence B⁻¹ = J.

• Fact: The Hankel matrix $\Gamma = H_{\infty}(\ell)$ has the $LDL^{\rm T}$ factorization $\Gamma = JDJ^{\rm T}$

where $J = O(\Pi)$ is the unit-lower-triangular matrix of generalized Jacobi–Rogers polynomials, and $D = \text{diag}(1, \beta_1, \beta_1\beta_2, ...)$. [Stieltjes 1889!]

- This is our general factorization Γ = B⁻¹U, specialized to a case in which the matrix Γ is symmetric. Hence B⁻¹ = J.
- ... The coefficient matrix B of the polynomial sequence **P** is the *inverse* of the output matrix $A = O(\Pi) = J$ of generalized Jacobi-Rogers polynomials.

- Fact: The Hankel matrix $\Gamma = H_{\infty}(\ell)$ has the $LDL^{\rm T}$ factorization $\Gamma = JDJ^{\rm T}$
 - where $J = O(\Pi)$ is the unit-lower-triangular matrix of generalized Jacobi–Rogers polynomials, and $D = \text{diag}(1, \beta_1, \beta_1\beta_2, ...)$. [Stieltjes 1889!]
- This is our general factorization Γ = B⁻¹U, specialized to a case in which the matrix Γ is symmetric. Hence B⁻¹ = J.
- ... The coefficient matrix B of the polynomial sequence **P** is the *inverse* of the output matrix $A = O(\Pi) = J$ of generalized Jacobi-Rogers polynomials.
- The orthogonal polynomials obey the three-term recurrence

$$P_{n+1}(x) = (x - \gamma_n) P_n(x) - \beta_n P_{n-1}(x)$$

with the same coefficients as those in the J-fraction.

- Fact: The Hankel matrix $\Gamma = H_{\infty}(\ell)$ has the $LDL^{\rm T}$ factorization $\Gamma = JDJ^{\rm T}$
 - where $J = O(\Pi)$ is the unit-lower-triangular matrix of generalized Jacobi–Rogers polynomials, and $D = \text{diag}(1, \beta_1, \beta_1\beta_2, ...)$. [Stieltjes 1889!]
- This is our general factorization Γ = B⁻¹U, specialized to a case in which the matrix Γ is symmetric. Hence B⁻¹ = J.
- ... The coefficient matrix B of the polynomial sequence **P** is the *inverse* of the output matrix $A = \mathcal{O}(\Pi) = J$ of generalized Jacobi-Rogers polynomials.
- The orthogonal polynomials obey the three-term recurrence

$$P_{n+1}(x) = (x - \gamma_n) P_n(x) - \beta_n P_{n-1}(x)$$

with the same coefficients as those in the J-fraction.

• All this is of course well-known! (but it's nice to recover)

Application to multiple orthogonal polynomials

Application to multiple orthogonal polynomials

• Fix linear functionals $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(r)}$ on R[x].
- Fix linear functionals $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(r)}$ on R[x].
- Let (P_n(x))_{n∈ℕ^r} be the multiple orthogonal polynomials of type II associated to the linear functionals L⁽¹⁾,...,L^(r).

- Fix linear functionals $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(r)}$ on R[x].
- Let (P_n(x))_{n∈ℕ^r} be the multiple orthogonal polynomials of type II associated to the linear functionals L⁽¹⁾,...,L^(r).
- Fix an increasing nearest-neighbor path $\mathbf{n}_0 = \mathbf{0}, \mathbf{n}_1, \mathbf{n}_2, \dots$ in \mathbb{N}^r , with steps along directions $j_1, j_2, \dots \in \{1, \dots, r\}$.

- Fix linear functionals $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(r)}$ on R[x].
- Let (P_n(x))_{n∈ℕ^r} be the multiple orthogonal polynomials of type II associated to the linear functionals L⁽¹⁾,...,L^(r).
- Fix an increasing nearest-neighbor path $\mathbf{n}_0 = \mathbf{0}, \mathbf{n}_1, \mathbf{n}_2, \dots$ in \mathbb{N}^r , with steps along directions $j_1, j_2, \dots \in \{1, \dots, r\}$.
- Let $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ be the MOP of type II along this path in \mathbb{N}^r .

- Fix linear functionals $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(r)}$ on R[x].
- Let (P_n(x))_{n∈ℕ^r} be the multiple orthogonal polynomials of type II associated to the linear functionals L⁽¹⁾,...,L^(r).
- Fix an increasing nearest-neighbor path $\mathbf{n}_0 = \mathbf{0}, \mathbf{n}_1, \mathbf{n}_2, \dots$ in \mathbb{N}^r , with steps along directions $j_1, j_2, \dots \in \{1, \dots, r\}$.
- Let $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ be the MOP of type II along this path in \mathbb{N}^r .
- Then $\widehat{P}_k(x)$ is orthogonal to the linear functionals $\mathcal{L}^{\star 1}, \ldots, \mathcal{L}^{\star k}$, where the "new" linear functional appearing at stage k is

$$\mathcal{L}^{\star k}(x^m) = \mathcal{L}^{(j_k)}(x^{m+(\mathbf{n}_k)_{j_k}-1})$$

- Fix linear functionals $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(r)}$ on R[x].
- Let (P_n(x))_{n∈ℕ^r} be the multiple orthogonal polynomials of type II associated to the linear functionals L⁽¹⁾,...,L^(r).
- Fix an increasing nearest-neighbor path $\mathbf{n}_0 = \mathbf{0}, \mathbf{n}_1, \mathbf{n}_2, \dots$ in \mathbb{N}^r , with steps along directions $j_1, j_2, \dots \in \{1, \dots, r\}$.
- Let $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ be the MOP of type II along this path in \mathbb{N}^r .
- Then $\widehat{P}_k(x)$ is orthogonal to the linear functionals $\mathcal{L}^{\star 1}, \ldots, \mathcal{L}^{\star k}$, where the "new" linear functional appearing at stage k is

$$\mathcal{L}^{\star k}(x^m) = \mathcal{L}^{(j_k)}(x^{m+(\mathbf{n}_k)_{j_k}-1})$$

• Now set $\Gamma_k = \mathcal{L}^{\star,k+1}$: then the sequence $\widehat{\mathbf{P}} = (\widehat{P}_k(x))_{k\geq 0}$ is orthogonal to the sequence $\Gamma = (\Gamma_k)_{k\geq 0}$.

• The sequence $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ satisfies an (r+2)-term recurrence

$$x\widehat{P}_n(x) = \sum_{k=n-r}^{n+1} \pi_{nk} \widehat{P}_k(x)$$

• The sequence $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ satisfies an (r+2)-term recurrence

$$x\widehat{P}_n(x) = \sum_{k=n-r}^{n+1} \pi_{nk} \widehat{P}_k(x)$$

with an (r, 1)-banded unit-lower-Hessenberg matrix Π .

• The representing matrix of $\widehat{\mathbf{P}}$ is $B = \mathcal{O}(\Pi)^{-1}$.

• The sequence $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ satisfies an (r+2)-term recurrence

$$x\widehat{P}_n(x) = \sum_{k=n-r}^{n+1} \pi_{nk} \widehat{P}_k(x)$$

- . The representing matrix of $\widehat{\mathbf{P}}$ is $B = \mathcal{O}(\Pi)^{-1}$.
- By our general theory, Γ = B⁻¹U = O(Π)U for some upper-triangular matrix U.

• The sequence $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ satisfies an (r+2)-term recurrence

$$x\widehat{P}_n(x) = \sum_{k=n-r}^{n+1} \pi_{nk} \widehat{P}_k(x)$$

- . The representing matrix of $\widehat{\mathbf{P}}$ is $B = \mathcal{O}(\Pi)^{-1}$.
- By our general theory, Γ = B⁻¹U = O(Π)U for some upper-triangular matrix U.
- In particular, Γ₀ = L^{*1} is represented by U₀₀ times the zeroth column of A = O(Π).

• The sequence $\widehat{P}_k(x) = P_{\mathbf{n}_k}(x)$ satisfies an (r+2)-term recurrence

$$x\widehat{P}_n(x) = \sum_{k=n-r}^{n+1} \pi_{nk} \widehat{P}_k(x)$$

- . The representing matrix of $\widehat{\mathbf{P}}$ is $B = \mathcal{O}(\Pi)^{-1}$.
- By our general theory, Γ = B⁻¹U = O(Π)U for some upper-triangular matrix U.
- In particular, Γ₀ = L^{*1} is represented by U₀₀ times the zeroth column of A = O(Π).
- Special case: Find recurrence for MOPs along the stepline.
 Matrix ∏ is a production matrix for the moments of L⁽¹⁾.

Alan Sokal (University College London)

MOPs and BCFs

OPSFOTA 23 / 27

• Van Assche + Yakubovich 2000: MOPs, r = 2, Bessel K_{ν} weights

- Van Assche + Yakubovich 2000: MOPs, r = 2, Bessel K_{ν} weights
- $\bullet\,$ For $a_1,a_2>0,$ let μ_{a_1,a_2} be the positive measure on $[0,\infty)$ given by

$$d\mu_{a_1,a_2}(x) = \frac{2}{\Gamma(a_1)\Gamma(a_2)} x^{(a_1+a_2-2)/2} K_{a_1-a_2}(2\sqrt{x}) dx$$

- Van Assche + Yakubovich 2000: MOPs, r = 2, Bessel K_{ν} weights
- $\bullet\,$ For $a_1,a_2>0,$ let μ_{a_1,a_2} be the positive measure on $[0,\infty)$ given by

$$d\mu_{a_1,a_2}(x) = \frac{2}{\Gamma(a_1)\Gamma(a_2)} x^{(a_1+a_2-2)/2} K_{a_1-a_2}(2\sqrt{x}) dx$$

• Moments are products of rising factorials:

$$\int_{0}^{\infty} x^{n} d\mu_{a_{1},a_{2}}(x) = \frac{\Gamma(a_{1}+n)\Gamma(a_{2}+n)}{\Gamma(a_{1})\Gamma(a_{2})} = a_{1}^{\overline{n}}a_{2}^{\overline{n}}$$

- Van Assche + Yakubovich 2000: MOPs, r = 2, Bessel K_{ν} weights
- $\bullet\,$ For $a_1,a_2>0,$ let μ_{a_1,a_2} be the positive measure on $[0,\infty)$ given by

$$d\mu_{a_1,a_2}(x) = \frac{2}{\Gamma(a_1)\Gamma(a_2)} x^{(a_1+a_2-2)/2} K_{a_1-a_2}(2\sqrt{x}) dx$$

• Moments are products of rising factorials:

$$\int_{0}^{\infty} x^{n} d\mu_{a_{1},a_{2}}(x) = \frac{\Gamma(a_{1}+n)\Gamma(a_{2}+n)}{\Gamma(a_{1})\Gamma(a_{2})} = a_{1}^{\overline{n}}a_{2}^{\overline{n}}$$

• Now fix $a_1, a_2 > 0$ and consider $(\mu_1, \mu_2) = (\mu_{a_1, a_2}, \mu_{a_1+1, a_2})$

- Van Assche + Yakubovich 2000: MOPs, r = 2, Bessel K_{ν} weights
- $\bullet\,$ For $a_1,a_2>0,$ let μ_{a_1,a_2} be the positive measure on [0, $\infty)$ given by

$$d\mu_{a_1,a_2}(x) = \frac{2}{\Gamma(a_1)\Gamma(a_2)} x^{(a_1+a_2-2)/2} K_{a_1-a_2}(2\sqrt{x}) dx$$

• Moments are products of rising factorials:

$$\int_{0}^{\infty} x^{n} d\mu_{a_{1},a_{2}}(x) = \frac{\Gamma(a_{1}+n)\Gamma(a_{2}+n)}{\Gamma(a_{1})\Gamma(a_{2})} = a_{1}^{\overline{n}} a_{2}^{\overline{n}}$$

• Now fix $a_1, a_2 > 0$ and consider $(\mu_1, \mu_2) = (\mu_{a_1, a_2}, \mu_{a_1+1, a_2})$

 Let P_n(x) be the (monic) MOPs polynomials of type II, and let P̃_n(x) be those polynomials on the stepline:

$$\widetilde{P}_{2k}(x) = P_{k,k}(x), \qquad \widetilde{P}_{2k+1}(x) = P_{k+1,k}(x)$$

• Van Assche + Yakubovich computed 4-term recurrence:

$$x \widetilde{P}_n(x) = \widetilde{P}_{n+1}(x) + \pi_{n,n} \widetilde{P}_n(x) + \pi_{n,n-1} \widetilde{P}_{n-1}(x) + \pi_{n,n-2} \widetilde{P}_{n-2}(x)$$

where

$$\pi_{n,n} = a_1 a_2 + (2a_1 + 2a_2 - 1)n + 3n^2$$

$$\pi_{n,n-1} = n(a_1 + n - 1)(a_2 + n - 1)(a_1 + a_2 + 3n - 2)$$

$$\pi_{n,n-2} = n(n-1)(a_1 + n - 1)(a_1 + n - 2)(a_2 + n - 1)(a_2 + n - 2)$$

< ≣ > <

On the other hand ...

.∃ >

On the other hand ...

 Pétréolle–A.S.–Zhu 2018 found, ∀m ≥ 1, an m-branched S-fraction for ratio of contiguous hypergeometric series m+1F0

On the other hand ...

- Pétréolle–A.S.–Zhu 2018 found, ∀m ≥ 1, an m-branched S-fraction for ratio of contiguous hypergeometric series m+1F0
- Define the polynomials $P_n^{(m)}(a_1,\ldots,a_m;a_{m+1})$ by

$$\sum_{n=0}^{\infty} P_n^{(m)}(a_1,\ldots,a_m;a_{m+1}) t^n = \frac{\binom{m+1}{F_0} \binom{a_1,\ldots,a_{m+1}}{m+1} t}{\binom{a_1,\ldots,a_m,a_{m+1}-1}{m+1} t}$$

On the other hand ...

- Pétréolle–A.S.–Zhu 2018 found, ∀m ≥ 1, an m-branched S-fraction for ratio of contiguous hypergeometric series m+1F0
- Define the polynomials $P_n^{(m)}(a_1,\ldots,a_m;a_{m+1})$ by

$$\sum_{n=0}^{\infty} P_n^{(m)}(a_1,\ldots,a_m;a_{m+1}) t^n = \frac{\binom{m+1}{F_0} \binom{a_1,\ldots,a_{m+1}}{m} t}{\binom{a_1,\ldots,a_m,a_{m+1}-1}{m} t}$$

Then P^(m)_n(a₁,..., a_m; a_{m+1}) = S^(m)_n(α) where S^(m)_n is the m-Stieltjes-Rogers polynomial and the coefficients α = (α_i)_{i≥m} are α = a₁...a_m, a₂...a_{m+1}, a₃...a_{m+1}(a₁ + 1), a₄...a_{m+1}(a₁ + 1)(a₂ + 1), ... (m-fold products of shifted a_i's)

• If final numerator argument $a_{m+1} = 1$, then denominator series ${}_{m+1}F_0$ on the RHS becomes the constant 1.

• If final numerator argument $a_{m+1} = 1$, then denominator series ${}_{m+1}F_0$ on the RHS becomes the constant 1.

•
$$\therefore P_n^{(m)}(a_1,\ldots,a_m;1) = \prod_{i=1}^m a_i^{\overline{n}}$$
 (product of rising factorials)

• If final numerator argument $a_{m+1} = 1$, then denominator series ${}_{m+1}F_0$ on the RHS becomes the constant 1.

•
$$\therefore P_n^{(m)}(a_1,\ldots,a_m;1) = \prod_{i=1}^m a_i^{\overline{n}}$$
 (product of rising factorials)

• Specialize further to m = 2:

$$\begin{aligned} \alpha_{3k+2} &= (a_1+k)(a_2+k) \\ \alpha_{3k+3} &= (a_2+k)(1+k) \\ \alpha_{3k+4} &= (1+k)(a_1+k+1) \end{aligned}$$

• If final numerator argument $a_{m+1} = 1$, then denominator series ${}_{m+1}F_0$ on the RHS becomes the constant 1.

•
$$\therefore P_n^{(m)}(a_1,\ldots,a_m;1) = \prod_{i=1}^m a_i^{\overline{n}}$$
 (product of rising factorials)

• Specialize further to m = 2:

$$\alpha_{3k+2} = (a_1 + k)(a_2 + k)$$

$$\alpha_{3k+3} = (a_2 + k)(1 + k)$$

$$\alpha_{3k+4} = (1 + k)(a_1 + k + 1)$$

• Production matrix is quadridiagonal with $\pi_{n,n+1} = 1$ and

$$\pi_{n,n} = \alpha_{3n} + \alpha_{3n+1} + \alpha_{3n+2} \pi_{n,n-1} = \alpha_{3n-2}\alpha_{3n} + \alpha_{3n-1}\alpha_{3n} + \alpha_{3n-1}\alpha_{3n+1} \pi_{n,n-2} = \alpha_{3n-4}\alpha_{3n-2}\alpha_{3n}$$

• If final numerator argument $a_{m+1} = 1$, then denominator series ${}_{m+1}F_0$ on the RHS becomes the constant 1.

•
$$\therefore P_n^{(m)}(a_1,\ldots,a_m;1) = \prod_{i=1}^m a_i^{\overline{n}}$$
 (product of rising factorials)

• Specialize further to m = 2:

$$\alpha_{3k+2} = (a_1 + k)(a_2 + k)$$

$$\alpha_{3k+3} = (a_2 + k)(1 + k)$$

$$\alpha_{3k+4} = (1 + k)(a_1 + k + 1)$$

• Production matrix is quadridiagonal with $\pi_{n,n+1} = 1$ and

$$\pi_{n,n} = \alpha_{3n} + \alpha_{3n+1} + \alpha_{3n+2} \pi_{n,n-1} = \alpha_{3n-2}\alpha_{3n} + \alpha_{3n-1}\alpha_{3n} + \alpha_{3n-1}\alpha_{3n+1} \pi_{n,n-2} = \alpha_{3n-4}\alpha_{3n-2}\alpha_{3n}$$

• Plug in: Agrees with Van Assche-Yakubovich!

Conclusion

Alan Sokal (University College London)

-

イロン イヨン イヨン イ

.⊒ . ►

General connection between MOPs and BCFs. Can use in both directions. **Construct MOPs by analytic methods** (e.g. vector Pearson equations):

Construct MOPs by analytic methods (e.g. vector Pearson equations):

• Stepline recurrence \longrightarrow *r*-branched J-fraction

Construct MOPs by analytic methods (e.g. vector Pearson equations):

- Stepline recurrence \longrightarrow *r*-branched J-fraction
- Sometimes arises by contraction of *r*-branched S-fraction

Construct MOPs by analytic methods (e.g. vector Pearson equations):

- Stepline recurrence \longrightarrow *r*-branched J-fraction
- Sometimes arises by contraction of *r*-branched S-fraction
- Can exploit BCFs to prove total positivity

Construct MOPs by analytic methods (e.g. vector Pearson equations):

- Stepline recurrence \longrightarrow *r*-branched J-fraction
- Sometimes arises by contraction of *r*-branched S-fraction
- Can exploit BCFs to prove total positivity (but that's another talk)

Construct MOPs by analytic methods (e.g. vector Pearson equations):

- Stepline recurrence \longrightarrow *r*-branched J-fraction
- Sometimes arises by contraction of *r*-branched S-fraction
- Can exploit BCFs to prove total positivity (but that's another talk)

Construct BCFs by combinatorial or algebraic methods:

Construct MOPs by analytic methods (e.g. vector Pearson equations):

- Stepline recurrence \longrightarrow *r*-branched J-fraction
- Sometimes arises by contraction of *r*-branched S-fraction
- Can exploit BCFs to prove total positivity (but that's another talk)

Construct BCFs by combinatorial or algebraic methods:

• Production matrix \longrightarrow compute stepline MOPs

Construct MOPs by analytic methods (e.g. vector Pearson equations):

- Stepline recurrence \longrightarrow *r*-branched J-fraction
- Sometimes arises by contraction of *r*-branched S-fraction
- Can exploit BCFs to prove total positivity (but that's another talk)

Construct BCFs by combinatorial or algebraic methods:

- Production matrix \longrightarrow compute stepline MOPs
- Try to guess measures μ_2, \ldots, μ_r (or their moment sequences)
General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):

- Stepline recurrence \longrightarrow *r*-branched J-fraction
- Sometimes arises by contraction of *r*-branched S-fraction
- Can exploit BCFs to prove total positivity (but that's another talk)

Construct BCFs by combinatorial or algebraic methods:

- Production matrix \longrightarrow compute stepline MOPs
- Try to guess measures μ_2, \ldots, μ_r (or their moment sequences)

A big thank you to Walter for helping to discover this!