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Multiple orthogonal polynomials (of type II)

Orthogonal with respect to measures µ1, . . . , µr

Indexed by n = (n1, . . . , nr ) ∈ Nr . Write |n| = n1 + . . .+ nr .

Monic Pn(x) = x |n| + . . . satisfy |n| orthogonality relations:∫
xk Pn(x) dµj(x) = 0 for all 1 ≤ j ≤ r and 0 ≤ k ≤ nj − 1

System is perfect if all Pn exist and are unique
(sufficient conditions for this are known)

Along any increasing nearest-neighbor path n0 = 0,n1,n2, . . . in Nr ,
the sequence P̂k(x) = Pnk (x) satisfies an (r + 2)-term recurrence

xP̂n(x) =
n+1∑

k=n−r
πnk P̂k(x)

with πn,n+1 = 1: (r , 1)-banded unit-lower-Hessenberg matrix Π
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Multiple orthogonal polynomials (of type II)

Remark: Can “algebraize” the theory:

Replace measure µ by linear functional L on polynomial ring R[x ]:

L(xn) =

∫
xn dµ(x)

(I.e. forget about µ and consider only its sequence of moments.)

Replace R by an arbitrary commutative ring R
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Production matrices

Work over an arbitrary commutative ring R

Production matrix: Unit-lower-Hessenberg matrix Π = (πij)i ,j≥0

πi ,i+1 = 1, πij = 0 for j > i + 1

Output matrix: A = (ank)n,k≥0 defined by ank = (Πn)0k

n-step walks on N from 0 to k with weight πij for a step i → j

These are  Lukasiewicz walks −→ A is unit-lower-triangular

Recurrence ank =
∑
i
an−1,i πik

−→ Matrix formulation: ∆A = AΠ
where ∆ is the matrix with 1 on the superdiagonal and 0 elsewhere

Hence Π = A−1∆A

Write A = O(Π)
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Classical continued fractions

Stieltjes-type continued fractions (S-fractions):

∞∑
n=0

Sn(α)︸ ︷︷ ︸
Stieltjes–Rogers

polynomial

tn =
1

1−
α1t

1−
α2t

1− · · ·

Jacobi-type continued fractions (J-fractions):

∞∑
n=0

Jn(β,γ)︸ ︷︷ ︸
Jacobi–Rogers

polynomial

tn =
1

1− γ0t −
β1t

2

1− γ1t −
β2t

2

1− · · ·

This is combinatorialists’ notation. Analysts take tn → 1

zn+1
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Classical continued fractions (lattice-path interpretation)

Paths in N× N starting at (0, 0):

Motzkin path of length n: From (0, 0)→ (n, 0)
using steps (1, 1) [rise], (1, 0) [level step], (1,−1) [fall]

Dyck path of length 2n: From (0, 0)→ (2n, 0)
using steps (1, 1) [rise], (1,−1) [fall]

Theorem (Flajolet 1980)

The Jacobi–Rogers polynomial Jn(β,γ) is the generating polynomial
for Motzkin paths of length n, in which each rise gets weight 1, each
level step at height i gets weight γi , and each fall from height i gets
weight βi .

The Stieltjes–Rogers polynomial Sn(α) is the generating polynomial
for Dyck paths of length 2n, in which each rise gets weight 1 and
each fall from height i gets weight αi .
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Classical continued fractions (lattice-path interpretation)

Paths in N× N starting at (0, 0):

Motzkin path of length n: From (0, 0)→ (n, 0)
using steps (1, 1) [rise], (1, 0) [level step], (1,−1) [fall]

Dyck path of length 2n: From (0, 0)→ (2n, 0)
using steps (1, 1) [rise], (1,−1) [fall]

Theorem (Flajolet 1980)

The Jacobi–Rogers polynomial Jn(β,γ) is the generating polynomial
for Motzkin paths of length n, in which each rise gets weight 1, each
level step at height i gets weight γi , and each fall from height i gets
weight βi .

The Stieltjes–Rogers polynomial Sn(α) is the generating polynomial
for Dyck paths of length 2n, in which each rise gets weight 1 and
each fall from height i gets weight αi .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 7 / 27



Classical continued fractions (lattice-path interpretation)

Paths in N× N starting at (0, 0):

Motzkin path of length n: From (0, 0)→ (n, 0)
using steps (1, 1) [rise], (1, 0) [level step], (1,−1) [fall]

Dyck path of length 2n: From (0, 0)→ (2n, 0)
using steps (1, 1) [rise], (1,−1) [fall]

Theorem (Flajolet 1980)

The Jacobi–Rogers polynomial Jn(β,γ) is the generating polynomial
for Motzkin paths of length n, in which each rise gets weight 1, each
level step at height i gets weight γi , and each fall from height i gets
weight βi .

The Stieltjes–Rogers polynomial Sn(α) is the generating polynomial
for Dyck paths of length 2n, in which each rise gets weight 1 and
each fall from height i gets weight αi .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 7 / 27



Classical continued fractions (lattice-path interpretation)

Paths in N× N starting at (0, 0):

Motzkin path of length n: From (0, 0)→ (n, 0)
using steps (1, 1) [rise], (1, 0) [level step], (1,−1) [fall]

Dyck path of length 2n: From (0, 0)→ (2n, 0)
using steps (1, 1) [rise], (1,−1) [fall]

Theorem (Flajolet 1980)

The Jacobi–Rogers polynomial Jn(β,γ) is the generating polynomial
for Motzkin paths of length n, in which each rise gets weight 1, each
level step at height i gets weight γi , and each fall from height i gets
weight βi .

The Stieltjes–Rogers polynomial Sn(α) is the generating polynomial
for Dyck paths of length 2n, in which each rise gets weight 1 and
each fall from height i gets weight αi .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 7 / 27



Classical continued fractions (lattice-path interpretation)

Paths in N× N starting at (0, 0):

Motzkin path of length n: From (0, 0)→ (n, 0)
using steps (1, 1) [rise], (1, 0) [level step], (1,−1) [fall]

Dyck path of length 2n: From (0, 0)→ (2n, 0)
using steps (1, 1) [rise], (1,−1) [fall]

Theorem (Flajolet 1980)

The Jacobi–Rogers polynomial Jn(β,γ) is the generating polynomial
for Motzkin paths of length n, in which each rise gets weight 1, each
level step at height i gets weight γi , and each fall from height i gets
weight βi .

The Stieltjes–Rogers polynomial Sn(α) is the generating polynomial
for Dyck paths of length 2n, in which each rise gets weight 1 and
each fall from height i gets weight αi .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 7 / 27



Classical continued fractions (lattice-path interpretation, bis)

More general paths in N× N starting at (0, 0):

Partial Motzkin path: From (0, 0)→ (n, k) using same steps

Generalized Jacobi–Rogers polynomial Jn,k(β,γ):
Walks from (0, 0)→ (n, k) using same weights

Unit-lower-triangular matrix J = (Jn,k)n,k≥0
that has Jacobi–Rogers polynomials Jn = Jn,0 in zeroth column

J is output matrix for tridiagonal production matrix

Π =


γ0 1
β1 γ1 1

β2 γ2 1
. . .

. . .
. . .


Analogously: Partial Dyck paths from (0, 0)→ (2n, 2k)
−→ Generalized Stieltjes–Rogers polynomials Sn,k(α)
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Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0)→ ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

Define m-Stieltjes–Rogers polynomial S
(m)
n (α) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight αi .

Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . . .

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 9 / 27



Branched continued fractions

Pétréolle-A.S.-Zhu 2018
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Branched continued fractions (bis)

Yet more general paths in N× N starting at (0, 0):

Partial m-Dyck path:
From (0, 0)→ ((m + 1)n, (m + 1)k) using same steps

Generalized m-Stieltjes–Rogers polynomial S
(m)
n,k (β,γ):

Walks from (0, 0)→ ((m + 1)n, (m + 1)k) using same weights

Unit-lower-triangular matrix S(m) = (S
(m)
n,k )n,k≥0

that has m-Stieltjes–Rogers polynomials S
(m)
n in zeroth column

S(m) is output matrix for an (m, 1)-banded production matrix Π

E.g. for m = 2:

Π =


α2 1

α2α3 + α2α4 α3 + α4 + α5 1
α2α4α6 α4α6 + α5α6 + α5α7 α6 + α7 + α8 1

. . .
. . .

. . .
. . .
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Linear functionals and monic polynomials

Work over an arbitrary commutative ring R

Linear functional L: R[x ]→ R
←→ sequence of “moments” `n = L(xn)

Sequence (Lk)k≥0 of linear functionals
←→ representing matrix A = (ank)n,k≥0 defined by ank = Lk(xn)

We call the sequence (Lk)k≥0 normalized if A is unit-lower-triangular

Sequence of monic polynomials Pn(x) =
n∑

k=0

bnk x
k

←→ unit-lower-triangular representing matrix B = (bnk)n,k≥0

Sequence L = (Lk)k≥0 of linear functionals and
sequence P = (Pn(x))n≥0 of monic polynomials
are dual to each other in case Lk(Pn(x)) = δkn
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Duality between linear functionals and monic polynomials

Proposition (very easy)

Given any sequence (Pn(x))n≥0 of monic polynomials, there exists a
unique sequence (Lk)k≥0 of linear functionals satisfying Lk(Pn(x)) = δkn,
and it is normalized.

Conversely, given any normalized sequence (Lk)k≥0 of linear functionals,
there exists a unique sequence (Pn(x))n≥0 of monic polynomials that
satisfies Lk(Pn(x)) = δkn.

The relation between these sequences is:

The representing matrix A of the sequence (Lk)k≥0 and
the representing matrix B of the sequence (Pn(x))n≥0
are inverses of each other: B = A−1
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Linear recurrence ←→ production matrix

Proposition (quite easy)

Given any sequence (Pn(x))n≥0 of monic polynomials, there exists a
unique unit-lower-Hessenberg matrix Π = (πnk)n,k≥0 such that

xPn(x) =
n+1∑
k=0

πnk Pk(x)

Conversely, given any unit-lower-Hessenberg matrix Π = (πnk)n,k≥0,
there exists a unique sequence (Pn(x))n≥0 of polynomials satisfying this
recurrence with the initial condition P0(x) = 1, and it is monic.

The relation between these objects is: The representing matrix B of the
sequence (Pn(x))n≥0 satisfies B = O(Π)−1 or equivalently Π = B∆B−1.
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Summary of results thus far

There is a one-to-one correspondence between:

Sequences (Pn(x))n≥0 of monic polynomials (with representing matrix
B)

Sequences (Lk)k≥0 of linear functionals (with representing matrix A)

Linear recurrences (with production matrix Π)

and these correspondences are given by

A = O(Π) = B−1

B = O(Π)−1 = A−1

Π = A−1∆A = B∆B−1
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Orthogonality between linear functionals and monic
polynomials

Sequence of linear functionals Γ = (Γk)k≥0 −→ representing matrix Γ

Sequence of monic polynomials P = (Pn(x))n≥0 −→
unit-lower-triangular representing matrix B

We say that P is orthogonal to Γ in case

Γk(Pn(x)) = 0 for 0 ≤ k ≤ n − 1

Now

Γk(Pn(x)) =
n∑

j=0

bnj γjk = (BΓ)nk

So P is orthogonal to Γ ⇐⇒ BΓ vanishes below the diagonal ⇐⇒
BΓ is an upper-triangular matrix U ⇐⇒ Γ = B−1U
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Orthogonality between linear functionals and monic
polynomials: Conclusion

Given Γ with representing matrix Γ and LU factorization Γ = LU:

Then B = L−1 is the representing matrix for a sequence of monic
polynomials orthogonal to Γ. (unique if LU factorization is)

Given P with representing matrix B:

There is a canonically associated sequence of linear functionals
with respect to which P is orthogonal: the dual sequence
L = (Lk)k≥0 with representing matrix A = B−1.

But P is also orthogonal with respect to any sequence
Γ = (Γk)k≥0 where Γ = AU with U upper-triangular,
i.e. Γk is any linear combination of L0, . . . ,Lk .
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Application to ordinary orthogonal polynomials

Fix a linear functional L, with representing sequence ` = (`n)n≥0
given by `n = L(xn).

Choose Γk to be the k-shift of L: Γk(xn) = L(xn+k).

Then the representing matrix Γ of the sequence Γ = (Γk)k≥0 of linear
functionals is the Hankel matrix H∞(`) = (`i+j)i ,j≥0 associated to the
sequence `.

A sequence P = (Pn(x))n≥0 of monic polynomials is orthogonal to Γ
in case L(xk Pn(x)) = 0 for 0 ≤ k ≤ n − 1, i.e. precisely when P is a
sequence of monic orthogonal polynomials in the usual sense for the
linear functional L.

Such a sequence P exists (and is unique) whenever R is a field and
all the leading principal minors ∆1,∆2, . . . of Γ are nonzero.
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Application to ordinary orthogonal polynomials, continued

Now relate this to continued fractions and production matrices.

Continue to assume that R is a field and all the leading principal
minors ∆1,∆2, . . . of the Hankel matrix Γ = H∞(`) are nonzero.

Then ` is given by a classical J-fraction

∞∑
n=0

`n t
n =

1

1− γ0t −
β1t

2

1− γ1t −
β2t

2

1− γ2t − · · ·

with tridiagonal production matrix

Π =


γ0 1
β1 γ1 1

β2 γ2 1
. . .

. . .
. . .



Alan Sokal (University College London) MOPs and BCFs OPSFOTA 19 / 27



Application to ordinary orthogonal polynomials, continued

Now relate this to continued fractions and production matrices.

Continue to assume that R is a field and all the leading principal
minors ∆1,∆2, . . . of the Hankel matrix Γ = H∞(`) are nonzero.

Then ` is given by a classical J-fraction

∞∑
n=0

`n t
n =

1

1− γ0t −
β1t

2

1− γ1t −
β2t

2

1− γ2t − · · ·

with tridiagonal production matrix

Π =


γ0 1
β1 γ1 1

β2 γ2 1
. . .

. . .
. . .



Alan Sokal (University College London) MOPs and BCFs OPSFOTA 19 / 27



Application to ordinary orthogonal polynomials, continued

Now relate this to continued fractions and production matrices.

Continue to assume that R is a field and all the leading principal
minors ∆1,∆2, . . . of the Hankel matrix Γ = H∞(`) are nonzero.

Then ` is given by a classical J-fraction

∞∑
n=0

`n t
n =

1

1− γ0t −
β1t

2

1− γ1t −
β2t

2

1− γ2t − · · ·

with tridiagonal production matrix

Π =


γ0 1
β1 γ1 1

β2 γ2 1
. . .

. . .
. . .


Alan Sokal (University College London) MOPs and BCFs OPSFOTA 19 / 27



Application to ordinary orthogonal polynomials, continued

Fact: The Hankel matrix Γ = H∞(`) has the LDLT factorization

Γ = JDJT

where J = O(Π) is the unit-lower-triangular matrix of generalized
Jacobi–Rogers polynomials, and D = diag(1, β1, β1β2, . . .).

[Stieltjes 1889!]

This is our general factorization Γ = B−1U, specialized to a case in
which the matrix Γ is symmetric. Hence B−1 = J.

∴∴∴ The coefficient matrix B of the polynomial sequence P
is the inverse of the output matrix A = O(Π) = J of generalized
Jacobi–Rogers polynomials.

The orthogonal polynomials obey the three-term recurrence

Pn+1(x) = (x − γn)Pn(x) − βn Pn−1(x)

with the same coefficients as those in the J-fraction.

All this is of course well-known! (but it’s nice to recover)
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Application to multiple orthogonal polynomials

Fix linear functionals L(1), . . . ,L(r) on R[x ].

Let (Pn(x))n∈Nr be the multiple orthogonal polynomials of type II
associated to the linear functionals L(1), . . . ,L(r).
Fix an increasing nearest-neighbor path n0 = 0,n1,n2, . . . in Nr ,
with steps along directions j1, j2, . . . ∈ {1, . . . , r}.
Let P̂k(x) = Pnk (x) be the MOP of type II along this path in Nr .

Then P̂k(x) is orthogonal to the linear functionals L?1, . . . ,L?k ,
where the “new” linear functional appearing at stage k is

L?k(xm) = L(jk )(xm+(nk )jk−1)

Now set Γk = L?,k+1: then the sequence P̂ = (P̂k(x))k≥0 is
orthogonal to the sequence Γ = (Γk)k≥0.
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Application to multiple orthogonal polynomials, continued

The sequence P̂k(x) = Pnk (x) satisfies an (r + 2)-term recurrence

xP̂n(x) =
n+1∑

k=n−r
πnk P̂k(x)

with an (r , 1)-banded unit-lower-Hessenberg matrix Π.

∴∴∴ The representing matrix of P̂ is B = O(Π)−1.

By our general theory, Γ = B−1U = O(Π)U for some upper-triangular
matrix U.

In particular, Γ0 = L?1 is represented by U00 times the zeroth column
of A = O(Π).

Special case: Find recurrence for MOPs along the stepline.

Matrix Π is a production matrix for the moments of L(1).
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Example: Bessel Kν weights ⇒ Rising-factorial moments

Van Assche + Yakubovich 2000: MOPs, r = 2, Bessel Kν weights

For a1, a2 > 0, let µa1,a2 be the positive measure on [0,∞) given by

dµa1,a2(x) =
2

Γ(a1) Γ(a2)
x (a1+a2−2)/2 Ka1−a2(2

√
x) dx

Moments are products of rising factorials:

∞∫
0

xn dµa1,a2(x) =
Γ(a1 + n) Γ(a2 + n)

Γ(a1) Γ(a2)
= an1 a

n
2

Now fix a1, a2 > 0 and consider (µ1, µ2) = (µa1,a2 , µa1+1,a2)

Let Pn(x) be the (monic) MOPs polynomials of type II,

and let P̃n(x) be those polynomials on the stepline:

P̃2k(x) = Pk,k(x) , P̃2k+1(x) = Pk+1,k(x)
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Example: Bessel Kν weights, continued

Van Assche + Yakubovich computed 4-term recurrence:

x P̃n(x) = P̃n+1(x) + πn,nP̃n(x) + πn,n−1P̃n−1(x) + πn,n−2P̃n−2(x)

where

πn,n = a1a2 + (2a1 + 2a2 − 1)n + 3n2

πn,n−1 = n(a1 + n − 1)(a2 + n − 1)(a1 + a2 + 3n − 2)

πn,n−2 = n(n − 1)(a1 + n − 1)(a1 + n − 2)(a2 + n − 1)(a2 + n − 2)
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Example: Bessel Kν weights and BCFs

On the other hand . . .

Pétréolle–A.S.–Zhu 2018 found, ∀m ≥ 1, an m-branched S-fraction
for ratio of contiguous hypergeometric series Fm+1 0

Define the polynomials P
(m)
n (a1, . . . , am; am+1) by

∞∑
n=0

P
(m)
n (a1, . . . , am; am+1) tn =

Fm+1 0

(
a1, . . . , am+1

—

∣∣∣∣ t)
Fm+1 0

(
a1, . . . , am, am+1 − 1

—

∣∣∣∣ t)

Then P
(m)
n (a1, . . . , am; am+1) = S

(m)
n (α) where S

(m)
n is the

m-Stieltjes–Rogers polynomial and the coefficients α = (αi )i≥m are

α = a1 · · · am, a2 · · · am+1, a3 · · · am+1(a1 + 1), a4 · · · am+1(a1 + 1)(a2 + 1), . . .

(m-fold products of shifted ai ’s)

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 25 / 27



Example: Bessel Kν weights and BCFs

On the other hand . . .
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Example: Bessel Kν weights and BCFs, continued

If final numerator argument am+1 = 1, then denominator series Fm+1 0

on the RHS becomes the constant 1.

∴∴∴ P
(m)
n (a1, . . . , am; 1) =

m∏
i=1

ani (product of rising factorials)

Specialize further to m = 2:

α3k+2 = (a1 + k)(a2 + k)

α3k+3 = (a2 + k)(1 + k)

α3k+4 = (1 + k)(a1 + k + 1)

Production matrix is quadridiagonal with πn,n+1 = 1 and

πn,n = α3n + α3n+1 + α3n+2

πn,n−1 = α3n−2α3n + α3n−1α3n + α3n−1α3n+1

πn,n−2 = α3n−4α3n−2α3n

Plug in: Agrees with Van Assche–Yakubovich!
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Example: Bessel Kν weights and BCFs, continued

If final numerator argument am+1 = 1, then denominator series Fm+1 0

on the RHS becomes the constant 1.

∴∴∴ P
(m)
n (a1, . . . , am; 1) =

m∏
i=1

ani (product of rising factorials)
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Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):

Stepline recurrence −→ r -branched J-fraction

Sometimes arises by contraction of r -branched S-fraction

Can exploit BCFs to prove total positivity

(but that’s another talk)

Construct BCFs by combinatorial or algebraic methods:

Production matrix −→ compute stepline MOPs

Try to guess measures µ2, . . . , µr (or their moment sequences)

A big thank you to Walter for helping to discover this!
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