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Multiple orthogonal polynomials (of type Il)

@ Orthogonal with respect to measures i1, ..., i,
o Indexed by n = (ny,...,n;) € N".  Write [n| = ny + ...+ n,.
@ Monic Pa(x) = xI" 4 ... satisfy |n| orthogonality relations:

/kan(x)d,uj(X) =0 foralll<j<rand0<k<n 1

System is perfect if all P, exist and are unique
(sufficient conditions for this are known)

Along any increasing nearest-neighbor path ng = 0,ny,ny, ... in N,
the sequence Py(x) = Pn,(x) satisfies an (r 4 2)-term recurrence

with 7, pt1 = 1: (r,1)-banded unit-lower-Hessenberg matrix [1
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@ Replace measure p by linear functional £ on polynomial ring R[x]:

L(x") = / X" dpa(x)

(l.e. forget about p and consider only its sequence of moments.)
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Production matrices

o Work over an arbitrary commutative ring R
@ Production matrix: Unit-lower-Hessenberg matrix M = () j>0
7T,'7,'_|_1:1, 7T,'j=0fOI’j>i—|—].
e Output matrix: A = (apk)nk>0 defined by a,, = (M")ox
@ n-step walks on N from 0 to k with weight 7;; for a step i — j
@ These are tukasiewicz walks — A is unit-lower-triangular
@ Recurrence apx = Y ap—1,; Tik
1
— Matrix formulation: AA = ATl
where A is the matrix with 1 on the superdiagonal and 0 elsewhere
@ Hence M= A"1AA

o Write A= 0O(N)
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Classical continued fractions

o Stieltjes-type continued fractions (S-fractions):

> 1
Z Sp(@) t" =
=0 SN—— ot
" Stieltjes—Rogers 1-—
polynomial 1— st
1—

@ Jacobi-type continued fractions (J-fractions):

> 1
Z Jn ﬁ 7 = 3 2
Jacobl Rogers 1— ot — ! 3
polynomial 1— it — B2t
1—
@ This is combinatorialists’ notation. Analysts take t" — il
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Classical continued fractions (lattice-path interpretation)

Paths in N x N starting at (0,0):
@ Motzkin path of length n:  From (0,0) — (n,0)
using steps (1. 1) [rise], (1.0) [level step], (1. 1) [fall]
@ Dyck path of length 2n:  From (0,0) — (2n,0)
using steps (1. 1) [rise], (1, 1) [fall]

Theorem (Flajolet 1980)

@ The Jacobi—Rogers polynomial J,(3,~) is the generating polynomial
for Motzkin paths of length n, in which each rise gets weight 1, each
level step at height /i gets weight 7;, and each fall from height i gets
weight ;.

@ The Stieltjes—Rogers polynomial S,(«) is the generating polynomial
for Dyck paths of length 2n, in which each rise gets weight 1 and
each fall from height i gets weight «;.

v
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Classical continued fractions (lattice-path interpretation, bis

More general paths in N x N starting at (0,0):
e Partial Motzkin path:  From (0,0) — (n, k) using same steps

@ Generalized Jacobi—Rogers polynomial J, «(3,7):
Walks from (0,0) — (n, k) using same weights

o Unit-lower-triangular matrix J = (Jp «)n k>0
that has Jacobi—Rogers polynomials J, = J, o in zeroth column

@ | is output matrix for tridiagonal production matrix

% 1
1 m 1

n = Ba 2 1

e Analogously: Partial Dyck paths from (0,0) — (2n, 2k)
— Generalized Stieltjes—Rogers polynomials S, (o)
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Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

o Fix an integer m > 1.
m-Dyck path of length (m+ 1)n:  From (0,0) — ((m + 1)n,0)
using steps (1, 1) [rise], (1.—m) [m-fall]

For m = 1 these are ordinary Dyck paths.

@ Define m-Stieltjes—Rogers polynomial S,(,m)(a) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight «;.
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Branched continued fractions

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

o Fix an integer m > 1.

e m-Dyck path of length (m+ 1)n:  From (0,0) — ((m + 1)n,0)
using steps (1, 1) [rise], (1.—m) [m-fall]

@ For m =1 these are ordinary Dyck paths.

@ Define m-Stieltjes—Rogers polynomial S,(,m)(a) to be generating

polynomial for m-Dyck paths of length (m + 1)n in which each rise
gets weight 1 and each m-fall from height i gets weight «;.

@ Generalizing what Flajolet did for m = 1: Their generating function
can be written as a branched continued fraction . ..
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Branched continued fractions

Pétréolle-A.S.-Zhu 2018

i S{™(a) t"

n=0

m
1 — amnt ][]

=1

1

m
1- Omtip b H

ih=1 m
I — amyitit H
i3=1

1
1—...

1
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Branched continued fractions (bis)

Yet more general paths in N x N starting at (0, 0):
o Partial m-Dyck path:
From (0,0) — ((m+ 1)n, (m + 1)k) using same steps
o Generalized m-Stieltjes—Rogers polynomial S,S",’()(,B,'y):

Walks from (0,0) — ((m + 1)n, (m + 1)k) using same weights
o Unit-lower-triangular matrix S = (55,’7()),,7[(20
that has m-Stieltjes—Rogers polynomials 5,(,m) in zeroth column

o S is output matrix for an (m,1)-banded production matrix I

o E.g. for m=2:
(%) 1
. a3 + oy a3+ ag + as 1
- Q0406 a4a6 + asag + asay o +az+ag 1
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Linear functionals and monic polynomials

@ Work over an arbitrary commutative ring R
e Linear functional £: R[x] = R
+— sequence of “moments” /¢, = L(x")

@ Sequence (L)~ of linear functionals
< representing matrix A = (apk)n k>0 defined by a,, = Li(x")

o We call the sequence (L), normalized if A is unit-lower-triangular

n
@ Sequence of monic polynomials P,(x) = > by x*
k=0

<— unit-lower-triangular representing matrix B = (bnk)n k>0
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Linear functionals and monic polynomials

@ Work over an arbitrary commutative ring R

e Linear functional £: R[x] = R
< sequence of "moments” /, = L(x")

@ Sequence (L)~ of linear functionals
< representing matrix A = (apk)n k>0 defined by a,, = Li(x")

o We call the sequence (L), normalized if A is unit-lower-triangular

n
@ Sequence of monic polynomials P,(x) = > by x*
k=0
<— unit-lower-triangular representing matrix B = (bnk)n k>0
@ Sequence L = (Ly)k>o of linear functionals and

sequence P = (Pp(x))n>0 of monic polynomials
are dual to each other in case Lx(P,(x)) = 0xn
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Duality between linear functionals and monic polynomials

Proposition (very easy)

Given any sequence (Pp(x))n>0 of monic polynomials, there exists a
unique sequence (L )x>o of linear functionals satisfying L, (P,(x)) = dxn,
and it is normalized.

Conversely, given any normalized sequence (L )x>0 of linear functionals,
there exists a unique sequence (Pp(x))n>0 of monic polynomials that
satisfies Lx(Pn(x)) = kn-

The relation between these sequences is:

The representing matrix A of the sequence (Ly)k>0 and
the representing matrix B of the sequence (Pp(x))n>0
are inverses of each other: B = A~!
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Linear recurrence <— production matrix

Proposition (quite easy)

Given any sequence (Pp(x))n>0 of monic polynomials, there exists a
unique unit-lower-Hessenberg matrix I = (7pk)n k>0 such that

n+1

XPn(x) = ) mok Pi(x)
k=0

Conversely, given any unit-lower-Hessenberg matrix I = (k) k>0,
there exists a unique sequence (Pp(x))n>0 of polynomials satisfying this
recurrence with the initial condition Py(x) = 1, and it is monic.

The relation between these objects is: The representing matrix B of the
sequence (P,(x))n>0 satisfies B = O(M)~! or equivalently 1 — BAB 1.
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Summary of results thus far
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Summary of results thus far

There is a one-to-one correspondence between:

@ Sequences (P(x))n>0 of monic polynomials (with representing matrix
B)

@ Sequences (L)k>o of linear functionals (with representing matrix A)

@ Linear recurrences (with production matrix I1)

and these correspondences are given by
A=0N) =B"
B=oMm*"=Aa"
N=A"'AA = BAB™!
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Orthogonality between linear functionals and monic

polynomials
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Orthogonality between linear functionals and monic

polynomials

@ Sequence of linear functionals T’ = (I'x)xk>0 — representing matrix I
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unit-lower-triangular representing matrix B
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Orthogonality between linear functionals and monic

polynomials

@ Sequence of linear functionals T’ = (I'x)xk>0 — representing matrix I

@ Sequence of monic polynomials P = (Pp(x))n>0 —
unit-lower-triangular representing matrix B

@ We say that P is orthogonal to I' in case
[k(Pa(x))=0for0< k<n-1
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Orthogonality between linear functionals and monic

polynomials

@ Sequence of linear functionals T’ = (I'x)xk>0 — representing matrix I

@ Sequence of monic polynomials P = (Pp(x))n>0 —
unit-lower-triangular representing matrix B

@ We say that P is orthogonal to I' in case
Mk(Pn(x)) =0for0< k<n-1

o Now

[i(Palx mejk = (Bl
j=0

So P is orthogonal to I' <= Bl vanishes below the diagonal <—
BT is an upper-triangular matrix U <= = B~1U
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Orthogonality between linear functionals and monic

polynomials: Conclusion
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@ Given T with representing matrix I' and LU factorization [ = LU:

Then B = L~! is the representing matrix for a sequence of monic
polynomials orthogonal to I'.  (unique if LU factorization is)
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Orthogonality between linear functionals and monic

polynomials: Conclusion

@ Given T with representing matrix I' and LU factorization [ = LU:

Then B = L~! is the representing matrix for a sequence of monic
polynomials orthogonal to I'.  (unique if LU factorization is)

@ Given P with representing matrix B:

o There is a canonically associated sequence of linear functionals
with respect to which P is orthogonal: the dual sequence
L = (L)k>0 with representing matrix A = B~ 1.
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Orthogonality between linear functionals and monic

polynomials: Conclusion

@ Given T with representing matrix I' and LU factorization [ = LU:

Then B = L~! is the representing matrix for a sequence of monic
polynomials orthogonal to I'.  (unique if LU factorization is)

@ Given P with representing matrix B:

o There is a canonically associated sequence of linear functionals
with respect to which P is orthogonal: the dual sequence
L = (L)k>0 with representing matrix A = B~ 1.

o But P is also orthogonal with respect to any sequence
I' = (Tk) k>0 where ' = AU with U upper-triangular,
i.e. [k is any linear combination of Lo, ..., L.
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Application to ordinary orthogonal polynomials
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e Fix a linear functional £, with representing sequence £ = (¢,)n>0
given by 7, = L(x").

o Choose Iy to be the k-shift of £: T ,(x") = L(x"TH).

@ Then the representing matrix I of the sequence I' = (I'x)x>0 of linear
functionals is the Hankel matrix Hoo(£) = (¢j4j)i j>0 associated to the
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Application to ordinary orthogonal polynomials

e Fix a linear functional £, with representing sequence £ = (¢,)n>0
given by 7, = L(x").

o Choose Iy to be the k-shift of £: T ,(x") = L(x"TH).
@ Then the representing matrix I of the sequence I' = (I'x)x>0 of linear

functionals is the Hankel matrix Hoo(£) = (¢j4j)i j>0 associated to the
sequence £.

e A sequence P = (P,(x))n>0 of monic polynomials is orthogonal to T’
in case £(x¥ P,(x)) =0 for 0 < k < n—1, i.e. precisely when P is a
sequence of monic orthogonal polynomials in the usual sense for the
linear functional L.
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Application to ordinary orthogonal polynomials

Fix a linear functional £, with representing sequence £ = (¢;)n>0
given by 7, = L(x").

Choose Ty to be the k-shift of £: T (x") = L(x"TF).

Then the representing matrix I of the sequence I' = (I'x)x>0 of linear
functionals is the Hankel matrix Hoo(£) = (¢j4j)i j>0 associated to the
sequence £.

A sequence P = (Pp(x))n>0 of monic polynomials is orthogonal to T’
in case £(x¥ P,(x)) =0 for 0 < k < n—1, i.e. precisely when P is a
sequence of monic orthogonal polynomials in the usual sense for the
linear functional L.

Such a sequence P exists (and is unique) whenever R is a field and
all the leading principal minors A1, Ay, ... of I are nonzero.
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Application to ordinary orthogonal polynomials, continued

Now relate this to continued fractions and production matrices.
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Now relate this to continued fractions and production matrices.

@ Continue to assume that R is a field and all the leading principal
minors Ay, Ay, ... of the Hankel matrix I = Hy,(€) are nonzero.
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Application to ordinary orthogonal polynomials, continued

Now relate this to continued fractions and production matrices.

@ Continue to assume that R is a field and all the leading principal
minors Ay, Ay, ... of the Hankel matrix I = Hy,(€) are nonzero.

@ Then £ is given by a classical J-fraction

i 1
byt =
n=0 ! 1— r— ﬁl t2
° Bat?
Lt —

with tridiagonal production matrix

7 1

fr m 1

n= B2 v2 1
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Application to ordinary orthogonal polynomials, continued

e Fact: The Hankel matrix I = Hoo(£) has the LDLT factorization
r=JpJ*

where J = O([N) is the unit-lower-triangular matrix of generalized
Jacobi—-Rogers polynomials, and D = diag(1, 51, 8152, - - .).
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Application to ordinary orthogonal polynomials, continued

e Fact: The Hankel matrix I = Hoo(£) has the LDLT factorization

r=JpJ*
where J = O([N) is the unit-lower-triangular matrix of generalized

Jacobi—-Rogers polynomials, and D = diag(1, 51, 8152, - - .).
[Stieltjes 1889!]

e This is our general factorization I = B~1U, specialized to a case in
which the matrix I is symmetric. Hence B! = J.

@ .". The coefficient matrix B of the polynomial sequence P
is the inverse of the output matrix A = O(N) = J of generalized
Jacobi—Rogers polynomials.

@ The orthogonal polynomials obey the three-term recurrence

Pni1(x) = (x =) Pa(x) — Bn Pp-1(x)
with the same coefficients as those in the J-fraction.

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 20 / 27



Application to ordinary orthogonal polynomials, continued

e Fact: The Hankel matrix I = Hoo(£) has the LDLT factorization
r = JpJt
where J = O([N) is the unit-lower-triangular matrix of generalized

Jacobi—-Rogers polynomials, and D = diag(1, 51, 8152, - - .).
[Stieltjes 1889!]

e This is our general factorization I = B~1U, specialized to a case in
which the matrix I is symmetric. Hence B! = J.

@ .". The coefficient matrix B of the polynomial sequence P
is the inverse of the output matrix A = O(N) = J of generalized
Jacobi—Rogers polynomials.

@ The orthogonal polynomials obey the three-term recurrence
Pni1(x) = (x =7n) Pa(x) — Bn Pn-1(x)
with the same coefficients as those in the J-fraction.

@ All this is of course well-known!  (but it's nice to recover)
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Application to multiple orthogonal polynomials
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Application to multiple orthogonal polynomials

o Fix linear functionals £, ... £ on R[x].

o Let (Pn(x))nenr be the multiple orthogonal polynomials of type I
associated to the linear functionals £(1), ..., £,

@ Fix an increasing nearest-neighbor path np = 0.ny,ns, ... in N7,

with steps along directions ji,j2,... € {1,...,r}.
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Application to multiple orthogonal polynomials

o Fix linear functionals £, ... £ on R[x].

o Let (Pn(x))nenr be the multiple orthogonal polynomials of type I
associated to the linear functionals £(1), ..., £,

@ Fix an increasing nearest-neighbor path np = 0.ny,ns, ... in N7,

with steps along directions ji,j2,... € {1,...,r}.

o Let Py(x) = Pa, (x) be the MOP of type Il along this path in N".

@ Then ﬁk(x) is orthogonal to the linear functionals £*1, ..., £*X,

where the “new” linear functional appearing at stage k is
E*k(xm) _ ,C(jk)(xm+("k)fk_1)
o Now set [, = £*K1: then the sequence P = (ﬁk(X))kzo is

orthogonal to the sequence I' = (I'y)x>0.
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Application to multiple orthogonal polynomials, continued

@ The sequence ﬁk(x) = Py, (x) satisfies an (r + 2)-term recurrence
n+1

X:B,,(X) = Z Tk ﬁk(x)

k=n—r

with an (r,1)-banded unit-lower-Hessenberg matrix I1.
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Application to multiple orthogonal polynomials, continued

@ The sequence ﬁk(x) = Py, (x) satisfies an (r + 2)-term recurrence
n+1

X:B,,(X) = Z Tk ﬁk(x)

k=n—r

with an (r,1)-banded unit-lower-Hessenberg matrix I1.
o .°. The representing matrix of P is B = om)-1t.

@ By our general theory, I = B~1U = O(M)U for some upper-triangular
matrix U.
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n+1

X:B,,(X) = Z Tk ﬁk(x)

k=n—r

with an (r,1)-banded unit-lower-Hessenberg matrix I1.
o .°. The representing matrix of P is B = om)-1t.

@ By our general theory, I = B~1U = O(M)U for some upper-triangular
matrix U.

o In particular, g = £*! is represented by Upg times the zeroth column
of A=0O(N).
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Application to multiple orthogonal polynomials, continued

The sequence ﬁk(x) = Py, (x) satisfies an (r + 2)-term recurrence

°
xPp(x) = Z Tk Pr(X)
k=n—r

with an (r,1)-banded unit-lower-Hessenberg matrix I1.
o .°. The representing matrix of P is B = om)-1t.

@ By our general theory, I = B~1U = O(M)U for some upper-triangular
matrix U.

o In particular, g = £*! is represented by Upg times the zeroth column
of A= 0(N).

@ Special case: Find recurrence for MOPs along the stepline.
Matrix I1 is a production matrix for the moments of £(1).
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Example: Bessel K, weights = Rising-factorial moments

@ Van Assche 4+ Yakubovich 2000: MOPs, r = 2, Bessel K, weights

@ For aj,ap >0, let 15,5, be the positive measure on [0, c0) given by
2

(a1+a2—2)/2
(1) (22) X Ka, —2,(2v/x) dx

dpiay,a, (X) =
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@ Van Assche 4+ Yakubovich 2000: MOPs, r = 2, Bessel K, weights

@ For aj,ap >0, let 15,5, be the positive measure on [0, c0) given by
2
M(a1) (a2)

@ Moments are products of rising factorials:

dpiay,a(X) = x(ata=2)/2 Kai—a,(2V/x) dx

r M(ar + n)M(a2+ n) _—
n — _ ,n.n
/X d:ual,a2(x) - r(al) F(az) = a1

0
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Example: Bessel K, weights = Rising-factorial moments

@ Van Assche 4+ Yakubovich 2000: MOPs, r = 2, Bessel K, weights

@ For aj,ap >0, let 15,5, be the positive measure on [0, c0) given by
2
M(a1) (a2)

@ Moments are products of rising factorials:

dpiay,a(X) = x(ata=2)/2 Kai—a,(2V/x) dx

T Mo+ n)T(a2+n) o -
R (L R
0

o Now fix a1, a2 > 0 and consider (1, 12) = (Kay,a05 Har+1,20)

o Let Py(x) be the (monic) MOPs polynomials of type |,

and let P,(x) be those polynomials on the stepline:

Po(x) = Pix(x), Pai1(x) = Pryrk(x)
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Example: Bessel K, weights, continued

@ Van Assche 4 Yakubovich computed 4-term recurrence:

XPn(X) = Pn+1(X) + 7Tn,n'Dn(X) + 7"'n,nflﬁnfl(x) + 7Tn,n72/3n72(x)

where
Tpn = aia + (2a1 +2a —1)n + 3n?
Tnn—1 = n(aa+n—1)(az+n—1)(a1 +a2+3n-2)
Tnn—2 = n(n—1)(ar+n—1)(as+n—-2)(az+n—1)(a2+n—2)
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Example: Bessel K, weights and BCFs

On the other hand ...
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Example: Bessel K, weights and BCFs

On the other hand ...

o Pétréolle—A.S.—Zhu 2018 found, Ym > 1, an m-branched S-fraction
for ratio of contiguous hypergeometric series | F,

@ Define the polynomials P,(,m)(al, oey@m; ams1) by

aly .- -5 dm+l
m+1F0(

t

o pl(m) >

S P a1, 2 amia) £ =

n=0 317-~-;am73m+1_1
m+1Fo t
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Example: Bessel K, weights and BCFs

On the other hand ...

o Pétréolle—A.S.—Zhu 2018 found, Ym > 1, an m-branched S-fraction
for ratio of contiguous hypergeometric series | F,

o Define the polynomials P,(,m)(al, oey@m; ams1) by
o (m) m+1Fo(al" .;am+1 t>
nZ::oPn (81, ami dmia) £ = <a1,...,am,am+1—1’)
m+1Fo . t
@ Then P,(,m)(al, ey @m Amyl) = 5,(,'”)(04) where 5,(,'") is the

m-Stieltjes—Rogers polynomial and the coefficients o = (j)j>m are
o = ar - am, @ amt1, 33 amr1(a + 1), a1 amya(ar + 1) (a2 + 1), ...

(m-fold products of shifted a;'s)
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Example: Bessel K, weights and BCFs, continued

o If final numerator argument ap, 41 = 1, then denominator series .1 F,
on the RHS becomes the constant 1.
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Example: Bessel K, weights and BCFs, continued

o If final numerator argument ap, 41 = 1, then denominator series .1 F,
on the RHS becomes the constant 1.

m —
° .. P,gm)(al,...,am; 1) = [[a? (product of rising factorials)
i=1

@ Specialize further to m = 2:
o3z = (a1 +k)(az + k)
a3k43 (a2 + k)(1 + k)
(I+k)(ar+k+1)
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Example: Bessel K, weights and BCFs, continued

o If final numerator argument ap, 41 = 1, then denominator series .1 F,
on the RHS becomes the constant 1.

m —
° .. P,gm)(al,...,am; 1) = [[a? (product of rising factorials)
i=1

@ Specialize further to m = 2:
o3z = (a1 +k)(az + k)
azks3 = (a2 +k)(1+ k)
agkra = (L+k)(ar+k+1)

@ Production matrix is quadridiagonal with 7, ,41 = 1 and

Tan = @3np + @3n41 + Q3p42
Tpn—1 = O3p-203p + Q3p—103n + A3n—103n+1
Tn,n—2 = Q3p-4Q3n-203p
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Example: Bessel K, weights and BCFs, continued

o If final numerator argument ap, 41 = 1, then denominator series .1 F,
on the RHS becomes the constant 1.

m —
° .. P,gm)(al,...,am; 1) = [[a? (product of rising factorials)
i=1

@ Specialize further to m = 2:
o3z = (a1 +k)(az + k)
azks3 = (a2 +k)(1+ k)
agkra = (L+k)(ar+k+1)

@ Production matrix is quadridiagonal with 7, ,41 = 1 and

Tan = @3np + @3n41 + Q3p42
Tn,n—1 Q3p—2Q03n + A3p—-103p + A37—103n+1
Tn,n—2 = Q3p-4Q3n-203p

@ Plug in: Agrees with Van Assche—Yakubovich!

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 26 / 27



Conclusion

Alan Sokal (University College London) MOPs and BCFs



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 / 27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 / 27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):

@ Stepline recurrence — r-branched J-fraction

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 / 27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):
@ Stepline recurrence — r-branched J-fraction

@ Sometimes arises by contraction of r-branched S-fraction

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 / 27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):
@ Stepline recurrence — r-branched J-fraction
@ Sometimes arises by contraction of r-branched S-fraction

@ Can exploit BCFs to prove total positivity

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 / 27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):
@ Stepline recurrence — r-branched J-fraction
@ Sometimes arises by contraction of r-branched S-fraction

e Can exploit BCFs to prove total positivity (but that's another talk)

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 /27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):
@ Stepline recurrence — r-branched J-fraction

@ Sometimes arises by contraction of r-branched S-fraction

e Can exploit BCFs to prove total positivity (but that's another talk)

Construct BCFs by combinatorial or algebraic methods:

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 /27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):
@ Stepline recurrence — r-branched J-fraction

@ Sometimes arises by contraction of r-branched S-fraction

e Can exploit BCFs to prove total positivity (but that's another talk)

Construct BCFs by combinatorial or algebraic methods:

@ Production matrix — compute stepline MOPs

Alan Sokal (University College London) MOPs and BCFs OPSFOTA 27 /27



Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):
@ Stepline recurrence — r-branched J-fraction
@ Sometimes arises by contraction of r-branched S-fraction
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@ Try to guess measures yy, ..., i, (or their moment sequences)
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Conclusion

General connection between MOPs and BCFs. Can use in both directions.

Construct MOPs by analytic methods (e.g. vector Pearson equations):
@ Stepline recurrence — r-branched J-fraction
@ Sometimes arises by contraction of r-branched S-fraction

e Can exploit BCFs to prove total positivity (but that's another talk)

Construct BCFs by combinatorial or algebraic methods:
@ Production matrix — compute stepline MOPs

@ Try to guess measures yy, ..., i, (or their moment sequences)

A big thank you to Walter for helping to discover this!
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