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Lecture 1

The p-adic representation theory of p-adic groups is the subject of much ongoing
research. It is motivated by the desire to better understand the conjectural p-adic Lang-
lands correspondence, but it is also an interesting branch of representation theory in its
own right. In these lectures, we introduce the notion of locally analytic representations,
and a particularly nice subclass of them called admissible representations.

Today: we focus on the topological/analytic background.

Non-archimedean fields. Throughout, K will denote our base field.

Definition 1. A non-archimedean absolute value (NAAV) on K is a function |·| : K →
R such that for all a, b ∈ K:

(i) |a| ≥ 0;
(ii) |a| = 0 ⇐⇒ a = 0;
(iii) |a · b| = |a| · |b|; and
(iv) |a+ b| ≤ max{|a| , |b|}.

This gives a metric on K via d(a, b) := |a− b|, making K into a topological field. The
unit ball OK := {a ∈ K : |a| ≤ 1} is a subring.

From now on, we assume that K is equipped with a NAAV and that it is
complete, i.e. Cauchy sequences converge.

Remark. We can more generally topologise Kn for any n by equipping it with the norm
||(a1, . . . , an)|| := max{|a1| , . . . , |an|}.

Canonical example: the p-adics. Let p be a prime number and let a ∈ Q. Define
|a|p := p−r if a = pr · mn where (m, p) = (n, p) = 1. This is a NAAV on Q (exercise).

The completion of Q with respect to |·|p is denoted by Qp, the field of p-adic numbers,
and the unit ball of Qp is denoted by Zp, the ring of p-adic integers. Moreover, the
NAAV on Qp extends uniquely to a NAAV an K for any finite field extension K/Qp.

Concretely, elements of Zp are ‘infinite base p expansions’, i.e. can be represented
uniquely as a series

a0 + a1p+ a2p
2 + . . .+ anp

n + . . . ,

where ai ∈ {0, 1, . . . , p− 1} for all i. We then have Qp = Zp[1/p].

Back to general K. Convergence of series will be important to us. The following will
be crucial:

Fact/exercise. If (an) is a sequence in K, then∑
n≥0

an converges ⇐⇒ an → 0 as n→∞.

This is a consequence of (iv) in the definition of a NAAV.

In particular, as a function, a power series f(x) =
∑
n≥0 anx

n makes sense (i.e.

converges) on a ball Bε(0) := {a ∈ K : |a| ≤ ε} if and only if εn |an| → 0 as n→∞.
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p-adic Lie groups. Given α = (α1, . . . , αn) ∈ Nn, we adopt the notation |α| :=
α1 + . . .+ αn and tα := tα1

1 · · · tαn
n .

Definition 2. If U ⊆ Kn is open, then a function f : U → Km is locally analytic if
for all x0 ∈ U , there exists ε > 0 and power series Fi(t) =

∑
α∈Nn aα,it

α (1 ≤ i ≤ m),

where aα,i ∈ K and ε|α| · |aα,i| → 0 as |ε| → ∞, such that for all x ∈ U with
||x− x0|| ≤ ε we have f(x) = (F1(x− x0), . . . , Fm(x− x0)).

Remark. This notion can be generalised to functions f : U → V where V is a suitable
(locally convex, Hausdorff) topological vector space. These are the functions which
can be locally described by converging power series with coefficients in V .

Next we introduce manifolds:

Definition 3. Let M be a Hausdorff topological space. An atlas of dimension n on M
is a set A = {(Ui, ϕi)}i∈I such that

• Ui ⊂M is open for all i ∈ I and M =
⋃
i∈I Ui;

• ϕi : Ui → Kn is a homeomorphism onto an open subset of Kn for all i ∈ I;
and
• for all i, j ∈ I, the maps

ϕi(Ui ∩ Uj)
ϕj◦ϕ−1

i

�
ϕi◦ϕ−1

j

ϕj(Ui ∩ Uj)

are locally analytic

We say M is a (locally K-analytic) manifold of dimension n if it is equipped with such
an atlas, and the pairs (Ui, ϕi) are called charts. We say a map f : M → Km is locally
analytic if f ◦ ϕ−1 : ϕ(U)→ Km is locally analytic for each chart (U,ϕ) of M .

Finally we can talk about groups:

Definition 4. A manifold G is a Lie group if it is a group such that the multiplication
m : G×G→ G is locally analytic.

Examples. (i) (Kn,+) or (OnK ,+).
(ii) (K×, ·) or (O×K , ·).
(iii) (1 + pZp, ·) ≤ (Q×p , ·), i.e. elements of the form 1 + a1p+ a2p

2 + . . ..
(iv) GLn (K), GLn (OK), SLn (K), SLn (OK).
(v) Closed subgroups of GLn (K) are Lie groups, such as the Borel subgroup

B =


Ñ
∗ . . . ∗

. . .
...
∗

é
∈ GLn(K)


and the maximal torus

T =

{(
∗ . . .

∗

)
∈ GLn(K)

}
.

(vi) We also have the Iwahori subgroup of GL2 (Zp)

I =

ßÅ
a b
c d

ã
∈ GL2 (Zp) : c ∈ pZp

™
.

(vii) The K-valued points of any connected algebraic group over K.

All of these examples are algebraic in nature, but the point of the analytic setup is
that we may study a class of representations larger than the algebraic ones.
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Locally analytic representations. From now on, we fix complete non-archimedean
fields L ⊆ K such that the NAAV on K extends the one on L, and we fix G a locally
L-analytic Lie group. We will study representations of G on K-vector spaces. We
assume that V is a suitable topological K-vector space (locally convex, Hausdorff) so
that we can talk about locally analytic functions f : G→ V . We write

Can(G,V ) := {f : G→ V |f locally analytic}.

Definition 5. A representation ρ : G → GL(V ) is locally analytic if for each v ∈ V ,
the map g 7→ ρ(g)v belongs to Can(G,V ).

Remark. This only depends on each vector v ∈ V , so given any representation on V ,
it makes sense to consider the locally analytic vectors

V an := {v ∈ V : (g 7→ ρ(g)v) ∈ Can(G,V )},
a locally analytic subrepresentation.

We finish with some examples.

Examples. (i) If G is algebraic (e.g. GLn (K)) then any algebraic representation
of G is locally analytic.

(ii) If G = (Zp,+), we can define a character χ : G → K× as follows. Pick
z ∈ K× such that |z − 1| < 1. Then, for a ∈ Zp, set

χ(a) = za :=

∞∑
n=0

(z − 1)n
Ç
a

n

å
.

Here the binomial coefficient is defined as
(
a
n

)
= a(a−1)...(a−n+1)

n! ∈ Qp. It
follows from a theorem of Amice that χ is locally analytic.

(iii) Let G = GL2 (Qp), B the Borel subgroup, T the maximal torus. Let χ : T →
K× be a locally analytic character. As T is a quotient of B, we may lift χ to
B. Then we have the locally analytic induction

IndGB(χ) := {f ∈ Can(G,K) : f(gb) = χ(b−1)f(g) ∀g ∈ G, b ∈ B}.
This is a locally analytic representation of G when G acts by left translation,
called a principal series representation.

(iv) When χ = 1 in (iii), we have a natural injection 1G → IndGB(1) with image

the constant functions G→ K. The quotient St := IndGB(1)/1G is called the
Steinberg representation.

Remark. Even if G = (Zp,+), we can construct infinitely many irreducible, infinite
dimensional, locally analytic representations. If z ∈ K× as in example (ii) and z is
transcendental over Qp, and assuming that K is the smallest complete field containing
z, then Diarra showed that K is an irreducible Qp-representation of G via

ρ(a)v =

∞∑
n=0

(z − 1)n
Ç
a

n

å
v.

Hence locally analytic representations are too wild to study in general. We need a nicer
subclass of representations within it.

Lecture 2

The analytic nature of both the groups and representations makes it hard to work
with them directly. In order to study these representations more algebraically, we define
an algebra D(G,K) such thatß

sufficiently nice
loc. an. representations

™
↔
ß

sufficiently nice
D(G,K)-modules

™
.
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Here, ‘sufficiently nice’ will have to be some topological properties. Later, we will see
how to replace some of these topological properties with more algebraic ones.

We fix fields Qp ⊆ L ⊆ K with L/Qp finite, and assume further that K is a
spherically complete with respect to a NAAV extending the one on L (don’t worry
about what that means, it’s a technical condition to ensure duals are non-zero and it
is satisfied e.g. if [K : Qp] <∞). As last time, we will be studying K-representations
of locally L-analytic groups.

Quick overview of topological notions. (sketchy)

• All our K-vector spaces are locally convex, i.e. their topology is given by a
family of seminorms.
• Given V locally convex, its continuous dual is

V ′ := {f : V → K linear |f is continuous}.

This dual is itself locally convex via the strong topology (analogue of topology
of uniform convergence).
• We say V is a Banach space if its topology is given by a single norm and if it

is complete.
• More generally, V is called Fréchet if it is metrizable and complete.
• We say V is reflexive if V ∼= (V ′)′.

The distribution algebra. Recall that given a locally L-analytic manifold M , we have
Can(M,K) = {f : M → K|f is locally analytic}.

Definition 6. WithM as above, the space of distributions onM is the dual D(M,K) :=
Can(M,K)′.

Facts. (i) If M is compact then D(M,K) is Fréchet (i.e. is nice).
(ii) If M =

∐
i∈IMi, where the Mi are pairwise disjoint compact open subsets,

then D(M,K) =
⊕

i∈I D(Mi,K) topologically. This is useful when M = G
is a Lie group and the Mi are left cosets of some compact open subgroup G0

(e.g. G = GLn (Qp) and G0 = GLn (Zp)).
(iii) When M = G is a Lie group, D(G,K) is in fact a K-algebra.

From now on, M = G is a Lie group.

Dirac distributions. Given g ∈ G, we have an element δg ∈ D(G,K) given by
δg(f) := f(g) for f ∈ Can(G,K). This gives an injection G→ D(G,K), g 7→ δg.

The convolution product. We now sketch the construction of the product on D(G,K).
The key fact is that there is an isomorphism

D(G×G,K) ∼= D(G,K)“⊗KD(G,K)

where this denotes some completion of the usual algebraic tensor product. Also, the
group multiplication m : G × G → G induces a map Can(G,K) → Can(G × G,K),
f 7→ f ◦m. Dually this gives a map D(G×G,K)→ D(G,K).

Given u, v ∈ D(G,K), we define their convolution u ∗ v to be the image of u ⊗ v
under the composite

D(G,K)“⊗KD(G,K)
∼=−→ D(G×G,K)→ D(G,K).

When G is finite, D(G,K) is just the group algebra KG and this is the usual multipli-
cation.

Theorem 7 (Féaux de Lacroix). Convolution defines a separately continuous product
on D(G,K) with unit δ1. When G is compact, this makes D(G,K) into a Fréchet
algebra i.e. ∗ : D(G,K)×D(G,K)→ D(G,K) is continuous.
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The main moral of the story to come is that we gain more control by working with
D(G,K)-modules rather than locally analytic G-representations directly.

Explicit description of the distribution algebra. What does the distribution algebra
look like concretely?
So far the only elements we have come across are the Dirac delta distributions δg for
g ∈ G,

δg(f) = f(g), f ∈ Can(G,K).

Lemma 8. The map g 7→ δg is a continuous map of monoids G → D(G,K), i.e.
δgh = δg · δh for any g, h ∈ G.

In particular, there is a natural algebra morphism K[G] → D(G,K). If G is a
compact group, we can even go further: there is the notion of a completed group
algebra (or Iwasawa algebra) K[[G]], and by continuity, we obtain a continuous algebra
morphism θ : K[[G]]→ D(G,K).

Theorem 9. If L = Qp, then θ is a faithfully flat injection.

In other words, we can study the (’more classical’) K[[G]]-modules by passing to
D(G,K)-modules, applying D(G,K)⊗K[[G]] − without losing any information.

So D(G,K) contains the group algebra. But it also contains distributions induced
from the Lie algebra:

Let g be the Lie algebra of G, e.g. G = SL2 (Zp), g = sl2(Zp). If x ∈ g, we can
form the distribution dist(x) by

dist(x)(f) =
d

dt
(f(exp(tx)))|t=0.

This gives a linear map dist : g → D(G,K), sending [x, y] to the commutator
dist(x)dist(y)−dist(y)dist(x) - so we obtain an algebra morphism U(g)K → D(G,K).

Lemma 10. The map is injective. The closure of U(g)K in D(G,K) is a Frechet

algebra which we denote by Ū(g)K .

At first, the object Ū(g)K might seem strange, but its elements are actually very
concrete. If x1, . . . , xd is an ordered K-basis of g ⊗ K, then by the PBW theorem,
U(g)K admits a K-basis of the form

xα = xα1
1 xα2

2 . . . xαd

d ,

where α = (α1, . . . , αd) ∈ Nd0. Now an arbitrary element of Ū(g)K can be written
uniquely as ∑

α∈Nd
0

λαx
α, λα ∈ K, π−|α|nλα → 0 as |α| → ∞ ∀n.

Proposition 11. The Dirac distributions δg generate a dense subspace of D(G,K).

Proof. Idea: D(G,K)′ ∼= Can(G,K), and an element f of C(G,K) is zero if and only
if f(g) = δg(f) is zero for all g. �

So D(G,K) is like a topological group algebra that is sufficiently thickened to also
incorporate the infinitesimal information, present in form of the Lie algebra.

What is the relation between locally analytic G-representations and D(G,K)-modules?
Just as with the usual group algebra, a locally analytic G-representation carries a
D(G,K)-module structure (this is actually a bit subtle to show). It turns out however
that it is more useful to dualize this operation to get a better handle on the topology.
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Theorem 12. There is an anti-quivalence of categories

{loc an G-reps of cpct type} → {sep cts D(G,K)-mods in nuclear Frechet spaces}
V 7→ V ′.

Remark. We won’t explain all the topological notions in detail: compact type is a
property that ensures that V is reflexive, i.e. (V ′)′ ∼= V , and nuclear Frechet spaces
can be thought of as the Frechet spaces which are dual to those of compact type.

Lecture 3

Last time we saw how we can think of locally analytic G-representations (of com-
pact type) as certain topological modules over the distribution algebra D(G,K). The
problem persists however that these are topological modules, and doing algebra with
topological objects is hard!

Toy model: Noetherian Banach algebras and finitely generated modules. Let A
be a Noetherian Banach K-algebra, i.e. it is a Noetherian K-algebra which is complete
with respect to some (submultiplicative) norm. The category of normed A-modules
(or of Banach modules if we insist on completeness) is problematic for the very same
reason. But here there is an excellent remedy.

Theorem 13. Any (abstract) finitely generated A-module can be endowed with a
canonical Banach norm such that any A-module map between finitely generated mod-
ules is automatically continuous. These norms are compatible with the formation of
submodules, quotients, and direct sums.
More abstractly: there is a fully faithful functor from (abstract!) finitely generated A-
modules to the category of Banach A-modules, exhibiting the former as an (abelian!)
subcategory of the latter.

Proof. If M is a finitely generated A-module, there exists some surjection Ar → M .
We can check that this endows M with a Banach norm which has the property that
M → N is continuous if and only if the composition Ar → M → N is. But if N is
another finitely generated A-module endowed with such a norm, then any map Ar → N
is a sum of action maps and hence continuous. This shows that any A-module map
M → N is automatically continuous. In particular (taking M = N), Banach norms
arising from a different generating set give rise to an equivalent norm. Now check that
any submodule of a finitely generated A-module is a closed subspace with respect to
this norm by reducing to the case of Ar. �

Remark. This works e.g. for the Tate algebra

K〈x〉 = {
∑
N0

aix
i : |ai| → 0}

of analytic functions on the unit disk, ensuring that p-adic analytic geometry (and its
theory of coherent modules) is well-behaved.

It turns out that D(G,K) is hardly ever Noetherian Banach. But it is the next best
thing.

Definition 14. Let A be a Frechet K-algebra. We say that A is a Frechet-Stein
algebra if A can be written as A = lim←−An, where each An is a Noetherian Banach K-
algebra such that An+1 → An has dense image and turns An into a flat An+1-module
on both sides.
An A-module M is called coadmissible if M = lim←−Mn, where Mn is a finitely gener-
ated An-module, and the natural morphism An⊗An+1Mn+1 →Mn is an isomorphism.
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Example: Let

An = K〈πnx〉 =
¶∑

aix
i : π−inai → 0

©
be the ring of analytic function on a disk of radius |π|−n. Then A = lim←−An is the ring
of analytic functions on X = lim−→ SpAn, the ’affine line’. Then A is a Frechet-Stein
algebra, and coadmissible A-modules are precisely the global sections of coherent OX -
modules.

Just as in this example, the Mn can in general be recovered from M , which allows
to go back and forth between M and its ’Noetherian levels’.

Lemma 15. If M is a coadmissible A-module, then the natural morphism An⊗AM →
Mn is an isomorphism.

Theorem 16. Any coadmissible A-module can be endowed with a canonical Frechet
topology, such that any A-module morphism between coadmissible A-modules is auto-
matically continuous.

Proof. Equip each Mn with its canonical Banach norm and take the limit. Any mor-
phism M → N then gives rise to An-module morphisms Mn → Nn by the lemma, and
these are continuous by our toy model. Thus M → N is continuous by definition of
the inverse limit topology. �

Theorem 17. Let G be compact and let g be its Lie algebra. Then D(G,K) and

Ū(g)K are Frechet-Stein algebras.

Proof. (Sketch.) For Ū(g)K , this is quite similar to the example of analytic functions
discussed before.
What are the Ans for the distribution algebra? Any compact locally Qp-analytic group
contains an open subgroup G0 which is uniformly pro-p. This induces a certain fil-
tration Gi0 on G0. It is these different filtered pieces that give rise to various Banach
completions of the distribution algebra D(G0,K). One then shows that D(G0,K) is
Frechet-Stein. As G0 is open in a compact G, it has finite index, so it is straightforward
to lift this to obtain that D(G,K) is Frechet-Stein. �

Definition 18. Let V be a locally analytic G-rep of cpct type. We say that V is
admissible if V ′ is a coadmissible D(H,K)-module for some (equivalently, for any)
compact subgroup H ≤ G.

Proposition 19. Let A be a Frechet-Stein algebra and let M be a coadmissible A-
module. Let N ≤M be a submodule. The following are equivalent:

(i) N is coadmissible.
(ii) N is closed with respect to the canonical topology on M .
(iii) M/N is coadmissible.

Corollary 20. The category of coadmissible A-modules is an abelian category and
contains all finitely presented A-modules.

We have thus reached our goal. We have the following commutative diagram (for
G compact), where the horizontal arrows are (anti-)equivalences of categories.

admissible G-reps
∼= //

⊆
��

coadmissible D(G,K)-modules

⊆
��

loc an G-reps
∼= // D(G,K)-mods in nuc Fr spaces

The category of coadmissible D(G,K)-modules is an abelian category of abstract
D(G,K)-modules.
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Things we have not covered.

(i) p-adic local Langlands relates (conjecturally) n-dimensional Galois represen-
tations to unitary Banach representations of GLn (Qp). Often it is helpful to
restrict a unitary representation to its locally analytic vectors (analogously to
the smooth vectors for complex representations). The pLLC is so far only
known for n = 2, where both sides can be classified quite explicitly in terms
of (φ,Γ)-modules.

(ii) Geometric tools: One can establish an equivalence of categories between coad-
missible D(G,K)-moduels and a certain class of p-adic D-modules in rigid
analytic geometry, analogously to Beilinson-Bernstein theory over the complex
numbers.

(iii) Induction, principal series for GL2 (K)...
(iv) Analogues of Hecke algebras
(v) Reduction mod p
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