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Overview

For a ring R, the cyclotomic trace map (Bökstedt–Hsiang–Madsen)

K(R) // TC(R)

algebraic K -theory topological cyclic homology

is a very useful tool in the study of algebraic K-theory.

TC(R) is generally easier to compute.

The cyclotomic trace map induces an equivalence on relative theories for quotients
R ↠ R/I by nilpotent two-sided ideals (Dundas-Goodwillie-McCarthy).

What about the K-theory of quadratic forms?

Recall

For a commutative ring R, its real symmetric K-theory KRs(R) is a (genuine)
C2-spectrum with

underlying spectrum algebraic K-theory;

genuine fixed points the symmetric Grothendieck-Witt spectrum; and

geometric fixed points the symmetric L-spectrum.

Goal: understand the real analogue KRs(R)→ TCRs(R) of the cyclotomic trace map.
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Main results

Theorem (Nikolaus–Sha–H.)

On the level of geometric fixed points the map KRs(R)→ TCRs(R) is

Ls(R)→ Lnor(R) ∶= cof[Lq(R)→ Ls(R)].

The statement holds in the wider context of ring spectra, and more generally
Poincaré ∞-categories.

Generalizes computations of normal L-theory of spherical group rings by
Weiss–Williams and corresponding computations of TCR (Høgenhaven,
Dotto–Moi–Patchkoria).

⇒
A hermitian Dundas-Goodwillie-McCarthy theorem for nilpotent extensions of
commutative rings.

Overview:

K-theory of rings and trace maps.

K-theory of stable ∞-categories and trace maps.

Real K-theory of Poincaré ∞-categories and real trace maps.

The trace of L-theory.
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Back to algebraic K-theory

Classical idea

Study a ring R via its category Proj(R) of finitely generated projective (left) modules.

⇒ the groupoid core coreProj(R) inherits an E∞-monoid structure via direct sums.

Identifying ∞-groupoids and spaces (or homotopy types), we may consider
coreProj(R) as an E∞-space (with non-trivial homotopy groups only in dimension 0
and 1).

Definition (Quillen)

The algebraic K-theory space of R is given by the group completion

K(R) ∶= coreProj(R)grp

of the E∞-space coreProj(R). It is an E∞-group.

The K-group K0(R) = π0 K(R) is the Grothendieck group of Proj(R).

The higher K-group Kn(R) ∶= πn K(R) contain rich information on R, and are
generally hard to compute.
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Ranks and traces

Idea

Projective modules can be studied via their ranks

For P ∈ Proj(R) one has DP ∶= HomR(P,R) ∈ Proj(Rop).

For P,Q ∈ Proj(R) an isomorphism of abelian groups DP ⊗R Q
≅Ð→ HomR(P,Q).

Definition

For P ∈ Proj(R) define the trace map by

EndR(P) = DP ⊗R P
f⊗v↦f (v)ÐÐÐÐÐÐ→ R/[R,R]

The rank of P is Rank(P) ∶= Tr(idP).

Examples

The rank of Rn is [n] ∈ R/[R,R].
If a ∈ R is an idempotent element then Rank(Ra) = [a].
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The Dennis trace map

Observation

Ranks are additive: Rank(P ⊕Q) = Rank(P) +Rank(Q) in R/[R,R]

⇒ The formation of ranks descends to a homomorphism Tr0∶K0(R)→ R/[R,R],
known as the trace map. What about higher K-groups?

Dennis 76’

For every n ≥ 0 there is a natural trace map

Trn ∶Kn(R)→ HHn(R)

where HHn(R) is the n’th Hochschild homology group.

The groups HHn(R) are the homology groups of the derived tensor product

R ⊗L
R⊗Rop R ≃ [⋯→ R ⊗ R ⊗ R → R ⊗ R

a⊗b↦ab−baÐÐÐÐÐÐ→ R],

computed via the cyclic bar construction. Here HH0(R) = R ⊗R⊗Rop R = R/[R,R].

HHn(R) is are much easier to compute then Kn(R), but also can be quite far from it
in practice (e.g., HHn(Z) = 0 for n ≥ 1).
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The topological Dennis trace

K(R) is an E∞-group, so we can also faithfully encode it as a (connective) spectrum.
⇒ Obtain a refined trace map by replacing Hochschild homology by its spectral avatar.

Definition

For a ring spectrum A the topological Hochschild homology

THH(A) ∶= A⊗A⊗Aop A ∈ Sp

where ⊗ now stands for smash product of spectra. For an ordinary ring R one sets
THH(R) = THH(HR), where HR is the associated Eilenberg-MacLane ring spectrum.

For n ≥ 0 there are natural maps πnTHH(R)→ HHn(R). They are generally not
isomorphisms, except for n = 0.

Theorem (Bökstedt)

There exists a canonical map of spectra

Tr∶K(R)→ THH(R)

such that the composites Kn(R)→ πnTHH(R)→ HHn(R) are the trace maps
constructed by Dennis.
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The cyclotomic trace

The spectrum THH(R) admits a canonical circle action.

Even more, it is a cyclotomic spectrum (Hesselholt–Madsen, Nikolaus–Scholze)

Definition (Nikolaus-Scholze)

A cyclotomic spectrum is a spectrum X equipped with a T-action (T = S1) and with a
collection of T-equivariant Frobenius maps

ϕp ∶X → X tµp = cof[Xhµp → Xhµp ]

for each prime p, where µp ⊆ T is the subgroup of p-torsion points.

For a cyclotomic spectrum X there are two distinguished maps Xhµp → X tµp , the
canonical quotient map and the composite

Xhµp → X
ϕpÐ→ X tµp .

Both are equivariant with respect to the residual action of T/µp ≃ T.

Definition (Topological cyclic homology of a cyclotomic spectrum)

TC(X) ∶= Eq[XhT ⇉∏p(X tµp )hT/µp ]

Agrees with the notion of Hesselholt–Madsen when X is bounded below.
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Trace methods

The trace map canonically factors through the cyclotomic trace

K(R)→ TC(R) ∶= TC(THH(R))→ THH(R) [Bökstedt–Hsiang–Madsen].

TC(R) is generally easier to compute.

The cyclotomic trace map is often close to being an equivalence.

Theorem (Dundas–McCarthy-Goodwillie)

Let R be a ring and I ⊆ R a two-sided nilpotent ideal. Then the square of spectra

K(R) //

��

TC(R)

��
K(R/I) // TC(R/I)

is (homotopy) cartesian.
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From rings to stable ∞-categories

The algebraic K-theory of R depends only on Proj(R) as an additive category.

In fact, K(R) only depends on the perfect derived ∞-category Dp(R) ≃ Modperf
HR

Definition (Barwick–Rognes)

For a stable ∞-category C the algebraic K-theory spectrum is

K(C) ∶= Ω∣Span(C)∣

Gillet–Waldhausen

For a ring R one has
K(Dp(R)) ≃ K(R).
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The universal property of algebraic K-theory

Algebraic K-theory is localizing: for every fibre-cofibre (or Verdier) sequence

C↪ D→ E
⇐ This means that E is
the localization of D by
the equivalences mod C.

of stable ∞-categories,
K(C)→ K(D)→ K(E)

is a fibre-cofibre sequence of spectra.

Theorem (Blumberg–Gepner–Tabuada)

The functor C↦ K(C) is the initial localizing functor Catex∞ → Sp equipped with a
natural transformation coreC→ Ω∞ K(C).
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Topological Hochschild homology of stable ∞-categories

Unstable version (C any ∞-category):

uTHH(C) = colim
[f ∶x→y]∈TwAr(C)

MapC(y , x) ∈ S

Recall: the twisted arrow category has objects f ∶ x → y and morphisms
x y

x ′ y ′

Example

If C is an ∞-groupoid then uTHH(C) ≃ Map(T,C).

A stable ∞-category C admits a canonical enrichment mapC(x , y) ∈ Sp in spectra with
MapC(x , y) = Ω∞mapC(x , y).

Definition

THH(C) ∶= colim
[f ∶x→y]∈TwAr(C)

mapC(y , x) ∈ Sp

Carries a canonical natural transformation uTHH(C)→ Ω∞THH(C).

Yonatan Harpaz



Trace maps

Fact

The functor THH(C) is localizing

⇒ the composite

coreC→Map(T, coreC) ≃ uTHH(coreC)→ uTHH(C)→ Ω∞THH(C)

gives us the trace map
TrC∶K(C)→ THH(C)

by the universal property of K(−).

As in the case of rings THH(C) is actually a cyclotomic spectrum

The trace map refines to a cyclotomic trace map

K(C)→ TC(C) ∶= TC(THH(C))→ THH(C).
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From algebraic to hermitian K-theory

Wish to extend the theory to the hermitian setting: instead of projective modules (or
perfect complexes) over rings, consider such modules equipped with a unimodular
quadratic forms (Karoubi, Knebusch, Scharlau, Schlichting...).

Observation

Unimodular forms over commutative rings come in many flavours:

Quadratic versus symmetric (and versus even).

Symmetric versus anti-symmetric.

Can consider hermitian forms with respect to an involution (as often done over C).

Can fix an invertible R-module M with involution and consider symmetric forms
with values in M.

Over non-commutative rings one has no a-priori notion, requires choosing additional
structure (for example, an invertible (R ⊗ R)-module M with involution).

A given flavour of forms over R is in essences an extra structure on Dp(R) which
encodes for an X ∈ Dp(R) a notion of unimodular forms on X .

Such a structure can be axiomatized
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Poincaré ∞-categories

Definition

A Poincaré ∞-category is a stable ∞-category C with a perfect quadratic functor

Ϙ∶Cop → Sp.

Quadratic - reduced and 2-excisive in the sense of Goodwillie calculus.

⇒ BϘ(x , y) ∶= fib(Ϙ(x ⊕ y)→ Ϙ(x) × Ϙ(y)) is exact in each variable (bilinear part).

BϘ(x , y) is also symmetric in x and y , and the cofibre

ΛϘ(x) ∶= cof[BϘ(x , x)hC2
→ Ϙ(x)]

is exact in x (linear part).

Perfect - there exists a duality DϘ∶Cop → C such that BϘ(x , y) ≃mapC(x ,DϘy).

Definition

For x ∈ C the points of the space Ω∞
Ϙ(x) are called hermitian forms on x . A

hermitian form β on x determines a map β♯∶ x → Dx . When β♯ is an equivalence we
say that β is unimodular, or a Poincaré form.

He(C,Ϙ) = the ∞-category of hermitian objects (x , β) in C.
Pn(C,Ϙ) = the ∞-groupoid of Poincaré objects (x , β) in C.
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Examples

R - commutative (associative) ring, M - invertible R (R ⊗ R)-module with involution.

There is a notion analogous to perfect quadratic functors on the level of additive
categories. Examples Proj(R)op → Ab include

SymM(P) = HomR(P ⊗R P,M)C2 (HomR⊗R(P ⊗ P,M)C2 ) symmetric forms on P

QuadM(P) = HomR(P ⊗R P,M)C2
(HomR⊗R(P ⊗ P,M)C2

) quadratic forms on P

We can consider homotopy versions of these examples:

Examples

The functor ϘsR ∶Dp(R)op → Sp given by ϘsR(X) =mapR(X ⊗R X ,M)hC2

(mapR⊗R(X ⊗X ,M)hC2 ) is the Poincaré structure of homotopy symmetric forms.

The functor Ϙq
R
∶Dp(R)op → Sp given by Ϙq

R
(X) =mapR(X ⊗R X ,M)hC2

(mapR⊗R(X ⊗X ,M)hC2
) is the Poincaré structure of homotopy quadratic forms.

We can also consider derived versions of these examples:

For a perfect quadratic functor Ϙ∶Proj(R)op → Ab there exists an essentially unique
perfect quadratic functor Ϙ̃∶Dp(R)→ Sp with Ϙ̃∣Proj(R)op = H ○ Ϙ.

The derived functors Ϙgs
M
= S̃ymM and Ϙgq

M
= Q̃uadM are called the genuine symmetric

and genuine quadratic functors, respectively. Fit into a sequence

Ϙ
q
M
⇒ Ϙgq

M
⇒ Ϙgs

M
⇒ ϘsM .
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Joint 9-author paper (Calmès, Dotto, Hebestreit, Land, Moi,Nardin,
Nikolaus, Steimle, H.)

To a Poincaré ∞-category (C,Ϙ) one may associate a Grothendieck-Witt spectrum
GW(C,Ϙ) and an L-theory spectrum L(C,Ϙ). Some key facts:

There is a canonical fibre sequence

K(C)hC2
→ GW(C,Ϙ)→ L(C,Ϙ)

GW(−) and L(−) are both localizing: they send fibre-cofibre sequences

(C,Ϙ)→ (D,Φ)→ (E,Ψ)

of Poincaré ∞-categories to fibre sequences of spectra.

There is a natural transformation Pn(−)⇒ Ω∞ GW(−), and GW is the initial
localizing invariant with this property.

L is similarly universally characterized by being localizing and bordism invariant.
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The case of rings

For a ring R, an invertible module with involution M, and r ∈ {s,q,gs,gq} write

GWr (R,M) = GW(Dp(R),ϘrM) and Lr (R,M) = L(Dp(R),ϘrM).

The spaces Ω∞ GWgs(R,M) and Ω∞ GWgq(R,M) are equivalent the symmetric
and quadratic Grothendieck–Witt spaces defined by Karoubi-Villamayor
[Hebestreit–Steimle]

The spectra Ls(R,M) and Lq(R,M) are the 4-periodic symmetric and quadratic
L-spectra of Ranicki.

The homotopy groups of Lgs(R,M) are the original non-periodic symmetric
L-groups originally defined by Ranicki.
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C2-Spectra

Recall

A C2-spectrum is a spectrum X with C2-action together with a factorization

XhC2
→ XC2 → XhC2

of the transfer map XhC2
→ XhC2 . SpC2

- the ∞-category of C2-spectra.

The spectrum XC2 is called the genuine fixed points of X , while
XΦC2 ∶= cof[XhC2

→ XC2 ] is called the geometric fixed points of X .

Example

For a Poincaré ∞-category (C,Ϙ) and x ∈ C and object the factorization

map(x ,Dx)hC2
→ Ϙ(x)→map(x ,Dx)hC2

determines a C2-spectrum Ϙ̃(x) whose underlying spectrum is mapC(x ,Dx), whose
genuine fixed points is Ϙ(x) and whose geometric fixed point is ΛQ(x).
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Real K-theory

Definition

The real K-theory spectrum of (C,Ϙ) is the C2-spectrum KR(C,Ϙ) with underlying
spectrum K(C) and factorization

K(C)hC2
→ GW(C,Ϙ)→ KhC2 .

Its genuine fixed points spectrum is GW(C,Ϙ) and its geometric fixed points is L(C,Ϙ).

For a ring R, an invertible module with involution M, and r ∈ {s,q,gs,gq} write

KRr (R,M) ∶= KR(Dp(R),ϘrM)

.
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C2-categories

Recall

A C2-category is cocartesian fibration E→ O
op
C2

, where OC2
is the orbit category of

C2. A C2-functor is a map over O
op
C2

preserving cocartesian arrows.

The category OC2
has two objects C2,∗. A C2-category E has

An underlying category EC2
equipped with a C2-action.

A fixed point category E∗, equipped with a C2-equivariant functor E∗ → EC2
.

A C2-category is completely determined by this data.

Examples

The C2-category S̃pC2
→ O

op
C2

whose underlying ∞-category is Sp (with trivial

action) and whose fixed points category is SpC2
.

For a Poincaré ∞-category (C,Ϙ), its twisted arrow category refines to a
C2-category

T̃wAr(C,Ϙ)→ O
op
C2

whose underlying category is TwAr(C) with C2-action induced by the duality and
fixed points the category He(C,Ϙ) of hermitian objects.

Yonatan Harpaz



Real topological Hochschild homology

First introduced for ring spectra with anti-involution by Hesselholt–Madsen.

Recall

For a stable ∞-category C we had a canonical functor map∶TwAr(C)→ Sp sending
f ∶ x → y to mapC(y , x). The colimit of this functor is THH(C).

For a Poincaré ∞-category we have a canonical C2-functor

m̃ap∶ T̃wAr(C,Ϙ)→ S̃pC2
.

On the level of underlying categories, it is the functor map∶TwAr(C)→ Sp
associated to C.

On the level of fixed point categories, it is the functor He(C,Ϙ)→ SpC2
sending a

hermitian object (x , β) to the C2-spectrum Ϙ̃(Dx).

The real topological Hochschild homology of (C,Ϙ) is the C2-colimit

THR(C,Ϙ) =
C2

colim
T̃wAr

(m̃ap) ∈ SpC2

of the functor T̃wAr. It is a C2-spectrum whose

underlying spectrum is THH(C) = colimTwAr(map); and

geometric fixed points colim
(x,β)∈He(C,Ϙ)

Ϙ̃(Dx)ΦC2 = colim
(x,β)∈He(C,Ϙ)

ΛϘ(Dx).
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Real cyclic homology

For a Poincaré ∞-category (C,Ϙ), the C2-spectrum THR(C,Ϙ) is a real cyclotomic
spectrum.

Two definitions for this notion were proposed by J.D. Quigley and J. Shah, analogous
to the two definitions of cyclotomic spectra. They then showed that they coincide
when the underlying spectrum is bounded below.

In the Nikolaus-Scholze style definition, a real cyclotomic spectrum is a C2-spectrum
X with

a T-action, but now T needs to be considered as a group object in C2-spaces; and

Frobenius maps ϕp ∶X → X tµp for every prime p, but where the Tate construction is
now understood in a C2-parametrized manner.

TCR(X) ∶= Eq[X hT ⇉∏
p
(X tµp )hT/µp ] ∈ SpC2

.

Again, the equalizer, Tate construction and homotopy fixed points are all to be
understood in the C2-parametrized sense.

For a Poincaré ∞-category (C,Ϙ) one sets TCR(C,Ϙ) = TCR(THR(C,Ϙ)). For a ring
R, an invertible module with involution M, and r ∈ {s,q,gs,gq} write

THRr (R,M) = THR(Dp(R),ϘrM) and TCRr (R,M) = TCR(Dp(R),ϘrM).
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The real cyclotomic trace

As before, one has a T-equivariant real trace map KR(C,Ϙ)→ THR(C,Ϙ), which lifts
to a real cyclotomic trace map

KR(C,Ϙ)→ TCR(C,Ϙ).

Theorem

Let C,Ϙ be a Poincaré ∞-category with duality D such that C is generated under finite
colimits and desuspensions by a set of objects C0 ⊆ C such that mapC(x , y) is
connective for x , y ∈ C0. Then on the level of geometric fixed points, the real
cyclotomic trace map is the map

L(C,Ϙ)→ Lnor(C,Ϙ) ∶= cof[L(C,ϘqD)→ L(C,Ϙ)],

where Ϙq
D
(x) =mapC(x ,Dx)hC2

is the “quadratic” Poincaré structure of D.

The condition on C being generated from C0 implies that THH(C) is bounded below
(and this is the only part it plays).
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A hermitian Dundas–McCarthy-Goodwillie theorem

Corollary

Let R be a commutative ring, I ⊆ R a nilpotent ideal and a M an invertible R-module
with involution. Then for every r ∈ {s,q,gs,gq} the square

KRr (R,M) //

��

TCRr (R,M)

��
KRr (R/I ,M/I) // TCRr (R/I ,M/I)

is a cartesian square of C2-spectra.
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A few words about the proof

T ∶= THR(C,Ϙ)ΦC2 = colim
(x,β)∈He(C,Ϙ)

ΛϘ(Dx) ≃ ∫
x∈C

ΛϘ(x)⊗ ΛϘ(Dx)

It carries a µ2-action and admits a Frobenius map T → T tµ2 . One then shows

TCR(C,Ϙ)ΦC2=Eq[Thµ2 ⇉ T tµ2 ]=Lnor(C,Ϙ).

For the blue equivalence this is a Beck-Chevalley phenomenon of left and right functors
commuting, and crucially relies on the assumption that THH(C) is bounded below.

For the red equivalence, suppose ΛQ(−) =mapC(−, a) is representable. Then

T = ΛQ(Da) =mapC(Da, a) = BϘ(Da,Da)
and one checks that

Eq[BϘ(Da,Da)hµ2 ⇉ BϘ(Da,Da)tµ2 ] ≃ Eq[Ϙ(Da)⇉ BϘ(Da,Da)].
Construct a map

Pn(C,Ϙ) // Eq[Ω∞
Ϙ(Da)⇉ Ω∞BϘ(Da,Da)]

(x , β) � // f̂ ∗β β ⇉ f̂ ∗β fβ

where fβ ∶ x → a is the image of β in ΛQ(x) =mapC(x , a), and f̂β ∶Da → Dx ≃ x its
dual ⇒ extends to a map on normal L-theory by universal property.
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