On strong continuity of weak solutions to the compressible Euler equations

Eduard Feireisl
based on joint work with A.Abbatiello (TU Berlin, Rome) Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague
Convex integration and nonlinear PDE's, ICMS Edinburgh 8 November - 12 November 2021

Prologue

Weak continuity

$$
\begin{gathered}
\mathbf{U} \in C_{\text {weak }}\left([0, T] ; L^{p}\left(\Omega ; R^{d}\right)\right), t \mapsto \int_{\Omega} \mathbf{U} \cdot \boldsymbol{\varphi} \mathrm{d} x \in C[0, T] \\
\varphi \in L^{p^{\prime}}\left(\Omega ; R^{d}\right)
\end{gathered}
$$

Strong continuity

$$
\tau \in[0, T],\|\mathbf{U}(t, \cdot)-\mathbf{U}(\tau, \cdot)\|_{L^{p}\left(\Omega ; R^{d}\right)} \text { whenever } t \rightarrow \tau
$$

Strong vs．weak

$$
\text { strong } \Rightarrow \text { weak, weak \# strong }
$$

Euler system for a barotropic inviscid fluid

Equation of continuity

$$
\partial_{t} \varrho+\operatorname{div}_{x} \mathbf{m}=0
$$

Momentum equation

$$
\partial_{t} \mathbf{m}+\operatorname{div}_{x}\left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho}\right)+\nabla_{x} p(\varrho)=0, p(\varrho)=a \varrho^{\gamma}, a>0, \gamma>1
$$

Impermeability boundary conditions

$$
\left.\mathbf{m} \cdot \mathbf{n}\right|_{\partial \Omega}=0
$$

Initial conditions

$$
\varrho(0, \cdot)=\varrho_{0}, \mathbf{m}(0, \cdot)=\mathbf{m}_{0}
$$

First and Second law - energy

Energy

$$
\begin{gathered}
\mathcal{E}=\frac{1}{2} \frac{|\mathbf{m}|^{2}}{\varrho}+P(\varrho), P^{\prime}(\varrho) \varrho-P(\varrho)=p(\varrho) \\
p^{\prime} \geq 0 \Rightarrow[\varrho, \mathbf{m}] \mapsto\left\{\begin{array}{l}
\frac{1}{2} \frac{|\mathbf{m}|^{2}}{\varrho}+P(\varrho) \text { if } \varrho>0 \\
P(\varrho) \text { if }|\mathbf{m}|=0 \\
\infty \text { if } \varrho=0,|\mathbf{m}| \neq 0
\end{array} \quad\right. \text { is convex I.s.c }
\end{gathered}
$$

Energy balance (conservation)

$$
\partial_{t} \mathcal{E}+\operatorname{div}_{x}\left(\mathcal{E} \frac{\mathbf{m}}{\varrho}\right)+\operatorname{div}_{x}\left(p \frac{\mathbf{m}}{\varrho}\right)=0
$$

Energy dissipation

$$
\begin{gathered}
\partial_{t} \mathcal{E}+\operatorname{div}_{x}(\mathcal{E} \mathbf{u})+\operatorname{div}_{x}(p \mathbf{u}) \leq 0 \\
E=\int_{\Omega} \mathcal{E} \mathrm{d} x, \partial_{t} E \leq 0, E(0+)=\int_{\Omega}\left[\frac{1}{2} \frac{\left|\mathbf{m}_{0}\right|^{2}}{\varrho_{0}}+P\left(\varrho_{0}\right)\right] \mathrm{d} x
\end{gathered}
$$

Weak solutions

Field equations

$$
\begin{gathered}
\int_{0}^{\infty} \int_{\Omega}\left[\varrho \partial_{t} \varphi+\mathbf{m} \cdot \nabla_{x} \varphi\right] \mathrm{d} x \mathrm{~d} t=-\int_{\Omega} \varrho_{0} \varphi(0, \cdot) \mathrm{d} x, \varphi \in C_{c}^{1}([0, \infty) \times \bar{\Omega}) \\
\int_{0}^{\infty} \int_{\Omega}\left[\mathbf{m} \cdot \partial_{t} \boldsymbol{\varphi}+\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho}: \nabla_{x} \boldsymbol{\varphi}+p(\varrho) \operatorname{div}_{x} \varphi\right] \mathrm{d} x \mathrm{~d} t \\
=-\int_{\Omega} \mathbf{m}_{0} \cdot \boldsymbol{\varphi}(0, \cdot) \mathrm{d} x, \varphi \in C_{c}^{1}\left([0, T) \times \bar{\Omega} ; R^{N}\right),\left.\boldsymbol{\varphi} \cdot \mathbf{n}\right|_{\partial \Omega}=0
\end{gathered}
$$

Admissible weak solutions

$$
\begin{gathered}
\int_{0}^{\infty} \int_{\Omega}\left[\frac{1}{2} \frac{|\mathbf{m}|^{2}}{\varrho}+P(\varrho)\right] \mathrm{d} x \partial_{t} \psi \mathrm{~d} t \geq 0 \\
\psi \in C_{c}^{1}(0, \infty), \psi \geq 0
\end{gathered}
$$

Result A: (De Lellis-Székelyhidy, Chiodaroli)
For any smooth initial data there exist infinitely many solutions satisfying the energy inequality on the open interval $(0, T)$ but experiencing initial energy "jump"

Result B: (De Lellis-Székelyhidy, Chiodaroli, Xin et al., EF)

For any smooth initial density ϱ_{0} there exists \boldsymbol{m}_{0} (not enecessarily regular) such that there are infinitely many weak solutions satisfying the energy inequality on the open interval $(0, T)$ and with the energy continous at $t=0$

Result C (Giri and Kwon) :

There is a set of smooth initial densities ϱ_{0} and Hölder \mathbf{m}_{0} such that there are infinitely many solutions satisfying the energy equation on the open interval $(0, T)$ (with the energy continous at $t=0$)

Class of Riemann integrable functions

Class \mathcal{R}

The complement of the points of continuity of \mathbf{U} is of zero Lebesgue measure in a domain Q

Riemann integrability

A function \mathbf{U} is Riemann integrable in Q only if \mathbf{U} belongs to the class \mathcal{R}

Oscillations

$$
\begin{gathered}
\operatorname{osc}[v](y)=\lim _{s \geq 0}\left[\sup _{B((y), s) \cap \bar{Q}} v-\inf _{B((y), s) \cap \bar{Q}} v\right] \\
A_{\eta}=\{(y) \in \bar{Q} \mid \operatorname{osc}[v](y) \geq \eta\} \text { is closed and of zero content } \\
A_{\eta} \subset \cup_{i \in \operatorname{fin}} Q_{i}, \sum_{i}\left|Q_{i}\right|<\delta \text { for any } \delta>0, Q_{i}-\text { a box }
\end{gathered}
$$

Main result

Theorem

Let $d=2$, 3 . Let $\varrho_{0}, \mathbf{m}_{0}$, and E be given such that

$$
\begin{gathered}
\varrho_{0} \in \mathcal{R}(\Omega), 0 \leq \underline{\varrho} \leq \varrho_{0} \leq \bar{\varrho} \\
\mathbf{m}_{0} \in \mathcal{R}\left(\Omega ; R^{d}\right), \operatorname{div}_{x} \mathbf{m}_{0} \in \mathcal{R}(\Omega),\left.\mathbf{m}_{0} \cdot \mathbf{n}\right|_{\partial \Omega}=0 \\
0 \leq E \leq \bar{E}, E \in \mathcal{R}(0, T)
\end{gathered}
$$

Then there exists a positive constant E_{∞} (large) such that the Euler problem admits infinitely many weak solutions with the energy profile

$$
\int_{\Omega}\left[\frac{1}{2} \frac{|\mathbf{m}|^{2}}{\varrho}+P(\varrho)\right](t, \cdot) \mathrm{d} x=E_{\infty}+E(t) \text { for a.a. } t \in(0, T)
$$

Strongly discontinuous solutions, I

Let $d=2,3$. Let $\varrho_{0}, \mathbf{m}_{0}$ be given such that

$$
\begin{gathered}
\varrho_{0} \in \mathcal{R}(\Omega), 0 \leq \underline{\varrho} \leq \varrho_{0} \leq \bar{\varrho} \\
\mathbf{m}_{0} \in \mathcal{R}\left(\Omega ; R^{d}\right), \operatorname{div}_{x} \mathbf{m}_{0} \in \mathcal{R}(\Omega),\left.\mathbf{m}_{0} \cdot \mathbf{n}\right|_{\partial \Omega}=0
\end{gathered}
$$

Let $\left\{\tau_{i}\right\}_{i=1}^{\infty} \subset(0, T)$ be an arbitrary (countable dense) set of times.
Then the Euler problem admits infinitely many weak solutions ϱ, \mathbf{m} with a strictly decreasing total energy profile such that

$$
\varrho \in C_{\text {weak }}\left([0, T] ; L^{\gamma}(\Omega)\right), \mathbf{m} \in C_{\text {weak }}\left([0, T] ; L^{\frac{2 \gamma}{\gamma+1}}\left(\Omega ; R^{d}\right)\right)
$$

but

$$
t \mapsto[\varrho(t, \cdot), \mathbf{m}(t, \cdot)] \text { is not strongly continuous at any } \tau_{i}, i=1,2, \ldots
$$

Strongly discontinuous solutions, II

Let $d=2,3$. Let ϱ_{0},

$$
\varrho_{0} \in C^{\infty}(\bar{\Omega}), 0 \leq \underline{\varrho} \leq \varrho_{0} \leq \bar{\varrho}
$$

be given, together with an F_{σ} subset G of $\Omega,|G|=0$, and an arbitrary (countable dense) set of times $\left\{\tau_{i}\right\}_{i=1}^{\infty} \subset(0, T)$

Then there exists

$$
\mathbf{m}_{0} \in \mathcal{R}\left(\Omega ; R^{d}\right), \operatorname{div}_{x} \mathbf{m}_{0} \in \mathcal{R}(\Omega),\left.\mathbf{m}_{0} \cdot \mathbf{n}\right|_{\partial \Omega}=0
$$

such that the Euler problem admits infinitely many weak solution ϱ, \mathbf{m} with a strictly decreasing total energy profile such that ϱ is not continuous at any point

$$
t>0, x \in G
$$

and

$$
\varrho \in C_{\text {weak }}\left([0, T] ; L^{\gamma}(\Omega)\right), \mathbf{m} \in C_{\text {weak }}\left([0, T] ; L^{\frac{2 \gamma}{\gamma+1}}\left(\Omega ; R^{d}\right)\right)
$$

with

$$
t \mapsto[\varrho(t, \cdot), \mathbf{m}(t, \cdot)] \text { not strongly continuous at any } \tau_{i}, i=1,2, \ldots
$$

Strongly discontinuous solutions, III

Let $d=2,3$. Let ϱ_{0},

$$
\varrho_{0} \in C^{\infty}(\bar{\Omega}), 0 \leq \underline{\varrho} \leq \varrho_{0} \leq \bar{\varrho},
$$

be given, together with an F_{σ} subset G of $\Omega,|G|=0$, an arbitrary (countable dense) set of times $\left\{\tau_{i}\right\}_{i=1}^{\infty} \subset(0, T)$, and a number $\delta>0$.

Then there exists

$$
\mathbf{m}_{0} \in L^{\infty}\left(\Omega ; R^{d}\right), \operatorname{div}_{x} \mathbf{m}_{0} \in \mathcal{R}(\Omega),\left.\mathbf{m}_{0} \cdot \mathbf{n}\right|_{\partial \Omega}=0
$$

such that the Euler problem admits infinitely many weak solution ϱ, m with a strictly decreasing total energy profile continuous at $t=0$ such that ϱ is not continuous at any point

$$
\begin{gathered}
t>\delta, x \in G \\
\varrho \in C_{\text {weak }}\left([0, T] ; L^{\gamma}(\Omega)\right), \mathbf{m} \in C_{\text {weak }}\left([0, T] ; L^{\frac{2 \gamma}{\gamma+1}}\left(\Omega ; R^{d}\right)\right)
\end{gathered}
$$

with
$t \mapsto[\varrho(t, \cdot), \mathbf{m}(t, \cdot)]$ not strongly continuous at any $\tau_{i}, i=1,2, \ldots, \tau_{i}>\delta$

Convex integration ansatz

Helmholtz decomposition of the initial data

$$
\mathbf{m}_{0}=\mathbf{v}_{0}+\nabla_{x} \Phi_{0}, \operatorname{div}_{x} \mathbf{v}_{0}=0, \Delta_{x} \Phi_{0}=\operatorname{div}_{x} \mathbf{m}_{0},\left.\left(\nabla_{x} \Phi_{0}-\mathbf{m}_{0}\right) \cdot \mathbf{n}\right|_{\partial \Omega}=0
$$

Convex integration ansatz

$$
\begin{gathered}
\varrho(t, x)=\varrho_{0}+h(t) \Delta_{x} \Phi_{0}, h(0)=0, h^{\prime}(0)=-1 \\
\mathbf{m}(t, x)=\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}, \operatorname{div}_{x} \mathbf{v}=0, \\
\left.\mathbf{v} \cdot \mathbf{n}\right|_{\partial \Omega}=0, \mathbf{v}(0, \cdot)=\mathbf{v}_{0}
\end{gathered}
$$

"Overdetermined" Euler system

Given quantities

$$
h, \Phi_{0} \varrho
$$

Balance of momentum

$$
\begin{gathered}
\partial_{t} \mathbf{v}+\operatorname{div}_{x}\left(\frac{\left(\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right) \otimes\left(\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right)}{\varrho}-\frac{1}{d} \frac{\left|\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right|^{2}}{\varrho} \mathbb{I}\right) \\
=0 \\
\quad \operatorname{div}_{x} \mathbf{v}=0 \\
\left.\mathbf{v} \cdot \mathbf{n}\right|_{\partial \Omega}=0, \mathbf{v}(0, \cdot)=\mathbf{v}_{0}
\end{gathered}
$$

Energy

$$
\frac{1}{2} \frac{\left|\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right|^{2}}{\varrho}=\Lambda(t)-\frac{d}{2} p(\varrho)+\frac{d}{2} h^{\prime \prime}(t) \Phi_{0}
$$

Subsolutions

Energy profile

$$
e=e(t, x)=\frac{E(t)}{|\Omega|}+\Lambda_{0}(t)-\frac{d}{2} p(\varrho)+\frac{d}{2} h^{\prime \prime}(t) \Phi_{0}, e \in \mathcal{R}([0, T] \times \bar{\Omega}) .
$$

Field equations

$$
\operatorname{div}_{x} \mathbf{v}=0, \partial_{t} \mathbf{v}+\operatorname{div}_{x} \mathbb{U}=0, \quad \mathbf{v}(0, \cdot)=\mathbf{v}_{0}, \mathbb{U}(t, x) \in R_{\mathrm{sym}, 0}^{d \times d}
$$

Convex constraint

$$
\frac{d}{2} \sup _{[0, T] \times \bar{\Omega}} \lambda_{\max }\left[\frac{\left(\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right) \otimes\left(\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right)}{\varrho}-\mathbb{U}\right]<\inf _{[0, T] \times \bar{\Omega}} e
$$

Algebraic inequality

$$
\frac{1}{2} \frac{\left|\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right|^{2}}{\varrho} \leq \frac{d}{2} \lambda_{\max }\left[\frac{\left(\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right) \otimes\left(\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right)}{\varrho}-\mathbb{U}\right]
$$

Critical points (De Lellis- Székelyhidi)

Convex functional

$$
I[\mathbf{v}]=\int_{0}^{T} \int_{\Omega}\left(\frac{1}{2} \frac{\left|\mathbf{v}-h^{\prime}(t) \nabla_{x} \Phi_{0}\right|^{2}}{\varrho}-e\right) \mathrm{d} x \mathrm{~d} t \text { for } \mathbf{v} \in X
$$

Zero points

$$
I[\mathbf{v}]=0 \Rightarrow \mathbf{v} \text { is a weak solution of the problem }
$$

Points of continuity

$$
\mathbf{v} \text { - a point of continuity of } I \text { on } X \Rightarrow I[\mathbf{v}]=0
$$

Oscillatory Lemma (De Lellis, Székelyhidi)

Oscillatory Lemma, basic constant coefficients form
Let $Q=(0,1) \times(0,1)^{d}, d=2,3$. Suppose that $\mathbf{v} \in R^{d}, \mathbb{U} \in R_{0, \text { sym }}^{d \times d}$, $e \leq \bar{e}$ are given constant quantities such that

$$
\frac{d}{2} \lambda_{\max }[\mathbf{v} \otimes \mathbf{v}-\mathbb{U}]<e .
$$

Then there is a constant $c=c(d, \bar{e})$ and sequences of vector functions $\left\{\mathbf{w}_{n}\right\}_{n=1}^{\infty},\left\{\mathbb{V}_{n}\right\}_{n=1}^{\infty}$,

$$
\mathbf{w}_{n} \in C_{c}^{\infty}\left(Q ; R^{d}\right), \mathbb{V}_{n} \in C_{c}^{\infty}\left(Q ; R_{0, \mathrm{sym}}^{d \times d}\right)
$$

satisfying

$$
\begin{gathered}
\partial_{t} \mathbf{w}_{n}+\operatorname{div}_{x} \mathbb{V}_{n}=0, \operatorname{div}_{x} \mathbf{w}_{n}=0 \text { in } Q, \\
\frac{d}{2} \lambda_{\max }\left[\left(\mathbf{v}+\mathbf{w}_{n}\right) \otimes\left(\mathbf{v}+\mathbf{w}_{n}\right)-\left(\mathbb{U}+\mathbb{V}_{n}\right)\right]<e \text { in } Q \text { for all } n=1,2, \ldots, \\
\mathbf{w}_{n} \rightarrow 0 \text { in } C_{\text {weak }}\left([0,1] ; L^{2}\left((0,1)^{d} ; R^{d}\right)\right) \text { as } n \rightarrow \infty, \\
\liminf _{n \rightarrow \infty} \int_{Q}\left|\mathbf{w}_{n}\right|^{2} \mathrm{~d} x \mathrm{~d} t \geq c(d, \bar{e}) \int_{Q}\left(e-\frac{1}{2}|\mathbf{v}|^{2}\right)^{2} \mathrm{~d} x \mathrm{~d} t
\end{gathered}
$$

Oscillatory Lemma, continuous form

$\mathbf{v} \in C\left(\bar{Q} ; R^{d}\right), \mathbb{U} \in C\left(\bar{Q} ; R_{0, \mathrm{sym}}^{d \times d}\right), e \in C(\bar{Q}), r \in \mathcal{C}(\bar{Q}), Q=(0, T) \times \Omega$

$$
\begin{gathered}
0<\underline{r} \leq r(t, x) \leq \bar{r}, \quad e(t, x) \leq \bar{e} \text { for all }(t, x) \in \bar{Q}, \\
\quad \frac{d}{2} \sup _{\bar{Q}} \lambda_{\max }\left[\frac{\mathbf{v} \otimes \mathbf{v}}{r}-\mathbb{U}\right]<\inf _{\bar{Q}} e .
\end{gathered}
$$

Then there is a constant $c=c(d, \bar{e})$ and sequences $\left\{\mathbf{w}_{n}\right\}_{n=1}^{\infty},\left\{\mathbb{V}_{n}\right\}_{n=1}^{\infty}$,

$$
\mathbf{w}_{n} \in C_{c}^{\infty}\left(Q ; R^{d}\right), \mathbb{V}_{n} \in C_{c}^{\infty}\left(Q ; R_{0, \mathrm{sym}}^{d \times d}\right)
$$

satisfying

$$
\begin{gathered}
\partial_{t} \mathbf{w}_{n}+\operatorname{div}_{x} \mathbb{V}_{n}=0, \operatorname{div}_{x} \mathbf{w}_{n}=0 \text { in } Q, \\
\frac{d}{2} \sup _{\bar{Q}} \lambda_{\max }\left[\frac{\left(\mathbf{v}+\mathbf{w}_{n}\right) \otimes\left(\mathbf{v}+\mathbf{w}_{n}\right)}{r}-\left(\mathbb{U}+\mathbb{V}_{n}\right)\right]<\inf _{\bar{Q}} e, \\
\left.\mathbf{w}_{n} \rightarrow 0 \text { in } C_{\text {weak }}\left([0, T] ; \Omega ; R^{d}\right)\right) \text { as } n \rightarrow \infty, \\
\liminf _{n \rightarrow \infty} \int_{Q} \frac{\left|\mathbf{w}_{n}\right|^{2}}{r} \mathrm{~d} x \mathrm{~d} t \geq c(d, \bar{e}) \int_{Q}\left(e-\frac{1}{2} \frac{|\mathbf{v}|^{2}}{r}\right)^{2} \mathrm{~d} x \mathrm{~d} t
\end{gathered}
$$

Oscillatory Lemma, proof via decomposition

- Domain decomposition

$$
Q=\cup_{i \in \operatorname{fin}} Q_{i}, Q_{i} \text { boxes }
$$

- Replace the functions by constants (integral means) on each Q_{i}. The difference is small if the functions are continuous and diam[$\left.Q_{i}\right]$ is small so that all relevant inequalities remain valid
■ Use the fact that the constant version of oscillatory lemma is invariant under scaling and apply it on each Q_{i}
■ Sum up the results

Oscillatory Lemma, "Riemann" form

$\mathbf{v} \in \mathcal{R}\left(\bar{Q} ; R^{d}\right), \mathbb{U} \in \mathcal{R}\left(\bar{Q} ; R_{0, \text { sym }}^{d \times d}\right), e \in \mathcal{R}(\bar{Q}), r \in \mathcal{R}(\bar{Q}), Q=(0, T) \times \Omega$

$$
\begin{gathered}
0<\underline{r} \leq r(t, x) \leq \bar{r}, e(t, x) \leq \bar{e} \text { for all }(t, x) \in \bar{Q}, \\
\quad \frac{d}{2} \sup _{\bar{Q}} \lambda_{\max }\left[\frac{\mathbf{v} \otimes \mathbf{v}}{r}-\mathbb{U}\right]<\inf _{\bar{Q}} e .
\end{gathered}
$$

Then there is a constant $c=c(d, \bar{e})$ and sequences $\left\{\mathbf{w}_{n}\right\}_{n=1}^{\infty},\left\{\mathbb{V}_{n}\right\}_{n=1}^{\infty}$,

$$
\mathbf{w}_{n} \in C_{c}^{\infty}\left(Q ; R^{d}\right), \mathbb{V}_{n} \in C_{c}^{\infty}\left(Q ; R_{0, \mathrm{sym}}^{d \times d}\right)
$$

satisfying

$$
\begin{gathered}
\partial_{t} \mathbf{w}_{n}+\operatorname{div}_{x} \mathbb{V}_{n}=0, \operatorname{div}_{x} \mathbf{w}_{n}=0 \text { in } Q, \\
\frac{d}{2} \sup _{\bar{Q}} \lambda_{\max }\left[\frac{\left(\mathbf{v}+\mathbf{w}_{n}\right) \otimes\left(\mathbf{v}+\mathbf{w}_{n}\right)}{r}-\left(\mathbb{U}+\mathbb{V}_{n}\right)\right]<\inf _{\bar{Q}} e, \\
\left.\mathbf{w}_{n} \rightarrow 0 \text { in } C_{\text {weak }}\left([0, T] ; \Omega ; R^{d}\right)\right) \text { as } n \rightarrow \infty, \\
\liminf _{n \rightarrow \infty} \int_{Q} \frac{\left|\mathbf{w}_{n}\right|^{2}}{r} \mathrm{~d} x \mathrm{~d} t \geq c(d, \bar{e}) \int_{Q}\left(e-\frac{1}{2} \frac{|\mathbf{v}|^{2}}{r}\right)^{2} \mathrm{~d} x \mathrm{~d} t
\end{gathered}
$$

